CN106745238B - 一种Mg掺杂ZrO2介观晶体及其制备方法和应用 - Google Patents

一种Mg掺杂ZrO2介观晶体及其制备方法和应用 Download PDF

Info

Publication number
CN106745238B
CN106745238B CN201710055936.8A CN201710055936A CN106745238B CN 106745238 B CN106745238 B CN 106745238B CN 201710055936 A CN201710055936 A CN 201710055936A CN 106745238 B CN106745238 B CN 106745238B
Authority
CN
China
Prior art keywords
zro
situated
crystal
sees
adulterates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710055936.8A
Other languages
English (en)
Other versions
CN106745238A (zh
Inventor
杨冰
肖芳芳
张燕杰
林棋
娄本勇
郑国才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Spectrum Science And Technology Fuzhou Co ltd
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN201710055936.8A priority Critical patent/CN106745238B/zh
Publication of CN106745238A publication Critical patent/CN106745238A/zh
Application granted granted Critical
Publication of CN106745238B publication Critical patent/CN106745238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Mg掺杂ZrO2介观晶体及其制备方法,属于金属氧化物功能材料的制备领域。本发明将硝酸镁、氧氯化锆和尿素按比例溶解于水中形成混合溶液,经150℃水热反应5h,制得所述Mg掺杂ZrO2介观晶体。本发明制备方法简便易行,成本低,介观晶体产率高;所制得的Mg掺杂ZrO2介观晶体具有良好的单分散性,呈类球状,直径为50~100 nm,BET比表面积高达155~164 m2/g,是一种优良的水煤气变换催化剂载体。

Description

一种Mg掺杂ZrO2介观晶体及其制备方法和应用
技术领域
本发明属于金属氧化物功能材料的制备领域,具体涉及一种Mg掺杂ZrO2介观晶体及其制备方法和应用。
背景技术
介观晶体(简称介晶)是一种新型的晶体材料,它是指纳米晶基元按照特定晶体取向有序堆积而成的纳米晶超结构或有序聚集体,其内部通常存在大量堆积孔并可以显示类单晶的电子衍射行为。这种新型材料具有高晶化度、高孔隙度和由亚单元有序排列而成的结构特点,在催化、传感、光电器件、生物医学材料以及能源存储与转化等诸多领域有着广阔的应用前景。目前,有关功能性氧化物介晶材料的可控制备和性能研究是一个颇具挑战性的研究课题。
二氧化锆(ZrO2)是一种十分重要的功能材料,它同时具有表面酸性、碱性和氧化性、还原性,它还具有良好的热稳定性,这些性能使ZrO2成为一种很重要的催化剂材料。Mg元素常被作为助剂来调变ZrO2或含锆催化剂的物理和化学性能。由Mg助剂改性的ZrO2基催化剂在乙醇一步法合成乙酸乙酯、甲烷重整制合成气、乙醇重整制氢等反应中表现优异的催化性能。Mg掺杂的ZrO2介观晶体同样可能具有重要的潜在应用价值。然而,截止目前尚未有Mg掺杂ZrO2介观晶体及其制备技术和应用的公开报道。
发明内容
本发明的目的在于提供一种Mg掺杂ZrO2介观晶体及其制备方法和应用,其制备方法简便易行,适合规模化生产,制得的Mg掺杂ZrO2介观晶体产品单分散性好,比表面积高达155~164m2/g,内部具有丰富孔道,是一种优良的催化剂材料,特别适合用作水煤气变换催化剂载体。
为实现上述目的,本发明采用如下技术方案:
一种Mg掺杂ZrO2介观晶体的制备方法,其包括以下步骤:
(1)将硝酸镁、氧氯化锆和尿素溶解于去离子水中,室温下搅拌后制得混合溶液;
(2)将步骤(1)所得混合溶液转入水热反应釜中,控制反应温度为150 ℃,反应时间为5 h;所得反应产物经离心洗涤、干燥后得到Mg掺杂ZrO2介观晶体。
步骤(1)混合溶液中硝酸镁与氧氯化锆的物质的量浓度之和为0.5 mol/L,硝酸镁的物质的量占硝酸镁与氧氯化锆总物质的量的5%~9%;尿素的物质的量浓度为1 mol/L。
所得Mg掺杂ZrO2介观晶体为单斜晶相,形貌为类球状,类球状直径为50~100 nm;BET比表面积为155~164 m2/g,内部多孔,最可几孔径为2 nm。
所得Mg掺杂ZrO2介观晶体可用作载体制备水煤气变换催化剂,其制备方法为:在超声波破碎辅助条件下,将所述Mg掺杂ZrO2介观晶体分散于硝酸铜水溶液中,然后向上述溶液中滴加碱液至溶液pH=9.0,所得沉淀经离心洗涤、干燥、焙烧后制得水煤气变换催化剂;所用碱液为碳酸钠、碳酸钾、氢氧化钾或氢氧化钠的水溶液。
本发明制备过程中硝酸镁及氧氯化锆与尿素在水热条件下均匀沉淀反应生成氢氧化物,氢氧化物前驱物经过脱水,原子原位重排而转变为结晶态Mg掺杂ZrO2,即析出Mg掺杂ZrO2一次纳米晶粒。一次晶粒在反应体系固有场(纳米晶固有偶极矩)下实现晶体学取向聚集,形成掺杂Mg的ZrO2介观晶体超结构。
本发明的显著优点在于:
(1)本方法首次制备出类球状Mg掺杂ZrO2介观晶体,其制备方法简便易行,适合规模化生产,介晶产物产率高,单分散性好,结晶性好,BET比表面积高达155~164 m2/g,产物颗粒内部孔道丰富,颗粒内部最可几孔径为2 nm。
(2)本发明所制备的Mg掺杂ZrO2介观晶体是一种优良的催化剂载体,以其为载体制备的铜基催化剂表现出优异的水煤气变换反应制氢催化性能。当CuO质量含量为10%时,Mg掺杂ZrO2负载CuO催化剂在反应温度为270℃时的CO转化率高达86%,明显优于以传统ZrO2多晶为载体的CuO/ZrO2催化剂(270℃时的CO转化率为69%)。
附图说明
图1是实施例1制备的Mg掺杂ZrO2介观晶体的XRD图。
图2是实施例1制备的Mg掺杂ZrO2介观晶体的SEM图。
图3是实施例1制备的Mg掺杂ZrO2介观晶体的选区电子衍射(SAED)图。
图4是实施例2制备的Mg掺杂ZrO2介观晶体的SEM图。
图5是实施例3制备的Mg掺杂ZrO2介观晶体的SEM图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
将0.45 g硝酸镁,10.715 g氧氯化锆及4.20 g尿素溶于50 mL去离子水中,室温下搅拌后制得混合溶液(即硝酸镁的物质的量占硝酸镁与氧氯化锆总物质的量的5%),将上述混合液用去离子水标定到70 mL后转入容积为100 mL的高温反应釜中。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为5 h。所得产物经离心洗涤脱除杂质离子后于60℃干燥8 h得到Mg掺杂ZrO2介观晶体。
图1是本实施例制备的Mg掺杂ZrO2介观晶体的XRD图。由图1可知,所制备的Mg掺杂ZrO2呈单斜晶相。
图2是本实施例制备的Mg掺杂ZrO2介观晶体的SEM图。由图2可知,Mg掺杂ZrO2颗粒呈类球状,类球状颗粒的直径为50~100 nm。
图3是本实施例制备的Mg掺杂ZrO2介观晶体的选区电子衍射(SAED)图。由图3可见单个Mg掺杂ZrO2颗粒呈现类单晶电子衍射行为,即颗粒内部一次晶粒间的晶格高度匹配,表明Mg掺杂ZrO2为介观晶体。
N2-物理吸脱附实验表明,该Mg掺杂ZrO2介晶的BET比表面积为155 m2/g,颗粒内部最可几孔径为2 nm。
实施例2
将0.63 g硝酸镁,10.49 g氧氯化锆及4.20 g尿素溶于50 mL去离子水中,室温下搅拌后制得混合溶液(即硝酸镁的物质的量占硝酸镁与氧氯化锆总物质的量的7%),将上述混合液用去离子水标定到70 mL后转入容积为100 mL的高温反应釜中。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为5 h。所得产物经离心洗涤脱除杂质离子后于60℃干燥8 h得到Mg掺杂ZrO2介观晶体。
图4是本实施例制备的Mg掺杂ZrO2介观晶体的SEM图。图4表明,所制备的Mg掺杂ZrO2颗粒同样为类球状介观晶体,其直径为50~100 nm。
N2-物理吸脱附实验表明,该Mg掺杂ZrO2介晶的BET比表面积为159 m2/g,颗粒内部最可几孔径为2 nm。
实施例3
将0.82 g硝酸镁,10.264 g氧氯化锆及4.20 g尿素溶于50 mL去离子水中,室温下搅拌后制得混合溶液(即硝酸镁的物质的量占硝酸镁与氧氯化锆总物质的量的9%),将上述混合液用去离子水标定到70 mL后转入容积为100 mL的高温反应釜中。将反应釜放入鼓风干燥箱内,控制反应温度为150℃,反应时间为5 h。所得产物经离心洗涤脱除杂质离子后于60℃干燥8 h得到Mg掺杂ZrO2介观晶体。
图5是本实施例制备的Mg掺杂ZrO2介观晶体的SEM图。图5表明,所制备的Mg掺杂ZrO2颗粒同样为类球状介观晶体,其直径为50~100 nm。
N2-物理吸脱附实验表明,该Mg掺杂ZrO2介晶的BET比表面积为164 m2/g,颗粒内部最可几孔径为2 nm。
应用实施例:Mg掺杂ZrO2介晶负载CuO催化剂
以实施例1制得的Mg掺杂ZrO2介观晶体为载体负载CuO后制得Cu基介晶催化剂,方法如下:在超声破碎的辅助下将3g 250℃焙烧后的Mg掺杂ZrO2介观晶体分散于200 mL0.021 mol/L的三水合硝酸铜水溶液中,然后向上述溶液中滴加0.5 mol/L的氢氧化钾水溶液至终点pH = 9.0。所得产物经洗涤脱除杂质离子后于120℃干燥8 h,再于400℃焙烧4 h制得Mg掺杂ZrO2介晶负载CuO催化剂。
应用对比例:ZrO2多晶负载CuO催化剂
将7.85 g氧氯化锆溶解于200 mL去离子水中制得反应底液,将0.5 mol/L的氢氧化钾水溶液加入上述反应底液至终点pH = 9.0。所得产物经洗涤脱除杂质离子后于60℃干燥8 h,再于250℃焙烧4 h制得ZrO2多晶。
在超声破碎的辅助下将3g ZrO2多晶分散于200 mL 0.021 mol/L的三水合硝酸铜水溶液中,然后向上述溶液中滴加0.5mol/L的氢氧化钾水溶液至终点pH = 9.0。所得产物经洗涤脱除杂质离子后于120℃干燥8 h,再于400℃焙烧4 h制得ZrO2多晶负载CuO催化剂。
活性评价
以水煤气变换反应为探针反应测试催化剂的催化活性,活性评价在常压固定床反应器上进行,评价条件:原料气为模拟甲烷重整气,其体积百分含量组成为15% CO,55% H2,7% CO2,23% N2
以CO转化率表示催化活性,对应用实施例及应用对比例所得催化剂的活性进行评价,其结果如表1。
表1 应用实施例及应用对比例所得催化剂的活性评价结果
由此可见,与传统ZrO2多晶负载CuO催化剂相比,以本发明Mg掺杂ZrO2介观晶体为载体制备的负载CuO催化剂对水煤气变换反应具有更高的催化活性,即说明本发明所制备的Mg掺杂ZrO2介观晶体是一种优良的催化剂载体。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.一种Mg掺杂ZrO2介观晶体的制备方法,其特征在于:包括以下步骤:
(1)将硝酸镁、氧氯化锆和尿素溶解于去离子水中,室温下搅拌后制得混合溶液;
(2)将步骤(1)所得混合溶液转入水热反应釜中,控制反应温度为150 ℃,反应时间为5h;所得反应产物经离心洗涤、干燥后得到所述Mg掺杂ZrO2介观晶体;
步骤(1)混合溶液中硝酸镁与氧氯化锆的物质的量浓度之和为0.5 mol/L;硝酸镁的物质的量占硝酸镁与氧氯化锆总物质的量的5%~9%;尿素的物质的量浓度为1 mol/L;
所得Mg掺杂ZrO2介观晶体,形貌为类球状,直径为50~100 nm;BET比表面积为155~164m2/g,内部多孔,最可几孔径为2 nm。
CN201710055936.8A 2017-01-25 2017-01-25 一种Mg掺杂ZrO2介观晶体及其制备方法和应用 Active CN106745238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710055936.8A CN106745238B (zh) 2017-01-25 2017-01-25 一种Mg掺杂ZrO2介观晶体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710055936.8A CN106745238B (zh) 2017-01-25 2017-01-25 一种Mg掺杂ZrO2介观晶体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106745238A CN106745238A (zh) 2017-05-31
CN106745238B true CN106745238B (zh) 2018-07-20

Family

ID=58943198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710055936.8A Active CN106745238B (zh) 2017-01-25 2017-01-25 一种Mg掺杂ZrO2介观晶体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106745238B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599780A (zh) * 2013-11-13 2014-02-26 福州大学 一种Al助剂改性的CuO-ZrO2水煤气变换催化剂及其制备方法
CN104353455A (zh) * 2014-11-05 2015-02-18 上海纳米技术及应用国家工程研究中心有限公司 金负载不同晶相二氧化锆催化剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114008A (ja) * 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd 酸化ジルコニウム微粉末とその製造方法とそれを含む樹脂組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599780A (zh) * 2013-11-13 2014-02-26 福州大学 一种Al助剂改性的CuO-ZrO2水煤气变换催化剂及其制备方法
CN104353455A (zh) * 2014-11-05 2015-02-18 上海纳米技术及应用国家工程研究中心有限公司 金负载不同晶相二氧化锆催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CuO/ZrO2水煤气变换催化剂:制备及构效关系研究;张燕杰;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20161215(第12期);正文第100页第1-3段、第101页第1段、第106页第1-2段、第110页第3段 *
SO42-/ZrO2的相结构和超强酸性及其对丁烷异构化反应的催化活性;赵玉宝等;《催化学报》;20020331;第23卷(第2期);摘要 *

Also Published As

Publication number Publication date
CN106745238A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Wan et al. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid
Yang et al. Syntheses and applications of noble-metal-free CeO2-based mixed-oxide nanocatalysts
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
TWI374116B (en) Catalyst for hydrogen production by autothermal reforming, method of making same and use thereof
CN104773762B (zh) 一种生长在碳纤维布上的NiCo2O4介孔纳米管材料及其制备方法
CN107552054A (zh) 一种甲烷干气重整核壳结构镍基催化剂及制备方法
CN103950969B (zh) 一种多级多孔金属氧化物纳米材料的制备方法
CN100558640C (zh) 单晶类钙钛矿型氧化物La2CuO4纳微米棒的制备方法
Yuan et al. Engineering well-defined rare earth oxide-based nanostructures for catalyzing C1 chemical reactions
CN106622199B (zh) 一种大比表面多孔ZrO2介观晶体
CN102068991B (zh) 一种高分散负载型纳米金属Ni催化剂及其制备方法
CN109499577A (zh) 用于逆水煤气反应的Cu-Ni基催化剂的制备及应用方法
CN109731579A (zh) 一种镍负载的介孔氧化镧催化剂及其制备方法
CN107497439A (zh) 一种用于逆水煤气变换反应的铜基催化剂及其制备方法
CN106698511B (zh) 一种掺钇二氧化锆介观晶体及其制备方法和应用
CN107597119A (zh) 抗积碳型钴基低温甲烷二氧化碳重整催化剂及其制备方法
JP4827666B2 (ja) 炭化水素ガスから水素ガスを製造するための触媒材料とその製造方法、並びにその触媒材料を用いた水素ガスの製造方法
CN106622200B (zh) 一种大比表面多孔二氧化锆介观晶体及其制备方法与应用
CN101733089A (zh) 一种制备氢气的催化剂及其制备方法和应用
CN108940287A (zh) 一种Ni基双金属纳米胶囊催化剂及其制备和应用
CN105195154A (zh) 一种生物质解聚产物重整制氢催化剂及其制备方法
CN103599778A (zh) 一种Cu-Zr二元氧化物低温水煤气变换催化剂及其制备方法
CN106745238B (zh) 一种Mg掺杂ZrO2介观晶体及其制备方法和应用
CN111847404A (zh) 一种介晶氧化物和介晶氮化物的制备方法、氨分解催化剂及制备方法
CN116786126A (zh) 一种应用到氨分解的镍硅催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Yang Bing

Inventor after: Xiao Fangfang

Inventor after: Zhang Yanjie

Inventor after: Lin Qi

Inventor after: Lou Benyong

Inventor after: Zheng Guocai

Inventor before: Zhang Yanjie

Inventor before: Lin Qi

Inventor before: Lou Benyong

Inventor before: Zheng Guocai

Inventor before: Yang Bing

Inventor before: Xiao Fangfang

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240626

Address after: Room 2-72V, Building 1, No. 27 Huli Road, Mawei District, Fuzhou City, Fujian Province, 350000 (within the Free Trade Zone)

Patentee after: China Spectrum Science and Technology (Fuzhou) Co.,Ltd.

Country or region after: China

Address before: 200 xiyuangong Road, Shangjie Town, Minhou County, Fuzhou City, Fujian Province

Patentee before: MINJIANG University

Country or region before: China

TR01 Transfer of patent right