CN103950969B - 一种多级多孔金属氧化物纳米材料的制备方法 - Google Patents

一种多级多孔金属氧化物纳米材料的制备方法 Download PDF

Info

Publication number
CN103950969B
CN103950969B CN201410101552.1A CN201410101552A CN103950969B CN 103950969 B CN103950969 B CN 103950969B CN 201410101552 A CN201410101552 A CN 201410101552A CN 103950969 B CN103950969 B CN 103950969B
Authority
CN
China
Prior art keywords
nitrate
nano material
porous
indium
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410101552.1A
Other languages
English (en)
Other versions
CN103950969A (zh
Inventor
方芳
罗俊
朱静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201410101552.1A priority Critical patent/CN103950969B/zh
Publication of CN103950969A publication Critical patent/CN103950969A/zh
Application granted granted Critical
Publication of CN103950969B publication Critical patent/CN103950969B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了属于纳米材料技术领域的一种多级多孔金属氧化物纳米材料的制备方法,该方法以可溶性金属盐为原料,配成1-500克/升的水溶液,并向其中加入物质的量为原料总物质的量1-200倍的无机或有机碱,搅拌均匀,于60-100℃下反应0.5-20小时,过滤得到不可溶性金属氢氧化物,在100-300℃下缓慢煅烧所合成的不可溶性金属氢氧化物,即可得到表面有凹坑的多级多孔纳米材料。该方法工艺简单,易于调控,两个步骤即可得到纳米多孔材料。该纳米材料比表面积大,反应活性强,表面形貌均匀,在检测器件和吸附剂、催化剂、陶瓷、药物负载材料的制备方面应用前景广阔。

Description

一种多级多孔金属氧化物纳米材料的制备方法
技术领域
本发明涉及纳米材料领域,具体涉及一种多级多孔金属氧化物纳米材料的制备方法。
技术背景
多孔金属氧化物纳米材料有着广泛的工业用途,其中包括光催化、气敏、制药、涂料、化妆品等领域。将多孔氧化物纳米材料应用于制备特殊气体气敏性能测试、光催化剂、催化剂负载、分子过滤等等都是现代科技研究的前沿课题(HaifengYangetal.One-StepNanocastingSynthesisofHighlyOrderedSingleCrystallineIndiumOxideNanowireArraysfromMesostructuredFrameworks.J.Am.Chem.Soc.,2003,125:4724;ThomasWaitzetal.OrderedMesoporousIn2O3:SynthesisbyStructureReplicationandApplicationasaMethaneGasSensor.Adv.Funct.Mater.,2009,19:653;LinaHanetal.Studyonformaldehydegas-sensingofIn2O3-sensitizedZnOnanoflowersundervisiblelightirradiationatroomtemperature.J.Mater.Chem.,2012,22:12915)。
但是现有的制备多孔氧化物的方法大多具有合成条件复杂、反应步骤多、原料昂贵、反应条件苛刻、反应需要高温或者高压,从而提高了多孔半导体材料的应用成本,限制了多孔材料的发展(N.Duetal.PorousIndiumOxideNanotubes:Layer-by-LayerAssemblyonCarbon-NanotubeTemplatesandApplicationforRoom-TemperatureNH3GasSensors.Adv.Mater.,2007,19:1641;A.Primetal.ANovelMesoporousCaO-LoadedIn2O3MaterialforCO2Sensing.Adv.Funct.Mater.,2007,17:2957;B.Tianetal.GeneralSynthesisofOrderedCrystallizedMetalOxideNanoarraysReplicatedbyMicrowave-DigestedMesoporousSilica.Adv.Mater.,2003,15:1370)。不仅如此,现有的多孔氧化物制备方法所制得的多孔氧化物表面形貌比较简单,孔表面光滑,比表面积不够大,从而限制了多孔氧化物在表面活性上的功效(SuqingWangetal.Three-dimensionalporousV2O5cathodewithultrahighratecapability.Energy&EnvironmentalScience,2011,4:2854;FerdiSchüth.Non-siliceousMesostructuredandMesoporousMaterials.Chem.Mater.,2001,13:3184)。
因此,开展一种简单、步骤少、易操作、产物比表面积大、表面活性位点多的多级多孔氧化物的制备方法非常重要。
发明内容
本发明的目的在于提供一种多级多孔金属氧化物纳米材料的制备方法,以可溶性金属盐为原料,大量合成金属氢氧化物,通过低温煅烧金属氢氧化物,从而得到表面具有多级多孔的氧化物纳米材料,这些多级多孔氧化物纳米材料具有比表面积大、表面活性位点多的特点,材料表面的物理、化学反应速度快,且材料表面的响应灵敏度高。
为了实现上述目的,本发明的技术方案如下:
一种多级多孔金属氧化物纳米材料的制备方法,该方法包括如下步骤:
(1)将一种以上的可溶性金属盐溶解于水中,形成溶液,再加入碱;
(2)将步骤(1)得到的溶液在50-100℃加热0.5-20小时,形成金属氢氧化物沉淀;
(3)将步骤(2)得到的金属氢氧化物在100-300℃煅烧0.5-240小时,得到表面有凹坑的多级多孔金属氧化物纳米材料。
其中:
步骤(1)中的可溶性金属盐为主族金属或过渡金属的氯化物、溴化物、碘化物、硝酸盐、亚硝酸盐、碳酸盐、磷酸盐、亚磷酸盐、硫酸盐、亚硫酸盐、乙酸盐、草酸盐或乙酞丙酮盐。
主族金属是指周期表中s区及p区的金属元素,包括碱金属、碱土金属及铝、镓、铟、铊、锡、铅及铋等元素;过渡金属是指元素周期表中d区的一系列金属元素,这一区域包括3到12一共十个族的过渡元素,但不包括f区的内过渡元素。
上述金属优选自铟、铝、锡、锌、铜、银、铁、钴、镍、锰、铬、钒、钛、钼、钨中的一种以上。
步骤(1)中的碱选自氢氧化钠、氢氧化钾、氢氧化锂、氢氧化钙、氢氧化钡、氨水、乙二胺、六乙基四胺、己二胺、脲、醇钠、醇钾、醇锂中的一种。
步骤(1)中一种以上的可溶性金属盐的总摩尔含量与碱的摩尔含量之比为1:1-200。
步骤(1)中溶液中一种以上可溶性金属盐的总含量为1-500克/升。
步骤(2)中的加热优选在密闭仪器中进行,加热结束后,过滤,并将过滤后的氢氧化物沉淀用水和无水乙醇洗涤。
步骤(2)中优选的加热时间为3-16小时,加热温度为90℃。
步骤(3)中优选的煅烧时间为3-12小时,煅烧温度为280-300℃。
本发明的有益效果如下:
本发明所提供的制备方法通过低温加热金属盐与碱的混合溶液,得到纳米级别的金属氢氧化物,且通过调整金属盐与碱的浓度可以控制氢氧化物纳米材料的粒子尺寸;然后在100-300℃煅烧金属氢氧化物使其表面缓慢脱水,可以得到表面具有纳米凹坑的多孔金属氧化物纳米材料,产物可以为单一金属氧化物、两种以上金属的掺杂型复合氧化物或两种以上金属氧化物的混合物,并通过调试煅烧温度的大小与煅烧时间的长短可以使产物的表面形成纳米凹坑的多级纳米孔洞,凹坑大小在1纳米-10纳米可调,纳米凹坑的存在会大大增加表面原子曲率的变化,形成大量的原子台阶,从而产生大量有悬挂键的表面原子,从而大大提高了多级多孔金属氧化物纳米材料的应用面和应用高度。该方法工艺简单,易于调控,突破了多孔金属氧化物纳米材料制备的传统思维,仅靠调试加热温度与时间就可以制得多孔金属氧化物,并且该方法制备的多孔金属氧化物性能稳定,表面活性大。该方法也大大降低了纳米级别金属氧化物多孔材料的应用成本,从而可以更大范围的推广应用。
附图说明
图1为氢氧化铟纳米片与多孔氧化铟纳米片的形貌分析图;图中,a:氢氧化铟的扫描电子显微镜(SEM)照片;b:氢氧化铟的透射电子显微镜(TEM)照片;c:氢氧化铟的电子衍射图片;d:多孔氧化铟表面形貌的SEM照片;e:多孔氧化铟的低倍TEM照片;f:多孔氧化铟的高倍TEM照片;g:多孔氧化铟的高分辨TEM照片。
图2为多孔氧化铟的甲醛气敏性能分析图谱。
图3为不同加热温度得到的多孔氧化铟表面形貌的TEM照片;图中,a:200℃加热In(OH)3得到的多孔氧化铟;b:300℃加热In(OH)3得到的多孔氧化铟;c:400℃加热In(OH)3得到的氧化铟。
图4为不同加热温度得到的多孔氧化铟的等温氮气吸附、脱附曲线;图中,●:200℃加热In(OH)3得到的多孔氧化铟;×:300℃加热In(OH)3得到的多孔氧化铟;▼:400℃加热In(OH)3得到的氧化铟。
图5为Zn/In(OH)X纳米片的SEM照片。
图6为多孔ZnO-In2O3纳米片花的SEM照片。
图7为多孔Ag2O-In2O3-ZnO复合纳米材料的SEM照片。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的说明,但并不因此而限制本发明的保护范围。
实施例1
将4.2g硝酸铟溶于20ml水中,过滤收集滤液,将其置于聚四氟乙烯罐中,再加入9g脲,搅拌溶解。将得到的溶液在90℃加热6小时,自然降温,离心,收集白色粉末状沉淀,用去离子水和乙醇洗涤沉淀,晒干后得到In(OH)3纳米片,其扫描电子显微镜(SEM)照片、透射电子显微镜(TEM)照片和电子衍射图片分别如图1a、1b、1c所示,可以发现该In(OH)3纳米片的表面光滑。
将上述In(OH)3纳米片在300℃下加热5小时,即可得到多级多孔氧化铟纳米材料,其SEM照片、低倍TEM照片、高倍TEM照片和高分辨TEM照片分别如1d、e、f、g所示,发现通过让氢氧化铟在300℃下缓慢脱水,所得到的氧化铟纳米片的表面为大量具有纳米凹坑的纳米粒子。由图1g高分辨透射电镜照片中可以明显的观察到这种纳米凹坑,由于负曲率的存在,因而形成了大量的原子台阶,从而推测该材料应具有很好的表面活性。
使用上述得到的多级多孔氧化铟纳米材料进行甲醛的气敏性能测试,结果如图2所示,该材料可探测浓度低至0.08ppm的甲醛气体,表明其具有良好的表面活性。
为了能够得到这种具有纳米凹坑的多孔氧化物材料,进一步对煅烧温度进行了考察,分别在200℃、300℃和400℃煅烧In(OH)3纳米片,并将得到的氧化铟命名为样品1-3,其中样品1和2的煅烧时间均为5h,样品3仅煅烧90min。这些样品表面形貌的TEM照片如图3所示,结果表明不同加热温度得到的纳米凹坑的大小与数量是不一样的,样品1中纳米凹坑大小范围在1nm-5nm之间,孔密度为2.5×1016m-2;样品2的纳米凹坑大小范围在5nm-10nm之间,孔密度为3.8×1016m-2;样品3的凹坑基本消失,孔密度仅仅为5.6×1015m-2
图4为不同加热温度得到的样品1-3的多孔氧化铟的等温氮气吸附、脱附曲线,由此可知,200℃、300℃和400℃下产物的比表面积数据分别为29、25以及20m2g-1,这与上述对TEM凹坑大小与密度分析的结果是一致的,样品1表面的纳米凹坑相对较大,孔密度也大,因此比表面积数据最大;样品2表面的纳米凹坑相对较小,孔密度相对样品1小,因此其比表面积比样品1小;而样品3由于温度太高,颗粒聚集,表面的纳米凹坑密度大大降低,因此其比表面积更小。
实施例2
具体操作步骤同实施例1,但将原料铟盐改用3g氯化铟,氢氧化物的合成条件改为在90℃保温3小时,煅烧条件改为在300℃下加热5小时,也可以得到多级多孔氧化铟纳米材料。或者将上述煅烧条件改为在200℃加热氢氧化铟5h,同样也得到多级多孔氧化铟纳米材料。
以氯化铟为原料制备的多孔氧化铟纳米材料表面纳米凹坑的直径与孔密度同样可以随着温度发生变化,变化范围为1-15nm,孔密度为1×1015m-2-1×1017m-2,比表面积约27m2g-1
实施例3
将2.546g硝酸铟和0.991g硝酸锌溶于20ml水,过滤收集滤液,将其置于聚四氟乙烯罐中,再加入9g脲,搅拌溶解。将得到的溶液在90℃加热6小时,自然降温,离心收集白色粉末状沉淀,用去离子水和乙醇洗涤,得到的白色粉末即为Zn/In(OH)X纳米片,其SEM照片如图5所示。将该氢氧化物在280℃煅烧5小时,得到多孔的ZnO-In2O3纳米片花产物,其SEM照片如图6所示。产物的纳米孔密度为3×1015,粒径范围为5-50nm,比表面积为25m2g-1
实施例4
具体操作步骤同实施例3,但将原料改为改用硝酸铜0.5g和硝酸铟0.9g,并将氢氧化物的合成条件改为在90℃加热6小时,最终的煅烧条件改为300℃煅烧3小时,制得多孔CuO-In2O3纳米材料,其纳米孔密度为2×1015,粒径范围为5-50nm,比表面积为25m2g-1
实施例5
具体操作步骤同实施例3,但将原料改为0.5g硝酸银和5g硝酸铟,并将氢氧化物的合成条件改为在90℃加热6小时,煅烧条件改为在300℃煅烧12小时,制得多孔Ag2O-In2O3纳米材料,其纳米孔密度为6×1015,粒径范围为5-50nm,比表面积为25m2g-1
实施例6
将0.085g硝酸银、1.909g硝酸铟和0.744g硝酸锌溶于20ml水,过滤收集滤液,将其置于聚四氟乙烯罐中,加入7.550g脲,搅拌溶解。将得到的溶液在90℃加热16小时,自然降温,离心收集白色粉末状沉淀,用去离子水和乙醇洗涤,收集干燥粉末在300℃煅烧10小时,得到多孔Ag2O-In2O3-ZnO复合纳米材料,其SEM照片如图7所示。产物的纳米孔密度为4×1015,粒径范围为5-50nm,比表面积为25m2g-1
实施例7
具体操作步骤同实施例6,但原料改用0.024g硝酸铜、1.909g硝酸铟和0.744g硝酸锌,并将氢氧化物的合成条件改为在90℃加热16小时,煅烧条件改为在300℃煅烧12小时,制得CuO-In2O3-ZnO复合纳米材料,其纳米孔密度为2×1015,粒径范围为5-50nm,比表面积为19m2g-1
实施例8
将2.2g氯化镍溶于20ml水,过滤收集滤液,将其置于聚四氟乙烯罐中,再加入9g脲,搅拌溶解。将得到的溶液在90℃加热6小时,自然降温,离心收集墨绿色粉末状沉淀,用去离子水和乙醇洗涤,得到的墨绿色粉末即为Ni(OH)2纳米片。将该氢氧化物在300℃温度下加热5小时,得到表面有凹坑的多级多孔氧化镍纳米材料,其纳米孔密度为9×1015,粒径范围为5-50nm,比表面积为25m2g-1
将原料镍盐改为3g硝酸镍,重复上述操作步骤,但将氢氧化物的合成条件改为在90℃加热3小时,煅烧条件改为在300℃加热10小时,也可得多级多孔氧化镍纳米材料,其纳米孔密度为7×1016,粒径范围为2-50nm,比表面积为26m2g-1
实施例9
取硝酸铁2.5g溶于20ml水,过滤收集滤液于聚四氟乙烯罐中,加入脲9g,搅拌溶解。90℃加热6小时,自然降温,离心收集黑红色粉末状沉淀,去离子水和乙醇洗涤,将上Fe(OH)3纳米片在300℃温度下加热20小时,即可得到表面有凹坑的多级多孔氧化铁纳米材料,其纳米孔密度为8×1014,粒径范围为5-100nm,比表面积为20m2g-1
将原料铁盐改为3.5g硫酸铁,重复上述操作步骤,但将氢氧化物的合成条件改为在90℃加热3小时,也可得多级多孔氧化铁纳米材料。或者将煅烧条件改为在280℃下煅烧氢氧化铁30h,同样也可得类似产品。

Claims (5)

1.两种以上金属氧化物的混合物纳米材料的制备方法,其特征在于,该方法包括如下步骤:
(1)将硝酸铟与其他硝酸盐溶解于水中,形成溶液,再加入碱,所述其他硝酸盐中的金属元素选自铝、锡、锌、铜、银、铁、钴、镍、锰、铬、钒、钛、钼、钨;
(2)将步骤(1)得到的溶液在50-90℃加热0.5-20小时,形成金属氢氧化物沉淀;
(3)将步骤(2)得到的金属氢氧化物在100-300℃煅烧0.5-240小时,得到表面有凹坑的多级多孔金属氧化物纳米材料,所述凹坑大小在1纳米-10纳米可调。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中所述硝酸铟与其他硝酸盐的总摩尔含量与碱的摩尔含量之比为1:1-200。
3.根据权利要求1所述的方法,其特征在于,步骤(1)中所述溶液中硝酸铟与其他硝酸盐的总含量为1-500克/升。
4.根据权利要求1所述的方法,其特征在于,步骤(1)中所述碱选自氢氧化钠、氢氧化钾、氢氧化锂、氢氧化钙、氢氧化钡、氨水、乙二胺、六乙基四胺、己二胺、脲、醇钠、醇钾、醇锂中的一种。
5.根据权利要求1所述的方法,其特征在于,步骤(2)中所述加热在密闭仪器中进行。
CN201410101552.1A 2014-03-18 2014-03-18 一种多级多孔金属氧化物纳米材料的制备方法 Expired - Fee Related CN103950969B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410101552.1A CN103950969B (zh) 2014-03-18 2014-03-18 一种多级多孔金属氧化物纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410101552.1A CN103950969B (zh) 2014-03-18 2014-03-18 一种多级多孔金属氧化物纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN103950969A CN103950969A (zh) 2014-07-30
CN103950969B true CN103950969B (zh) 2016-02-10

Family

ID=51328362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410101552.1A Expired - Fee Related CN103950969B (zh) 2014-03-18 2014-03-18 一种多级多孔金属氧化物纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN103950969B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248744A (zh) * 2016-07-15 2016-12-21 上海纳米技术及应用国家工程研究中心有限公司 一种用于甲醛选择性吸附的微孔中空氧化镍气敏传感器件及制备和应用
CN108408694A (zh) * 2018-03-01 2018-08-17 复旦大学 金属氧化物纳米材料的绿色制备方法
CN108394929B (zh) * 2018-03-29 2019-11-26 武汉理工大学 一种多坑洞低热导率氧化锌及其制备方法
CN108470631A (zh) * 2018-05-23 2018-08-31 中国海洋大学 镍钴铁硫多元金属氧(硫)化物纳米核壳状复合材料及其制备方法
CN109097352A (zh) * 2018-08-16 2018-12-28 中国科学院东北地理与农业生态研究所 一种钴铝层状双金属氢氧化物和微生物耦联净化十六烷烃系统的制备方法及其应用
CN109534385B (zh) * 2018-11-06 2020-11-06 武汉理工大学 一种富纳孔硫化银及其快速制备方法
CN111905689A (zh) * 2019-05-08 2020-11-10 浙江理工大学 一种柔性玻璃纤维布@FeZn双氢氧化物吸附材料及其制备方法
CN111661871B (zh) * 2020-06-05 2023-05-09 济南大学 一种锥形棒组装的In2O3/ZnO微米花结构的合成方法
CN114284487A (zh) * 2021-12-23 2022-04-05 山东大学 一种多孔金属氧化物及其制备方法和在钠离子电池中的应用
CN115057461B (zh) * 2022-06-13 2023-10-27 北京晨晰环保工程有限公司 一种超小尺寸氢氧化钙复合材料及制备方法与应用
CN115172710A (zh) * 2022-07-26 2022-10-11 晖阳(贵州)新能源材料有限公司 一种锂离子电池所用氧化铁石墨复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1884047A (zh) * 2006-07-07 2006-12-27 南开大学 一种制备球形多孔金属氧化物的通用方法
CN101992081A (zh) * 2010-09-03 2011-03-30 哈尔滨工程大学 具有分等级多孔结构的复合金属氧化物的制备方法
CN102482116A (zh) * 2009-09-11 2012-05-30 株式会社丰田中央研究所 多孔复合金属氧化物、使用所述多孔复合金属氧化物的催化剂以及制造所述多孔复合金属氧化物和所述催化剂的方法
CN102906013A (zh) * 2010-03-22 2013-01-30 布莱阿姆青年大学 制备孔结构受控的高多孔性稳定金属氧化物的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1884047A (zh) * 2006-07-07 2006-12-27 南开大学 一种制备球形多孔金属氧化物的通用方法
CN102482116A (zh) * 2009-09-11 2012-05-30 株式会社丰田中央研究所 多孔复合金属氧化物、使用所述多孔复合金属氧化物的催化剂以及制造所述多孔复合金属氧化物和所述催化剂的方法
CN102906013A (zh) * 2010-03-22 2013-01-30 布莱阿姆青年大学 制备孔结构受控的高多孔性稳定金属氧化物的方法
CN101992081A (zh) * 2010-09-03 2011-03-30 哈尔滨工程大学 具有分等级多孔结构的复合金属氧化物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"分级多孔结构 ZnO 微球的制备及其光电性能";蔡锋石等;《无机化学学报》;20110630;第27卷(第6期);1116-1120 *
"过渡金属氧化物微纳结构的构筑及电化学性能研究";李晓伟;《中国博士学位论文全文数据库 (电子期刊)》;20131015(第10期);第39页2.1.2小节实验部分、第46页第一段及图2-7、第41页及图2-3a,b、图2-la,b,C、图2-3c,d、第49页、 *

Also Published As

Publication number Publication date
CN103950969A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
CN103950969B (zh) 一种多级多孔金属氧化物纳米材料的制备方法
Ghiyasiyan-Arani et al. Effect of Li2CoMn3O8 nanostructures synthesized by a combustion method on montmorillonite K10 as a potential hydrogen storage material
Sutradhar et al. Controlled synthesis of different morphologies of MgO and their use as solid base catalysts
Tian et al. Synthesis of the catalytically active Mn3O4 spinel and its thermal properties
CN101759146B (zh) 一种制备ZnO/ZnFe2O4复合纳米空心球的方法
Zhang et al. Oxygen vacancies dominated CuO@ ZnFe2O4 yolk-shell microspheres for robust and selective detection of xylene
Zhao et al. From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials
CN103818972B (zh) 一种四氧化三钴粉体及其制备方法
Yakout Inclusion of cobalt reinforced Ag doped SnO 2 properties: electrical, dielectric constant, magnetic and photocatalytic insights
CN101613121A (zh) 一种椭球状氧化锌的制备方法
CN105289578A (zh) 一种金属氧化物/碳纳米管复合光催化剂及其制法与应用
Absalan et al. Doped rare and transition metal perovskite-type titanate nanoparticles: A new method for developing synthesizing and photocatalytic ability
Yahya et al. Effects of the citric acid addition on the morphology, surface area, and photocatalytic activity of LaFeO3 nanoparticles prepared by glucose-based gel combustion methods
Zhang et al. 3D flower-like NiZnAl multimetal oxide constructed by ultra-thin porous nanosheets: A long-term and stable sensing material for NOx at room temperature
CN106315690A (zh) 一种多孔四氧化三钴纳米片的制备方法
Ghaemifar et al. Preparation and characterization of MnTiO 3, FeTiO 3, and CoTiO 3 nanoparticles and investigation various applications: a review
CN103420431A (zh) 一种制备掺杂氧化锌的钴酸锌纳米材料的方法
CN108408694A (zh) 金属氧化物纳米材料的绿色制备方法
CN107915255B (zh) 纳米氧化锆的制备方法及其制备的纳米氧化锆
Chowdhury et al. Rapid and large-scale synthesis of Co 3 O 4 octahedron particles with very high catalytic activity, good supercapacitance and unique magnetic properties
CN106082298B (zh) 一种铈铋复合氧化物纳米棒材料的制备方法
CN103303980A (zh) 木质素磺酸盐模板法制备纳米氧化铁的方法
Shaheen et al. Electrical, dielectric and photocatalytic applications of iron-based nanocomposites
Abu-Zied et al. Effect of thermal treatment on the formation, textural and electrical conductivity properties of nanocrystalline Tb4O7
CN1974887A (zh) 单晶钙钛矿型复合氧化物La0.6Sr0.4CoO3纳米线和纳米棒制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160210

Termination date: 20170318