CN106756877A - C轴结晶igzo薄膜及其制备方法 - Google Patents

C轴结晶igzo薄膜及其制备方法 Download PDF

Info

Publication number
CN106756877A
CN106756877A CN201611147744.1A CN201611147744A CN106756877A CN 106756877 A CN106756877 A CN 106756877A CN 201611147744 A CN201611147744 A CN 201611147744A CN 106756877 A CN106756877 A CN 106756877A
Authority
CN
China
Prior art keywords
axles
crystallize
igzo films
atomic layer
igzo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611147744.1A
Other languages
English (en)
Other versions
CN106756877B (zh
Inventor
王选芸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan China Star Optoelectronics Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Technology Co Ltd
Priority to CN201611147744.1A priority Critical patent/CN106756877B/zh
Priority to PCT/CN2016/112524 priority patent/WO2018107523A1/zh
Priority to US15/505,107 priority patent/US20190153595A1/en
Publication of CN106756877A publication Critical patent/CN106756877A/zh
Application granted granted Critical
Publication of CN106756877B publication Critical patent/CN106756877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明提供一种C轴结晶IGZO薄膜及其制备方法。本发明的C轴结晶IGZO薄膜的制备方法,通过采用原子层沉积的方法来制备C轴结晶IGZO薄膜,能够在原子水平上精确控制C轴结晶IGZO的结构,制得的C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性;并且由于本发明制得的C轴结晶IGZO薄膜中的结晶区域的面积较大,达百微米级至毫米级,因此可促进C轴结晶IGZO的规模化应用;同时本发明利用最优化的工艺条件来制备C轴结晶IGZO薄膜,可提高生产良率,降低生产成本。本发明的C轴结晶IGZO薄膜,C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性,同时结晶区域的面积较大,有利于C轴结晶IGZO的规模化应用。

Description

C轴结晶IGZO薄膜及其制备方法
技术领域
本发明涉及显示技术领域,尤其涉及一种C轴结晶IGZO薄膜及其制备方法。
背景技术
薄膜晶体管(Thin Film Transistor,TFT)是目前液晶显示装置(Liquid CrystalDisplay,LCD)和有源矩阵驱动式有机电致发光显示装置(Active Matrix Organic Light-Emitting Diode,AMOLED)中的主要驱动元件,直接关系到高性能平板显示装置的发展方向。
随着智能手机与平板显示等终端应用的兴起,250PPI(Pixels Per Inch,每英寸所拥有的像素数目)以上的高精细度面板要求逐渐成为搭配趋势,也促使更多面板厂投入高精细度的低温多晶硅(Low Temperature Poly Silicon,LTPS)薄膜晶体管扩产,但由于低温多晶硅薄膜晶体管(LTPS TFT)生产线的制程复杂度高,且良率也是一大问题,因此面板厂积极投入金属氧化物半导体的研发工作,目前以非结晶氧化铟镓锌(amorphousIndium Gallium Zinc Oxide,a-IGZO)技术较为成熟。
IGZO(Indium Gallium Zinc Oxide)为氧化铟镓锌的缩写,它是一种薄膜电晶体技术,在TFT-LCD主动层之上打上的一层金属氧化物。IGZO技术由夏普(Sharp)掌握,是与日本半导体能源研究所共同开发的产品。除了夏普外,三星SDI以及乐金显示也同样具备生产IGZO面板的能力。
IGZO与非晶质硅(a-Si)材料相比,电子迁移率较a-Si TFT快20到50倍,IGZO使用铟、镓、锌、氧气,取代了传统的a-Si现用图层,可以大大降低屏幕的响应时间,缩小电晶体尺寸,提高面板画素的开口率,较易实现高精细化,由此将简单的外部电路整合至面板之中,使移动装置更轻薄,耗电量也降至之前的三分之二。
IGZO规模化使用中存在的最大问题是IGZO中氧空位(或者氧缺陷)的迅速变化会导致TFT的稳定性较差。这是IGZO材料本身缺陷导致的问题,想要解决此问题,必须从材料本身结构出发来控制氧空位的变化,以提高TFT的稳定性。C轴结晶IGZO(C-axis AlignedCrystalline,简称CAAC)具有层状的结晶结构,无晶界,材料本身的氧缺陷非常少,因此在TFT稳定性方面具有a-IGZO不可比拟的优势。SEL公司(Semiconductor Energy LaboratoryCo.,Ltd)的研究团队采用磁控溅射的方式制备C轴结晶IGZO薄膜,但是制得的C轴结晶IGZO薄膜中只有直径为1nm-3nm的区域为结晶状态,绝大部分的区域都是非晶状态,也就是说,所述C轴结晶IGZO薄膜中,只有极小的区域为C轴结晶IGZO,其余区域均为a-IGZO,由于结晶区域的面积较小,因此不利于C轴结晶IGZO的规模化应用。
发明内容
本发明的目的在于提供一种C轴结晶IGZO薄膜的制备方法,制得的C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性;同时制得的C轴结晶IGZO薄膜中的结晶区域的面积较大,可促进C轴结晶IGZO的规模化应用。
本发明的目的还在于提供一种C轴结晶IGZO薄膜,C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性,同时结晶区域的面积较大,有利于C轴结晶IGZO的规模化应用。
为实现上述目的,本发明提供一种C轴结晶IGZO薄膜的制备方法,包括如下步骤:
步骤1、提供一基底与原子层沉积装置,将所述基底送入所述原子层沉积装置中,向所述原子层沉积装置中通入氧化铟前驱体物质,同时通入氧气与惰性气体的混合气体,在所述基底上形成氧化铟膜;
步骤2、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化铟前驱体物质,从而对所述原子层沉积装置进行清洗;
步骤3、向所述原子层沉积装置中通入氧化镓前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化铟膜上形成氧化镓膜;
步骤4、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化镓前驱体物质,从而对所述原子层沉积装置进行清洗;
步骤5、向所述原子层沉积装置中通入氧化锌前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化镓膜上形成氧化锌膜;
步骤6、向所述原子层沉积装置中通入清洗气体,驱逐出所述原子层沉积装置中多余的氧化锌前驱体物质,从而对所述原子层沉积装置进行清洗;
经过所述步骤1至步骤6,在所述基底上形成一层C轴结晶IGZO膜,所述C轴结晶IGZO膜包括在C轴方向上依次排列的氧化铟膜、氧化镓膜及氧化锌膜;
步骤7、在所述基底上形成C轴结晶IGZO薄膜。
所述步骤7中重复所述步骤1至步骤6数次,所述C轴结晶IGZO薄膜包括层叠设置的数层C轴结晶IGZO膜,所述C轴结晶IGZO膜的层数与重复所述步骤1至步骤6的次数相同。
所述步骤1中,所述氧化铟前驱体物质包括氯化铟与水。
所述步骤3中,所述氧化镓前驱体物质包括三甲基镓与水。
所述步骤5中,所述氧化锌前驱体物质包括二乙基锌与双氧水。
所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置中的温度为310℃-335℃,压力为5mTorr-8mTorr,所述原子层沉积装置的工作功率为180W-200W;所述氧气与惰性气体的混合气体中,氧气的浓度为15v%-17v%。
所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置中的温度为320℃,压力为7mTorr,所述原子层沉积装置的工作功率为190W;所述氧气与惰性气体的混合气体中,氧气的浓度为16v%。
所述步骤1、步骤3及步骤5中,所述氧气与惰性气体的混合气体中,所述惰性气体为氩气。
所述步骤2、步骤4及步骤6中,所述清洗气体为氮气或者惰性气体。
本发明还提供一种C轴结晶IGZO薄膜,包括层叠设置的数层C轴结晶IGZO膜,所述C轴结晶IGZO膜包括在C轴方向上依次排列的氧化铟膜、氧化镓膜及氧化锌膜。
本发明的有益效果:本发明提供的一种C轴结晶IGZO薄膜的制备方法,通过采用原子层沉积的方法来制备C轴结晶IGZO薄膜,能够在原子水平上精确控制C轴结晶IGZO的结构,制得的C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性;并且由于本发明制得的C轴结晶IGZO薄膜中的结晶区域的面积较大,达百微米级至毫米级,因此可促进C轴结晶IGZO的规模化应用;同时本发明利用最优化的工艺条件来制备C轴结晶IGZO薄膜,可提高生产良率,降低生产成本。本发明提供的一种C轴结晶IGZO薄膜,C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性,同时结晶区域的面积较大,有利于C轴结晶IGZO的规模化应用。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的C轴结晶IGZO薄膜的制备方法的流程图;
图2为本发明的C轴结晶IGZO薄膜的制备方法的步骤1的示意图;
图3为本发明的C轴结晶IGZO薄膜的制备方法的步骤3的示意图;
图4为本发明的C轴结晶IGZO薄膜的制备方法的步骤5的示意图;
图5为本发明的C轴结晶IGZO薄膜的制备方法的步骤7的示意图暨本发明的C轴结晶IGZO薄膜的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
原子层沉积(Atomic Layer Deposition,ALD)是通过将气相前驱体脉冲交替地通入反应器中在沉积基体上化学吸附并反应而形成沉积膜的一种方法。当前驱体达到沉积基体表面,它们会在其表面化学吸附并发生表面反应。在前驱体脉冲之间需要用惰性气体对原子层沉积反应器进行清洗。由此可知沉积反应前驱体物质能否在被沉积材料表面化学吸附是实现原子层沉积的关键。气相物质在基体材料的表面吸附特征可以看出,任何气相物质在材料表面都可以进行物理吸附,但是要实现在材料表面的化学吸附必须具有一定的活化能,因此能否实现原子层沉积,选择合适的反应前驱体物质是很重要的。
本发明采用原子层沉积的方法来制备C轴结晶IGZO,通过将适当的前驱体在基底表面进行反应,按照其C轴排布的原子层顺序沉积并使其结晶,经过n次循环后,在所述基底上形成大面积的C轴结晶IGZO薄膜。
采用原子层沉积的方法进行C轴结晶IGZO薄膜沉积的过程中,沉积温度(deposition temperature)、氧气浓度(O2concentration)、沉积功率(deposition power)及工作压力(working pressure)是四个非相关的重要因素。为了确定C轴结晶IGZO薄膜的最佳沉积条件,本发明进行了DOE试验设计,设计四因素三水平的试验,在一定的范围内按照低水平、中水平、高水平三个实施数值进行设计,确定试验参数与试验结果的相关性,设计的DOE正交试验的4因素与3水平的实施数值如表1所示,DOE正交试验的具体实施方案如表2所示。
表1. DOE试验设计的4因素与3水平的实施数值
因素 单位 低水平(1) 中水平(2) 高水平(3)
沉积温度(A) 210 270 330
氧气浓度(B) 5 10 20
沉积功率(C) W 50 100 200
工作压力(D) mTorr 2 5 8
表2. DOE试验设计的具体实施方案
上述表2中,A、B、C、D分别指代上述表1中的沉积温度(A)、氧气浓度(B)、沉积功率(C)、及工作压力(D)四因素,除试验号外的阿拉伯数字1、2、3分别指代上述表1中的低水平(1)、中水平(2)、及高水平(3)的实验数值。
通过上述DOE试验最终得出C轴结晶IGZO薄膜的最优化沉积工艺参数为:沉积温度310℃-335℃,氧气浓度15v%-17v%,工作压力5mTorr-8mTorr,沉积功率180W-200W,在该工艺条件下,采用原子层沉积的方法制得的C轴结晶IGZO薄膜的结晶区域的面积较大,结晶区域的结晶质量较好,从而能够提高生产良率,降低生产成本。
请参阅图1,基于上述DOE试验结果,本发明提供一种C轴结晶IGZO薄膜的制备方法,包括如下步骤:
步骤1、如图2所示,提供一基底10与原子层沉积装置50,将所述基底10送入所述原子层沉积装置50中,向所述原子层沉积装置50中通入氧化铟前驱体物质,同时通入氧气与惰性气体的混合气体,在所述基底10上形成氧化铟(In2O3)膜20;
步骤2、向所述原子层沉积装置50中通入清洗气体,驱逐出所述原子层沉积装置50中多余的氧化铟前驱体物质,从而对所述原子层沉积装置50进行清洗;
步骤3、如图3所示,向所述原子层沉积装置50中通入氧化镓前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化铟膜21上形成氧化镓(Ga2O3)膜22;
步骤4、向所述原子层沉积装置50中通入清洗气体,驱逐出所述原子层沉积装置50中多余的氧化镓前驱体物质,从而对所述原子层沉积装置50进行清洗;
步骤5、如图4所示,向所述原子层沉积装置50中通入氧化锌前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化镓膜22上形成氧化锌(ZnO)膜23;
步骤6、向所述原子层沉积装置50中通入清洗气体,驱逐出所述原子层沉积装置50中多余的氧化锌前驱体物质,从而对所述原子层沉积装置50进行清洗;
经过所述步骤1至步骤6,在所述基底10上形成一层C轴结晶IGZO膜20,所述C轴结晶IGZO膜20包括在C轴方向上依次排列的氧化铟膜21、氧化镓膜22及氧化锌膜23;
步骤7、如图5所示,在所述基底10上形成C轴结晶IGZO薄膜30。
具体的,所述步骤7中重复所述步骤1至步骤6数次,所述C轴结晶IGZO薄膜30包括层叠设置的数层C轴结晶IGZO膜20,所述C轴结晶IGZO膜20的层数与重复所述步骤1至步骤6的次数相同。
图5为所述步骤7制得的C轴结晶IGZO薄膜30的结构示意图,从图5中可以看出,所述C轴结晶IGZO薄膜30包括层叠设置的数层C轴结晶IGZO膜20,每层C轴结晶IGZO膜20中,所述氧化铟膜21、氧化镓膜22及氧化锌膜23在C轴方向上依次排列。
具体的,所述步骤1中,所述氧化铟前驱体物质包括氯化铟(Cl3In)与水(H2O)。
具体的,所述步骤3中,所述氧化镓前驱体物质包括三甲基镓((CH3)3Ga)与水(H2O)。
具体的,所述步骤5中,所述氧化锌前驱体物质包括二乙基锌(Zn(C2H5)2)与双氧水(H2O2)。
优选的,所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置50中的温度为310℃-335℃,压力为5mTorr-8mTorr,所述原子层沉积装置50的工作功率为180W-200W;所述氧气与惰性气体的混合气体中,氧气的浓度为15v%-17v%。
最优选的,所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置50中的温度为320℃,压力为7mTorr,所述原子层沉积装置50的工作功率为190W;所述氧气与惰性气体的混合气体中,氧气的浓度为16v%。
具体的,所述步骤1、步骤3及步骤5中,所述氧气与惰性气体的混合气体中,所述惰性气体为氩气。
具体的,所述步骤1、步骤3及步骤5中,通过向所述原子层沉积装置50中通入氧气与惰性气体的混合气体,利用氧气中的氧原子来填补制得的氧化铟膜21、氧化镓膜22及氧化锌膜23中的氧缺陷,从而减少最终制得的C轴结晶IGZO薄膜30中的氧缺陷,提高C轴结晶IGZO薄膜30的结晶质量。
具体的,所述步骤2、步骤4及步骤6中,所述清洗气体为氮气或者惰性气体,所述惰性气体优选为氩气。
具体的,本发明制备的C轴结晶IGZO薄膜30中的结晶区域的面积可达百微米级至毫米级,与现有的C轴结晶IGZO薄膜的制作工艺相比,本发明制得的C轴结晶IGZO薄膜30中的结晶区域的面积要大得多,可促进C轴结晶IGZO的规模化应用。
通常情况下,所述步骤7制得的C轴结晶IGZO薄膜30中的结晶区域的面积为100μm2~50mm2
通常情况下,所述步骤7中重复所述步骤1至步骤6的次数为100-200次,所述步骤7制得的C轴结晶IGZO薄膜30的厚度可达100nm~200nm。
上述C轴结晶IGZO薄膜的制备方法,通过采用原子层沉积的方法来制备C轴结晶IGZO薄膜,能够在原子水平上精确控制C轴结晶IGZO的结构,制得的C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性;并且由于本发明制得的C轴结晶IGZO薄膜中的结晶区域的面积较大,达百微米级至毫米级,因此可促进C轴结晶IGZO的规模化应用;同时本发明利用最优化的工艺条件来制备C轴结晶IGZO薄膜,可提高生产良率,降低生产成本。
请参阅图5,基于上述C轴结晶IGZO薄膜的制备方法,本发明还提供一种C轴结晶IGZO薄膜,包括层叠设置的数层C轴结晶IGZO膜20,所述C轴结晶IGZO膜20包括在C轴方向上依次排列的氧化铟膜21、氧化镓膜22及氧化锌膜23。
具体的,所述数层至少为一层。
具体的,所述C轴结晶IGZO薄膜中的结晶区域的面积为100μm2~50mm2
具体的,所述C轴结晶IGZO薄膜的厚度为100nm~200nm。
上述C轴结晶IGZO薄膜,C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性,同时结晶区域的面积较大,有利于C轴结晶IGZO的规模化应用。
综上所述,本发明提供一种C轴结晶IGZO薄膜及其制备方法。本发明的C轴结晶IGZO薄膜的制备方法,通过采用原子层沉积的方法来制备C轴结晶IGZO薄膜,能够在原子水平上精确控制C轴结晶IGZO的结构,制得的C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性;并且由于本发明制得的C轴结晶IGZO薄膜中的结晶区域的面积较大,达百微米级至毫米级,因此可促进C轴结晶IGZO的规模化应用;同时本发明利用最优化的工艺条件来制备C轴结晶IGZO薄膜,可提高生产良率,降低生产成本。本发明的C轴结晶IGZO薄膜,C轴结晶IGZO的结晶质量好,氧缺陷较少,能够提高TFT的稳定性,同时结晶区域的面积较大,有利于C轴结晶IGZO的规模化应用。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

1.一种C轴结晶IGZO薄膜的制备方法,其特征在于,包括如下步骤:
步骤1、提供一基底(10)与原子层沉积装置(50),将所述基底(10)送入所述原子层沉积装置(50)中,向所述原子层沉积装置(50)中通入氧化铟前驱体物质,同时通入氧气与惰性气体的混合气体,在所述基底(10)上形成氧化铟膜(20);
步骤2、向所述原子层沉积装置(50)中通入清洗气体,驱逐出所述原子层沉积装置(50)中多余的氧化铟前驱体物质,从而对所述原子层沉积装置(50)进行清洗;
步骤3、向所述原子层沉积装置(50)中通入氧化镓前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化铟膜(21)上形成氧化镓膜(22);
步骤4、向所述原子层沉积装置(50)中通入清洗气体,驱逐出所述原子层沉积装置(50)中多余的氧化镓前驱体物质,从而对所述原子层沉积装置(50)进行清洗;
步骤5、向所述原子层沉积装置(50)中通入氧化锌前驱体物质,同时通入氧气与惰性气体的混合气体,在所述氧化镓膜(22)上形成氧化锌膜(23);
步骤6、向所述原子层沉积装置(50)中通入清洗气体,驱逐出所述原子层沉积装置(50)中多余的氧化锌前驱体物质,从而对所述原子层沉积装置(50)进行清洗;
经过所述步骤1至步骤6,在所述基底(10)上形成一层C轴结晶IGZO膜(20),所述C轴结晶IGZO膜(20)包括在C轴方向上依次排列的氧化铟膜(21)、氧化镓膜(22)及氧化锌膜(23);
步骤7、在所述基底(10)上形成C轴结晶IGZO薄膜(30)。
2.如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其特征在于,所述步骤7中重复所述步骤1至步骤6数次,所述C轴结晶IGZO薄膜(30)包括层叠设置的数层C轴结晶IGZO膜(20),所述C轴结晶IGZO膜(20)的层数与重复所述步骤1至步骤6的次数相同。
3.如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其特征在于,所述步骤1中,所述氧化铟前驱体物质包括氯化铟与水。
4.如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其特征在于,所述步骤3中,所述氧化镓前驱体物质包括三甲基镓与水。
5.如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其特征在于,所述步骤5中,所述氧化锌前驱体物质包括二乙基锌与双氧水。
6.如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其特征在于,所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置(50)中的温度为310℃-335℃,压力为5mTorr-8mTorr,所述原子层沉积装置(50)的工作功率为180W-200W;所述氧气与惰性气体的混合气体中,氧气的浓度为15v%-17v%。
7.如权利要求6所述的C轴结晶IGZO薄膜的制备方法,其特征在于,所述步骤1、步骤3及步骤5中,控制所述原子层沉积装置(50)中的温度为320℃,压力为7mTorr,所述原子层沉积装置(50)的工作功率为190W;所述氧气与惰性气体的混合气体中,氧气的浓度为16v%。
8.如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其特征在于,所述步骤1、步骤3及步骤5中,所述氧气与惰性气体的混合气体中,所述惰性气体为氩气。
9.如权利要求1所述的C轴结晶IGZO薄膜的制备方法,其特征在于,所述步骤2、步骤4及步骤6中,所述清洗气体为氮气或者惰性气体。
10.一种C轴结晶IGZO薄膜,其特征在于,包括层叠设置的数层C轴结晶IGZO膜(20),所述C轴结晶IGZO膜(20)包括在C轴方向上依次排列的氧化铟膜(21)、氧化镓膜(22)及氧化锌膜(23)。
CN201611147744.1A 2016-12-13 2016-12-13 C轴结晶igzo薄膜及其制备方法 Active CN106756877B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201611147744.1A CN106756877B (zh) 2016-12-13 2016-12-13 C轴结晶igzo薄膜及其制备方法
PCT/CN2016/112524 WO2018107523A1 (zh) 2016-12-13 2016-12-28 C轴结晶igzo薄膜及其制备方法
US15/505,107 US20190153595A1 (en) 2016-12-13 2016-12-28 C-axis aligned crystalline igzo thin film and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611147744.1A CN106756877B (zh) 2016-12-13 2016-12-13 C轴结晶igzo薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106756877A true CN106756877A (zh) 2017-05-31
CN106756877B CN106756877B (zh) 2019-02-19

Family

ID=58880901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611147744.1A Active CN106756877B (zh) 2016-12-13 2016-12-13 C轴结晶igzo薄膜及其制备方法

Country Status (3)

Country Link
US (1) US20190153595A1 (zh)
CN (1) CN106756877B (zh)
WO (1) WO2018107523A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110438472A (zh) * 2019-06-27 2019-11-12 惠科股份有限公司 铟镓锌氧化物薄膜的制作方法、薄膜晶体管和显示面板
CN111613664A (zh) * 2020-05-26 2020-09-01 深圳市华星光电半导体显示技术有限公司 薄膜晶体管及其制备方法、显示面板
CN112126896A (zh) * 2020-09-27 2020-12-25 吉林大学 一种低温制备c轴结晶igzo薄膜的方法
US20220208806A1 (en) * 2019-04-09 2022-06-30 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University Display device including hydrogen diffusion barrier film, and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264506B2 (en) * 2018-10-31 2022-03-01 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US11217698B2 (en) * 2020-05-26 2022-01-04 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method of manufacturing a thin film transistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618843A (zh) * 2012-03-23 2012-08-01 复旦大学 非晶铟镓锌氧化物薄膜的原子层淀积制备方法
US20130200365A1 (en) * 2012-02-02 2013-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN103996717A (zh) * 2014-05-07 2014-08-20 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板和显示装置
CN105655409A (zh) * 2016-03-25 2016-06-08 北京大学 一种具有金属覆盖层的薄膜晶体管及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187919B2 (en) * 2008-10-08 2012-05-29 Lg Display Co. Ltd. Oxide thin film transistor and method of fabricating the same
CN101691651B (zh) * 2009-10-10 2011-07-27 西安交通大学 一种InGaZnO透明导电薄膜的L-MBE制备方法
CN101876059A (zh) * 2009-11-27 2010-11-03 北京工业大学 一种透明氧化物半导体InGaZn4O7薄膜的制备方法
WO2012091297A1 (ko) * 2010-12-30 2012-07-05 주성엔지니어링㈜ 박막 트랜지스터 및 그 제조 방법
US9012904B2 (en) * 2011-03-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN102320838A (zh) * 2011-05-10 2012-01-18 孔伟华 柔性透明导电膜用金属氧化物半导体材料及其制备方法
CN103946742B (zh) * 2011-11-18 2016-08-31 夏普株式会社 半导体装置、显示装置和半导体装置的制造方法
KR20130087354A (ko) * 2012-01-27 2013-08-06 주식회사 유피케미칼 인듐을 포함한 산화막 및 이의 제조 방법
US8901556B2 (en) * 2012-04-06 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device
US9171960B2 (en) * 2013-01-25 2015-10-27 Qualcomm Mems Technologies, Inc. Metal oxide layer composition control by atomic layer deposition for thin film transistor
US9012261B2 (en) * 2013-03-13 2015-04-21 Intermolecular, Inc. High productivity combinatorial screening for stable metal oxide TFTs
US10304859B2 (en) * 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
EP2884542A3 (en) * 2013-12-10 2015-09-02 IMEC vzw Integrated circuit device with power gating switch in back end of line
CN103708812A (zh) * 2013-12-12 2014-04-09 宁夏东方钽业股份有限公司 一种溅射用igzo氧化物靶材的制备方法
US20150187956A1 (en) * 2013-12-26 2015-07-02 Intermolecular Inc. IGZO Devices with Increased Drive Current and Methods for Forming the Same
US9502242B2 (en) * 2014-02-05 2016-11-22 Applied Materials, Inc. Indium gallium zinc oxide layers for thin film transistors
US10061151B2 (en) * 2014-06-30 2018-08-28 Lg Display Co., Ltd. Light shielding material and display device including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130200365A1 (en) * 2012-02-02 2013-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102618843A (zh) * 2012-03-23 2012-08-01 复旦大学 非晶铟镓锌氧化物薄膜的原子层淀积制备方法
CN103996717A (zh) * 2014-05-07 2014-08-20 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板和显示装置
CN105655409A (zh) * 2016-03-25 2016-06-08 北京大学 一种具有金属覆盖层的薄膜晶体管及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220208806A1 (en) * 2019-04-09 2022-06-30 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University Display device including hydrogen diffusion barrier film, and method for manufacturing same
CN110438472A (zh) * 2019-06-27 2019-11-12 惠科股份有限公司 铟镓锌氧化物薄膜的制作方法、薄膜晶体管和显示面板
CN110438472B (zh) * 2019-06-27 2021-08-31 惠科股份有限公司 铟镓锌氧化物薄膜的制作方法、薄膜晶体管和显示面板
CN111613664A (zh) * 2020-05-26 2020-09-01 深圳市华星光电半导体显示技术有限公司 薄膜晶体管及其制备方法、显示面板
CN112126896A (zh) * 2020-09-27 2020-12-25 吉林大学 一种低温制备c轴结晶igzo薄膜的方法

Also Published As

Publication number Publication date
US20190153595A1 (en) 2019-05-23
CN106756877B (zh) 2019-02-19
WO2018107523A1 (zh) 2018-06-21

Similar Documents

Publication Publication Date Title
CN106756877B (zh) C轴结晶igzo薄膜及其制备方法
US11888071B2 (en) Method for manufacturing semiconductor device
US9917116B2 (en) Semiconductor device
TWI500165B (zh) 薄膜電晶體、其製造方法及電子設備
CN106298879B (zh) 顶栅和垂直结构tft的制作方法
JP2020080413A (ja) 表示装置
CN105679833A (zh) 具有叠层有源层的薄膜晶体管及其制备方法
CN102651399B (zh) 微晶非晶硅复合型薄膜晶体管及其制造方法
JP6542961B2 (ja) 半導体装置の作製方法
CN101740397B (zh) ZnO基薄膜晶体管的金属有机化学气相沉积制备方法
CN105220131B (zh) 脉冲气流法制备薄膜晶体管igzo半导体薄膜层的方法
Watanabe et al. Amorphous gallium oxide as an improved host for inorganic light-emitting thin film semiconductor fabricated at room temperature on glass
Xu et al. Enhanced electrical stability of thin film transistors based on nanocrystalline silicon films
CN103956325A (zh) 一种多层复合氧化物高k介质薄膜晶体管的制备方法
CN104253246B (zh) 低温多晶硅薄膜的制作方法、低温多晶硅薄膜及相关器件
CN104253026A (zh) 制备多晶硅层的方法
CN104576759A (zh) 一种金属氧化物半导体薄膜晶体管及其制备方法
TWI531009B (zh) 氧化物型半導體材料及濺鍍靶
CN110459601B (zh) 一种二维非晶氧化物半导体与薄膜晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant