CN106747438A - 一种低介的ltcc微波介质陶瓷材料及其制备方法 - Google Patents

一种低介的ltcc微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106747438A
CN106747438A CN201611125806.9A CN201611125806A CN106747438A CN 106747438 A CN106747438 A CN 106747438A CN 201611125806 A CN201611125806 A CN 201611125806A CN 106747438 A CN106747438 A CN 106747438A
Authority
CN
China
Prior art keywords
ceramic materials
dielectric ceramic
microwave dielectric
cuwo
ltcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611125806.9A
Other languages
English (en)
Other versions
CN106747438B (zh
Inventor
陈忠燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611125806.9A priority Critical patent/CN106747438B/zh
Publication of CN106747438A publication Critical patent/CN106747438A/zh
Application granted granted Critical
Publication of CN106747438B publication Critical patent/CN106747438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一种低介的LTCC微波介质陶瓷材料及其制备方法,包含主晶相黑钨矿CuWO4和辅助相纳米晶Na2WO4,其分子式为:(1‑x)CuWO4‑xNa2WO4。以CuCO3,WO3和Na2CO3为原料,按化学计量比配料,经过一次高速混合、烘干、预烧、二次高速混合、烘干、造粒、成型、烧结,制得自身烧结温度低的微波介质陶瓷材料(1‑x)CuWO4‑xNa2WO4。该微波介质陶瓷材料具有较低的介电常数和较低的介电损耗,可用于LTCC 基板材料,具有良好的商业价值。制备工艺省去常规制备工艺的超声分散等繁琐步骤,制备过程能耗低污染少,应用前景广阔。

Description

一种低介的LTCC微波介质陶瓷材料及其制备方法
技术领域
本发明属于微波电子材料领域,涉及一种低介的LTCC微波介质陶瓷材料及其制备方法。
背景技术
LTCC材料是LTCC技术中低温共烧陶瓷作为基板的材料统称,LTCC材料的介电常数可以在很大范围内变动,增加了电路设计的灵活性。目前,LTCC材料在日本、美国等发达国家已进入产业化、系列化和可进行材料设计的阶段。
LTCC材料经历了从简单到复合、从低介电常数到高介电常数和使用频段不断增加等发展过程。从技术成熟程度、产业化程度及应用广泛程度等角度来评价,目前LTCC技术是无源集成的主流技术。LTCC属于高新科技的前沿产品,广泛应用于微电子工业的各个领域,具有十分广阔的应用市场和发展前景。同时LTCC技术也将面临来自不同技术的竞争与挑战,必须继续强化自身技术发展和大力降低制造成本,不断完善或亟待开发相关技术。如美国 (ITRI)正积极主导开发可埋入电阻、电容的PCB技术,并预计2~3年后达到成熟阶段,届时将以MCM-L形式与LTCC/MLC技术在高频通信模块领域成为强有力竞争对手。至于以微电子技术为核心开发的MCM-D技术来制作高频通信模块,也正在美、日、欧各大公司内积极展开。如何继续保持LTCC技术在无线通讯组件领域的主流地位,还必须继续强化自身技术发展和大力降低制造成本,不断完善或亟待开发相关技术,如解决与器件集成化制备工艺中异质材料的匹配共烧,化学兼容性及机电性能与界面行为等问题。
目前,LTCC陶瓷材料主要是两个体系,即“微晶玻璃”系和“玻璃+陶瓷”系。采用低熔点氧化物或低熔点玻璃的掺杂可以降低陶瓷材料的烧结温度,但是降低烧结温度有限,而且不同程度会损坏材料性能,寻找自身具有烧结温度低的陶瓷材料引起研究人员的重视。整体而言,CuWO4材料本身的烧结温度不是很高,且具有较好的微波性能。如果能通过合理的复合或掺杂设计,有望实现综合性能很好的低介的LTCC材料。
发明内容
本发明的目的在于,提供一种具有优异的微波介电性能,本身的烧结温度不是很高的新型超低温共烧微波陶瓷基板材料及优化其制备方法。
为了达到以上目的,本发明提供如下技术方案:
一种低介的LTCC微波介质陶瓷材料,包含主晶相黑钨矿CuWO4和辅助相纳米晶Na2WO4,其分子式为 (1-x)CuWO4-xNa2WO4,所述(1-x)CuWO4-xNa2WO4由CuCO3,WO3和Na2CO3制得。烧结温度为900~1000℃时,能实现较低的介电常数,其介电常数为7.5~8.3。
(1-x)CuWO4-xNa2WO4微波介质陶瓷材料中,x的取值范围为0.05~0.09。
上述方案的陶瓷的制备步骤如下:
(1) 按化学计量比称量原料CuCO3,WO3和Na2CO3,一次高速混磨、混料均匀后烘干物料;
(2) 将步骤(1)所得的烘干物料过筛后放入坩埚中压实,按3℃/min的升温速率升至900~1000℃,保温1~3h,随炉冷却;
(3) 将步骤(2)所得的块状预烧料从坩埚中取出,在高速混合机中二次混磨;
(4) 将步骤(3)所得到的二次混磨物料烘干后,加入质量分数为5%~10%的聚乙烯醇溶液进行造粒,并压成圆柱形;
(5) 将步骤(4)所得的样品放入马弗炉中,按3~5℃/min的升温速率升至700℃并保温2h,然后再按2℃~3℃/min的升温速率升温至900~1000℃进行烧结,保温2~3h,再按1℃~2℃/min的降温速率降温至700℃,随后随炉冷却。
上述的制备方法中,(1-x)CuWO4-xNa2WO4微波介质陶瓷中x的取值范围为0.05~0.09。
上述的制备方法中,聚乙烯醇溶液的质量分数为8%。
经过以上五个步骤,就可以得到本发明所述的低介LTCC微波陶瓷材料。
经测试,本发明提供的低介的LTCC微波介质陶瓷材料,其介电常数为7.5~8.3,Q×f 值均在53000GHz以上,谐振频率温度系数τf约为-50ppm/℃。
本发明提供的低介LTCC微波陶瓷材料的主要优点在于:
①该微波介质陶瓷材料介电常数为7.5~8.3,可用于LTCC 基板材料,具有良好的商业价值。
②具有较低的介电损耗,Q×f值均在53000GHz以上。
③该制备工艺省去常规制备工艺的超声分散等繁琐步骤。
④制备过程能耗低污染少,应用前景广阔。
附图说明
图1为本发明提供的低介电常数的LTCC微波陶瓷材料的制备工艺流程示意图。
具体实施方式
实施例1
以CuCO3,WO3和Na2CO3为原料制备0.92CuWO4-0.08Na2WO4低温共烧微波介质陶瓷材料,具体制备方法如下:
(1) 按化学计量比称量原料CuCO3,WO3和Na2CO3,一次高速混磨、混料均匀后烘干物料;
(2) 将步骤(1)所得的烘干物料过筛后放入坩埚中压实,按3℃/min的升温速率升至900℃,保温2h,随炉冷却;
(3) 将步骤(2)所得的块状预烧料从坩埚中取出,在高速混合机中二次混磨;
(4) 将步骤(3)所得到的二次混磨物料烘干后,加入质量分数为8%的聚乙烯醇溶液进行造粒,并压成直径12mm,高度8mm的圆柱形;
(5) 将步骤(4)所得的样品放入马弗炉中,按4℃/min的升温速率升至700℃并保温2h,以排除生坯中的水分和胶水,然后再按3℃/min的升温速率升温至950℃进行烧结,保温2.5h,再按2℃/min的降温速率降温至700℃,随后随炉冷却,最终制得所需要的微波介质陶瓷材料。
该具体实施方案所获得的LTCC材料经过系列测试,发现其介电常数为7.9,Q×f值为56000GHz,谐振频率从温度系数为-50ppm/℃。
实施例2
以CuCO3,WO3和Na2CO3为原料制备0.94CuWO4-0.06Na2WO4低温共烧微波介质陶瓷材料,具体制备方法如下:
(1) 按化学计量比称量原料CuCO3,WO3和Na2CO3,一次高速混磨、混料均匀后烘干物料;
(2) 将步骤(1)所得的烘干物料过筛后放入坩埚中压实,按3℃/min的升温速率升至950℃,保温3h,随炉冷却;
(3) 将步骤(2)所得的块状预烧料从坩埚中取出,在高速混合机中二次混磨;
(4) 将步骤(3)所得到的二次混磨物料烘干后,加入质量分数为8%的聚乙烯醇溶液进行造粒,并压成直径12mm,高度8mm圆柱形;
(5) 将步骤(4)所得的样品放入马弗炉中,按4℃/min的升温速率升至700℃并保温2h,以排除生坯中的水分和胶水,然后再按3℃/min的升温速率升温至1000℃进行烧结,保温2.5h,再按2℃/min的降温速率降温至700℃,随后随炉冷却,最终制得所需要的微波介质陶瓷材料。
该具体实施方案所获得的LTCC材料经过系列测试,发现其介电常数为7.7,Q×f值为58000GHz,谐振频率从温度系数为-48ppm/℃。
以上实施例在本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于上述的实施例。

Claims (5)

1.一种低介的LTCC微波介质陶瓷材料,其特征在于:包含主晶相黑钨矿CuWO4和辅助相纳米晶Na2WO4,其分子式为:(1-x)CuWO4-xNa2WO4
2.根据权利要求1所述的低介的LTCC微波介质陶瓷材料,其特征在于: (1-x)CuWO4-xNa2WO4微波介质陶瓷材料中,x的取值范围为0.05~0.09。
3.一种低介的LTCC微波介质陶瓷材料的制备方法,其特征在于包含以下步骤:
(1) 按化学计量比称量原料CuCO3,WO3和Na2CO3,一次高速混磨、混料均匀后烘干物料;
(2) 将步骤(1)所得的烘干物料过筛后放入坩埚中压实,按3℃/min的升温速率升至900~1000℃,保温1~3h,随炉冷却;
(3) 将步骤(2)所得的块状预烧料从坩埚中取出,在高速混合机中二次高速混磨;
(4) 将步骤(3)所得到的二次高速混磨物料烘干后,加入质量分数为5%~10%的聚乙烯醇溶液进行造粒,并压成圆柱形;
(5) 将步骤(4)所得的样品放入马弗炉中,按3~5℃/min的升温速率升至700℃并保温2h,然后再按2℃~3℃/min的升温速率升温至900~1000℃进行烧结,保温2~3h,再按1℃~2℃/min的降温速率降温至700℃,随后随炉冷却。
4.根据权利要求3中所述的低介的LTCC微波介质陶瓷材料的制备方法,其特征在于:所述配方分子式为(1-x)CuWO4-xNa2WO4中x的取值范围为0.05~0.09。
5.根据权利要求3中所述的低介的LTCC微波介质陶瓷材料的制备方法,其特征在于:所述聚乙烯醇溶液的质量分数为8%。
CN201611125806.9A 2016-12-09 2016-12-09 一种低介的ltcc微波介质陶瓷材料及其制备方法 Active CN106747438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611125806.9A CN106747438B (zh) 2016-12-09 2016-12-09 一种低介的ltcc微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611125806.9A CN106747438B (zh) 2016-12-09 2016-12-09 一种低介的ltcc微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106747438A true CN106747438A (zh) 2017-05-31
CN106747438B CN106747438B (zh) 2019-11-08

Family

ID=58877509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611125806.9A Active CN106747438B (zh) 2016-12-09 2016-12-09 一种低介的ltcc微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106747438B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911746A (zh) * 2018-08-08 2018-11-30 西安交通大学 一种低损耗型钨基超低温烧结微波介质陶瓷材料及其制备方法和应用
CN113816736A (zh) * 2021-11-11 2021-12-21 中国振华集团云科电子有限公司 一种超低温烧结的低介低损耗ltcc材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798220A (zh) * 2010-03-24 2010-08-11 桂林理工大学 钨酸盐低温烧结微波介质陶瓷材料及其制备方法
CN104803681A (zh) * 2015-04-20 2015-07-29 天津大学 一种新型低温烧结低介电常数微波介质陶瓷材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798220A (zh) * 2010-03-24 2010-08-11 桂林理工大学 钨酸盐低温烧结微波介质陶瓷材料及其制备方法
CN104803681A (zh) * 2015-04-20 2015-07-29 天津大学 一种新型低温烧结低介电常数微波介质陶瓷材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911746A (zh) * 2018-08-08 2018-11-30 西安交通大学 一种低损耗型钨基超低温烧结微波介质陶瓷材料及其制备方法和应用
CN113816736A (zh) * 2021-11-11 2021-12-21 中国振华集团云科电子有限公司 一种超低温烧结的低介低损耗ltcc材料及其制备方法
CN113816736B (zh) * 2021-11-11 2023-02-17 中国振华集团云科电子有限公司 一种超低温烧结的低介低损耗ltcc材料及其制备方法

Also Published As

Publication number Publication date
CN106747438B (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN103771842B (zh) 低成本低介低损耗ltcc微波陶瓷材料及其制备方法
Cho et al. Low-temperature sintering and microwave dielectric properties of BaO·(Nd1− xBix) 2O3· 4TiO2 by the glass additions
CN103121842B (zh) 一种低介低损耗ltcc微波陶瓷材料及其制备方法
CN105294104B (zh) 低损耗介电可调中介微波介质陶瓷材料及其制备方法
CN104150894B (zh) 一种耐热冲击镍锌铁氧体及其制备方法
CN103130498A (zh) Ltcc用陶瓷基板的制备方法
CN104211391A (zh) 温度稳定型中介电常数微波介电陶瓷Bi3La5Ti7O26
CN106747438A (zh) 一种低介的ltcc微波介质陶瓷材料及其制备方法
CN108439969B (zh) 一种低介电常数温度稳定型微波介质及其制备方法
CN103351155B (zh) 低温烧结二氧化硅基复合陶瓷及其制备方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
CN104058746A (zh) 可低温烧结微波介电陶瓷LiNd2V3O11及其制备方法
CN105801119B (zh) 一种微波介电ltcc材料及其制备方法
CN108314327B (zh) Ce掺杂低温共烧陶瓷材料及其制备方法
CN110229004A (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN103570345A (zh) 低温烧结微波介电陶瓷Bi12MgO19及其制备方法
CN105669195A (zh) 低介电常数高q值微波介质陶瓷材料及其制备方法
CN106699179A (zh) 一种低介低损耗的ltcc微波介质陶瓷材料及其制备方法
CN1911857A (zh) 一种低温烧结铁氧体材料用预烧粉料的制备方法
CN102887708A (zh) 可低温烧结的微波介电陶瓷NaCa2(Mg1-xZnx)2V3O12及制备方法
CN106866143B (zh) 微波复相陶瓷AWO4-TiO2及其制备方法
CN109053189A (zh) 一种低介电常数高性能微波介质陶瓷材料、制备方法及应用
CN104987071A (zh) 一种低温烧结中介电常数微波介质陶瓷材料
CN113816736B (zh) 一种超低温烧结的低介低损耗ltcc材料及其制备方法
CN113248265A (zh) 一种叠层高频电感用材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant