CN106672996A - 一种高稳定性纳米y分子筛及其制备方法 - Google Patents

一种高稳定性纳米y分子筛及其制备方法 Download PDF

Info

Publication number
CN106672996A
CN106672996A CN201510750474.2A CN201510750474A CN106672996A CN 106672996 A CN106672996 A CN 106672996A CN 201510750474 A CN201510750474 A CN 201510750474A CN 106672996 A CN106672996 A CN 106672996A
Authority
CN
China
Prior art keywords
molecular sieve
addition
crystallization
ammonium fluosilicate
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510750474.2A
Other languages
English (en)
Other versions
CN106672996B (zh
Inventor
柳伟
杜艳泽
秦波
张晓萍
董立廷
阮彩安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201510750474.2A priority Critical patent/CN106672996B/zh
Publication of CN106672996A publication Critical patent/CN106672996A/zh
Application granted granted Critical
Publication of CN106672996B publication Critical patent/CN106672996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种高稳定性纳米Y分子筛的制备方法,包括如下步骤:(1)将硅源、铝源、氢氧化钠、四已基氢氧化铵和水混合形成凝胶,凝胶体系中各物质的摩尔比为:SiO2/Al2O3=3.0~5.0,优选3.5~4.5,Na2O/Al2O3=0.01~0.1;(2)步骤(1)的凝胶体系进行晶化,晶化后向体系中加入氟硅酸铵,氟硅酸铵的加入量以其在体系中的浓度为0.01~0.1mol/L计,然后再次进行晶化;(3)向步骤(2)体系中继续加入氟硅酸铵,氟硅酸铵的加入量相比步骤(2)的加入量提高50%~200%,加入后进行恒温处理,最后经过滤、洗涤、干燥制得高稳定性纳米Y分子筛。该分子筛的水热稳定性得到大幅提高。

Description

一种高稳定性纳米Y分子筛及其制备方法
技术领域
本发明涉及一种高稳定性纳米Y分子筛及其制备方法。
背景技术
在加氢裂化催化剂领域,Y型分子筛由于具有三维超笼和四面体走向的12员环大孔、开放的孔道结构,适合于大分子反应物质的接触及反应等特点,是目前应用最广的加氢裂化催化剂酸性组分。工业上使用的Y分子筛通常为水热法制备,其颗粒尺寸通常在1000纳米左右,较大的颗粒尺寸增加了分子筛的孔道距离,加大了反应物分子在分子筛内的扩散阻力,降低了反应效率,同时,也不利于反应生成产物迅速扩散、脱附,从而引起二次裂解反应,造成反应深度加深,这样一方面引起了积碳加剧,加快了催化剂的失活速度,另一方面造成了加氢裂化反应目标产物的选择性下降。纳米分子筛由于具有较大的比表面积和较高的晶内扩散速率, 在提高催化剂的利用率、增强大分子转化能力、减小深度反应、提高选择性以及降低结焦失活等方面均表现出优越的性能。其由于表面原子数与体相原子数之比随着晶粒尺寸的减小而急剧增大, 表现出明显的体积效应、表面效应和量子尺寸效应, 从而具有独特的物理化学性质,因此, 纳米Y分子筛的合成成为分子筛研究领域的热点,国内外科研人员进行了大量的基础研究工作,并通过多种方式合成了纳米Y分子筛:如专利US 4372931公开了一种纳米Y分子筛的制备方法,该发明通过在合成液中添加单糖或二糖以及低温混合硅源、铝源等方法获得了具有纳米尺寸Y分子筛;专利CN1730391A通过微波加热方式也获得了纳米Y分子筛;专利USP3516786、USP4372931通过添加表面活性剂的方式实现纳米Y分子筛的合成;CN101177281A在重力状态下合成了纳米Y分子筛等等,其主要指导思想在合成液中产生更多的晶核,从而在相等营养成分下形成更多更小的晶粒。尽管科研人员通过不同的方式合成了纳米Y分子筛,但是,至今为止仍然没有在加氢裂化催化剂上实现工业应用,究其原因主要是由于目前合成的纳米Y分子筛水热稳定性较差,难以满足工业应用需要。
发明内容
针对现有技术的不足,本发明提供一种高稳定性纳米Y分子筛及其制备方法。
一种高稳定性纳米Y分子筛的制备方法,包括如下步骤:
(1)将硅源、铝源、氢氧化钠、四已基氢氧化铵和水混合形成凝胶,凝胶体系中各物质的摩尔比为:SiO2/Al2O3=3.0~5.0,优选3.5~4.5,Na2O/Al2O3=0.01~0.1,优选0.03~0.07,H2O/Al2O3=150~400,优选200~300,有机模板剂/ Al2O3=4.0~12.0,优选5.0~10.0 ;
(2)步骤(1)的凝胶体系进行晶化,晶化后向体系中加入氟硅酸铵,氟硅酸铵的加入量以其在体系中的浓度为0.01~0.1mol/L,优选0.03~0.06 计,然后再次进行晶化;
(3)向步骤(2)体系中继续加入氟硅酸铵,氟硅酸铵的加入量相比步骤(2)的加入量提高50%~200%,优选 提高90%~150%,加入后进行恒温处理,最后经过滤、洗涤、干燥制得高稳定性纳米Y分子筛。
本发明方法,步骤(1)中使用的铝源为异丙醇铝;钠源为氢氧化钠;硅源为硅溶胶、白炭黑、正硅酸乙酯中的一种或几种。
本发明方法,步骤(2)中首次晶化温度为80℃~140℃,晶化时间为50~140h,优选晶化温度为 90~130℃,晶化时间为70~120h,;加入氟硅酸铵后的晶化温度为20~70℃,晶化时间为1~20h,优选晶化温度为30~50℃,晶化时间为5~15h。
本发明方法,步骤(3)中加入氟硅酸铵的同时加入氯化镧,氯化镧的加入量以镧离子在体系中的摩尔浓度计为0.05~0.2mol/L,优选0.08~0.15mol/L计。氯化镧的加入能够进一步提高Y分子筛的水热热稳定性。
本发明方法,步骤(3)中在40~90℃恒温处理1~10h,优选在30~80℃下恒温处理2~6h。
一种采用上述方法制备的纳米Y分子筛,所述分子筛的孔容0.3~0.5ml/g、比表面积700~1000m2/g,SiO2/Al2O3 5.0~10.0,相对结晶度80~130,550℃、0.1Mpa条件下水热处理2h后的相对结晶度为70以上,晶粒度为60~180nm,优选孔容0.35~0.45ml/g、比表面积800~900 m2/g,SiO2/Al2O3 6.0 ~8.0 ,相对结晶度90~120,550℃、0.1Mpa条件下水热处理2h后的相对结晶度为70~110,晶粒度为80~130nm。
与现有技术相比,本发明方法制备的纳米Y分子筛水热稳定性得到大幅提高,有利于纳米Y分子筛的工业应用。
具体实施方式
下面通过实施例进一步说明本发明的过程及效果,但以下实施例不能限制本发明。以下实施例中的%如无特殊标记均为质量百分含量。
实施例1
在不锈钢合成釜中依次加入115g去离子水、100g四甲基氢氧化铵溶液(20%)和12g异丙醇铝(含24.7% Al2O3),搅拌至溶液澄清后加入7.5g白碳黑,加热使之成为透明溶液,然后加入0.11g氢氧化钠,得到的反应混合物的摩尔比为SiO2/Al2O3=4.16,Na2O/Al2O3=0.04,H2O/Al2O3=363,四甲基氢氧化铵/ Al2O3=7.457;将上述合成体系转移到反应釜中,密闭升温至100℃后水热晶化120h;晶化后向体系中加入氟硅酸铵,氟硅酸铵的加入量以其在体系中的浓度为 0.06mol/L 计,然后再次进行晶化,晶化温度为30℃,晶化时间6h;晶化结束后继续加入氟硅酸铵,加入量比首次加入量提高90%,60℃处理4h后过滤、洗涤,样品经120℃干燥处理后获得本发明实施例1分子筛Y1,分子筛平均粒径110nm,SiO2/Al2O3摩尔比7.2,相对结晶度105%,孔容0.37ml/g、比表面积820m2/g。
实施例2
在不锈钢合成釜中依次加入115g去离子水、100g四甲基氢氧化铵溶液(20%)和12g异丙醇铝(含24.7% Al2O3),搅拌至溶液澄清后加入7.5g白碳黑,加热使之成为透明溶液,然后加入0.11g氢氧化钠,得到的反应混合物的摩尔比为SiO2/Al2O3=4.16,Na2O/Al2O3=0.04,H2O/Al2O3=363,四甲基氢氧化铵/ Al2O3=7.457;将上述合成体系转移到反应釜中,密闭升温至100℃后水热晶化120h,晶化后向体系中加入氟硅酸铵,氟硅酸铵的加入量以其在体系中的浓度为 0.04mol/L计,然后再次进行晶化,晶化温度为40℃,晶化时间8h;晶化结束后继续加入氟硅酸铵,加入量比首次加入量提高150%,80℃处理4h后过滤、洗涤,样品经120℃干燥处理后获得本发明实施例2分子筛Y2,分子筛平均粒径120nm,SiO2/Al2O3摩尔比8.4,相对结晶度110%,孔容0.36ml/g、比表面积850m2/g
实施例3
同实施例1,不同之处在于第二次向体系中加入氟硅酸铵的同时加入氯化镧,加入量以镧在体系中的摩尔浓度为0.08 计。获得本发明实施例3分子筛Y3。分子筛平均粒径114nm,SiO2/Al2O3摩尔比7.5,相对结晶度117%,孔容0.37ml/g、比表面积815m2/g。
实施例4
同实施例2,不同之处在于第二次向体系中加入氟硅酸铵的同时加入氯化镧,加入量以镧离子在体系中的摩尔浓度0.15mol/L 计。获得本发明实施例3分子筛Y4。分子筛平均粒径126nm,SiO2/Al2O3摩尔比8.6,相对结晶度122%,孔容0.36ml/g、比表面积832m2/g
实施例5
在不锈钢合成釜中依次加入115g去离子水、100g四甲基氢氧化铵溶液(20%)和14.5g异丙醇铝(≥24.7% Al2O3),搅拌至溶液澄清后加入9.5g白碳黑,加热使之成为透明溶液,然后加入0.15g氢氧化钠,得到的反应混合物的摩尔比为SiO2/Al2O3=4.36,Na2O/Al2O3=0.05,H2O/Al2O3=309,四甲基氢氧化铵/ Al2O3=6.17;将上述合成体系转移到反应釜中,密闭升温至95℃后水热晶化110h;晶化后向体系中加入氟硅酸铵,氟硅酸铵的加入量以其在体系中的浓度为 0.04mol/L计 ,然后再次进行晶化,晶化温度为50℃,晶化时间5h;晶化结束后继续加入氟硅酸铵4.0g,加入量比首次加入量提高120%,80℃处理2h后过滤、洗涤,样品经120℃干燥处理后获得本发明实施例5分子筛Y5,分子筛平均粒径85nm,SiO2/Al2O3摩尔比7.7,相对结晶度95%,孔容0.38ml/g、比表面积825m2/g。
实施例6
在不锈钢合成釜中依次加入103g去离子水、80g四甲基氢氧化铵溶液(25%)和13.2g异丙醇铝(≥24.7% Al2O3),搅拌至溶液澄清后加入25g正硅酸已脂(≥28% SiO2)和0.175g氢氧化钠,得到的反应混合物的摩尔比为SiO2/Al2O3=3.65,Na2O/Al2O3=0.060,H2O/Al2O3=282,四甲基氢氧化铵/ Al2O3=6.83;将上述合成体系转移到反应釜中,密闭升温至100℃后水热晶化100h;晶化后向体系中加入氟硅酸铵,氟硅酸铵的加入量以其在体系中的浓度为0.04mol/L计,然后再次进行晶化,晶化温度为40℃,晶化时间8h;晶化结束后继续加入氟硅酸铵,加入量比首次加入量提高130%,70℃处理4h后过滤、洗涤,样品经120℃干燥处理后获得本发明实施例6分子筛Y6。分子筛平均粒径70nm,SiO2/Al2O3摩尔比6.8, 相对结晶度87%,孔容0.37ml/g、比表面积880m2/g。
比较例1
在不锈钢合成釜中依次加入115g去离子水、100g四甲基氢氧化铵溶液(20%)和12g异丙醇铝(含24.7% Al2O3),搅拌至溶液澄清后加入7.5g白碳黑,加热使之成为透明溶液,然后加入0.11g氢氧化钠,得到的反应混合物的摩尔比为SiO2/Al2O3=4.16,Na2O/Al2O3=0.04,H2O/Al2O3=363,四甲基氢氧化铵/ Al2O3=7.457;将上述合成体系转移到反应釜中,密闭升温至100℃后水热晶化120h,过滤、洗涤,样品经120℃干燥处理后获得Y分子筛,将获得的Y分子筛加入到氟硅酸铵溶液中进行脱铝补硅,溶液温度为60℃ ,处理时间为 4h ,氟硅酸铵摩尔浓度同实施例1体系中两次加入氟硅酸铵后氟硅酸铵占体系的摩尔浓度相同。制得分子筛BY1分子筛平均粒径106nm,SiO2/Al2O3摩尔比7.8,相对结晶度80%,孔容0.25ml/g、比表面积 520 m2/g。
比较例2
在不锈钢合成釜中依次加入115g去离子水、100g四甲基氢氧化铵溶液(20%)和12g异丙醇铝(含24.7% Al2O3),搅拌至溶液澄清后加入7.5g白碳黑,加热使之成为透明溶液,然后加入0.11g氢氧化钠,得到的反应混合物的摩尔比为SiO2/Al2O3=4.16,Na2O/Al2O3=0.04,H2O/Al2O3=363,四甲基氢氧化铵/ Al2O3=7.457;将上述合成体系转移到反应釜中,密闭升温至100℃后水热晶化120h,向晶化后的溶液中加入氟硅酸铵进行处理,加入量为实施例1体系中两次加入氟硅酸铵质量之和,处理温度为60,时间为 4h 。过滤、洗涤,样品经120℃干燥处理后获得Y分子筛,制得分子筛BY2分子筛平均粒径108nm,SiO2/Al2O3摩尔比7.3,相对结晶度77%,孔容720ml/g、比表面积0.32 m2/g。
为了比较实施例与比较例催化剂水热温度性情况,对实施例和比较例获得的分子筛在550℃、0.1Mpa条件下,水热处理2h,水热处理后分子筛结晶度保留情况如表1所示。
表1
Y1 Y2 Y3 Y4 Y5 Y6 BY1 BY2
相对结晶度,% 95 99 108 112 83 73 42 50

Claims (15)

1.一种高稳定性纳米Y分子筛的制备方法,其特征在于:包括如下步骤:
(1)将硅源、铝源、氢氧化钠、四已基氢氧化铵和水混合形成凝胶,凝胶体系中各物质的摩尔比为:SiO2/Al2O3=3.0~5.0,Na2O/Al2O3=0.01~0.1, H2O/Al2O3=150~400,有机模板剂/ Al2O3=4.0~12.0;
(2)步骤(1)的凝胶体系进行晶化,晶化后向体系中加入氟硅酸铵,氟硅酸铵的加入量以其在体系中的浓度为0.01~0.1mol/L计,然后再次进行晶化;
(3)向步骤(2)体系中继续加入氟硅酸铵,氟硅酸铵的加入量相比步骤(2)的加入量提高50%~200%,加入后进行恒温处理,最后经过滤、洗涤、干燥制得高稳定性纳米Y分子筛。
2.根据权利要求1所述的方法,其特征在于:步骤(1)中使用的铝源为异丙醇铝;钠源为氢氧化钠;硅源为硅溶胶、白炭黑、正硅酸乙酯中的一种或几种。
3.根据权利要求1所述的方法,其特征在于:步骤(1)凝胶体系中各物质的摩尔比为:SiO2/Al2O3= 3.5~4.5,Na2O/Al2O3= 0.03~0.07,H2O/Al2O3= 200~300,有机模板剂/ Al2O3= 5.0~10.0。
4.根据权利要求1所述的方法,其特征在于:步骤(2)中首次晶化温度为80℃~140℃,晶化时间为50~140h。
5.根据权利要求4所述的方法,其特征在于:晶化温度为 90~130℃,晶化时间为70~120h。
6.根据权利要求1所述的方法,其特征在于:步骤(2)中加入氟硅酸铵后的晶化温度为20~70℃,晶化时间为1~20h。
7.根据权利要求6所述的方法,其特征在于:晶化温度为30~50℃,晶化时间为5~15h。
8.根据权利要求1所述的方法,其特征在于:步骤(2)中氟硅酸铵的加入量以其在体系中的浓度为0.03~0.06计。
9.根据权利要求1所述的方法,其特征在于:步骤(3)中氟硅酸铵的加入量相比步骤(2)的加入量提高90%~150%。
10.根据权利要求1所述的方法,其特征在于:步骤(3)中加入氟硅酸铵的同时加入氯化镧,氯化镧的加入量以镧离子在体系中的摩尔浓度计为0.05~0.2mol/L。
11.根据权利要求10所述的方法,其特征在于:氯化镧的加入量以镧离子在体系中的摩尔浓度计为0.08~0.15mol/L。
12.根据权利要求1所述的方法,其特征在于:步骤(3)中在40~90℃恒温处理1~10h。
13.根据权利要求12所述的方法,其特征在于:步骤(3)中在30~80℃下恒温处理2~6h。
14.一种采用权利要求1至14任一方法制备的纳米Y分子筛,其特征在于:所述分子筛的孔容0.3~0.5ml/g、比表面积700~1000m2/g,SiO2/Al2O3 5.0~10.0,相对结晶度80~130,550℃、0.1Mpa条件下水热处理2h后的相对结晶度为70以上,晶粒度为60~180nm。
15.根据权利要求14所述的纳米Y分子筛,其特征在于:孔容0.35~0.45ml/g、比表面积800~900 m2/g,SiO2/Al2O3 6.0 ~8.0 ,相对结晶度90~120,550℃、0.1Mpa条件下水热处理2h后的相对结晶度为70~110,晶粒度为80~130nm。
CN201510750474.2A 2015-11-09 2015-11-09 一种高稳定性纳米y分子筛及其制备方法 Active CN106672996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510750474.2A CN106672996B (zh) 2015-11-09 2015-11-09 一种高稳定性纳米y分子筛及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510750474.2A CN106672996B (zh) 2015-11-09 2015-11-09 一种高稳定性纳米y分子筛及其制备方法

Publications (2)

Publication Number Publication Date
CN106672996A true CN106672996A (zh) 2017-05-17
CN106672996B CN106672996B (zh) 2018-10-12

Family

ID=58858745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510750474.2A Active CN106672996B (zh) 2015-11-09 2015-11-09 一种高稳定性纳米y分子筛及其制备方法

Country Status (1)

Country Link
CN (1) CN106672996B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109775717A (zh) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 一种纳米NaY型分子筛及其制备方法
WO2022148394A1 (zh) * 2021-01-07 2022-07-14 中国石油化工股份有限公司 一种y型分子筛及其合成方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516786A (en) * 1968-02-23 1970-06-23 Grace W R & Co Method of preparing microcrystalline faujasite-type zeolite
US4372931A (en) * 1980-05-30 1983-02-08 Air Products And Chemicals, Inc. Microcrystalline synthetic faujasite
EP0407203A1 (en) * 1989-07-05 1991-01-09 Exxon Research And Engineering Company High silica crystalline zeolites and process for their preparation
CN1354133A (zh) * 2001-10-19 2002-06-19 中国石油化工股份有限公司 一种制备小晶粒y型分子筛的方法
CN1565968A (zh) * 2003-06-13 2005-01-19 中国石化北京燕化石油化工股份有限公司 一种分子筛的合成方法
CN1951812A (zh) * 2005-10-19 2007-04-25 中国石油化工股份有限公司 一种高硅铝比八面沸石的合成方法
US20070224113A1 (en) * 2006-03-24 2007-09-27 Willis Richard R Process for Preparing Nano Size Zeolites
CN101177281A (zh) * 2006-11-10 2008-05-14 北京化工大学 一种纳米NaY分子筛的制备方法
CN101870478A (zh) * 2009-04-22 2010-10-27 中国科学院大连化学物理研究所 一种纳米y型分子筛的合成方法
WO2015101800A1 (en) * 2013-12-30 2015-07-09 Centre National De La Recherche Scientifique Method for the preparation of a synthetic faujasite material comprising monodisperse nanoparticles composed of single nanocrystals
CN104828839A (zh) * 2014-02-08 2015-08-12 中国石油化工股份有限公司 制备小晶粒y型分子筛的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516786A (en) * 1968-02-23 1970-06-23 Grace W R & Co Method of preparing microcrystalline faujasite-type zeolite
US4372931A (en) * 1980-05-30 1983-02-08 Air Products And Chemicals, Inc. Microcrystalline synthetic faujasite
EP0407203A1 (en) * 1989-07-05 1991-01-09 Exxon Research And Engineering Company High silica crystalline zeolites and process for their preparation
CN1354133A (zh) * 2001-10-19 2002-06-19 中国石油化工股份有限公司 一种制备小晶粒y型分子筛的方法
CN1565968A (zh) * 2003-06-13 2005-01-19 中国石化北京燕化石油化工股份有限公司 一种分子筛的合成方法
CN1951812A (zh) * 2005-10-19 2007-04-25 中国石油化工股份有限公司 一种高硅铝比八面沸石的合成方法
US20070224113A1 (en) * 2006-03-24 2007-09-27 Willis Richard R Process for Preparing Nano Size Zeolites
CN101177281A (zh) * 2006-11-10 2008-05-14 北京化工大学 一种纳米NaY分子筛的制备方法
CN101870478A (zh) * 2009-04-22 2010-10-27 中国科学院大连化学物理研究所 一种纳米y型分子筛的合成方法
WO2015101800A1 (en) * 2013-12-30 2015-07-09 Centre National De La Recherche Scientifique Method for the preparation of a synthetic faujasite material comprising monodisperse nanoparticles composed of single nanocrystals
CN104828839A (zh) * 2014-02-08 2015-08-12 中国石油化工股份有限公司 制备小晶粒y型分子筛的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRETT A. HOLMBERG ET AL: "High silica zeolite Y nanocrystals by dealumination and direct synthesis", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *
GABRIELLA PA´L-BORBE´LY ET AL: "Repeatedly performed solid-state substitution of silicon for framework aluminium in Y zeolite using crystalline (NH4)2[SiF6] as dealumination agent", 《PHYS. CHEM. CHEM. PHYS.》 *
尹海亮 等: "Y型分子筛纳米晶的制备及其在柴油加氢精制", 《石油炼制与化工》 *
王希龙 等: "超细NaY分子筛的深度脱铝", 《催化学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109775717A (zh) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 一种纳米NaY型分子筛及其制备方法
CN109775717B (zh) * 2017-11-14 2021-06-04 中国石油化工股份有限公司 一种纳米NaY型分子筛及其制备方法
WO2022148394A1 (zh) * 2021-01-07 2022-07-14 中国石油化工股份有限公司 一种y型分子筛及其合成方法

Also Published As

Publication number Publication date
CN106672996B (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
CN104843731B (zh) 一种纳米梯级孔丝光沸石分子筛的制备方法
CN104043477B (zh) 一种zsm‑5/mcm‑48复合分子筛及其制备方法和应用
CN104556125B (zh) 一种同晶复合分子筛及其制备方法和应用
CN109775716A (zh) 一种富含l酸的多级孔y型分子筛及其制备方法
CN105502433A (zh) 一种甲醇制汽油催化剂纳米Zn-ZSM-5的制备方法
CN103172082A (zh) 一种含介孔的y型分子筛的制备方法
CN113694961B (zh) 一种纳米多级孔beta结构分子筛催化剂及其制备方法和应用
CN106745036A (zh) 具有微孔‑介孔的多级孔ssz‑13分子筛及其合成方法和应用
CN105712371B (zh) 一种usy‑y复合分子筛及其制备方法
CN108654594A (zh) 一种固体酸催化剂及其制备方法以及用途
CN107282102B (zh) 一种金属负载型分子筛催化剂的制备方法
CN110240177A (zh) 一种片状结构mfi型沸石分子筛及其制备方法
CN106672996A (zh) 一种高稳定性纳米y分子筛及其制备方法
CN110038627A (zh) 一种多级孔zsm-5分子筛锚定钯纳米粒子的合成方法
CN105712370B (zh) 一种具有双介孔结构的usy分子筛及其制备方法
CN102786064B (zh) 一种加氢裂化催化剂载体及其制备方法
CN105712374B (zh) 一种空心usy分子筛的制备方法
CN104828839B (zh) 制备小晶粒y型分子筛的方法
CN104826667B (zh) 制备加氢裂化催化剂载体的方法
CN106698461A (zh) 一种原位晶化制备纳米NaY分子筛的方法
CN111977668B (zh) 一种im-5分子筛及其制备方法
CN107892308A (zh) Zsm‑5分子筛及其制备方法
CN100512960C (zh) 一种改性mcm-41/氧化铝复合载体材料的制备方法
CN112808296B (zh) 一种含y型分子筛的催化剂及其制备方法
CN1218872C (zh) 一种改性分子筛及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant