CN106669711B - 球形加氢催化剂组合物及其制备方法 - Google Patents

球形加氢催化剂组合物及其制备方法 Download PDF

Info

Publication number
CN106669711B
CN106669711B CN201510761499.2A CN201510761499A CN106669711B CN 106669711 B CN106669711 B CN 106669711B CN 201510761499 A CN201510761499 A CN 201510761499A CN 106669711 B CN106669711 B CN 106669711B
Authority
CN
China
Prior art keywords
ionic liquid
concentration
iii
maceration extract
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510761499.2A
Other languages
English (en)
Other versions
CN106669711A (zh
Inventor
吕振辉
彭绍忠
张学辉
高玉兰
佟佳
徐黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201510761499.2A priority Critical patent/CN106669711B/zh
Publication of CN106669711A publication Critical patent/CN106669711A/zh
Application granted granted Critical
Publication of CN106669711B publication Critical patent/CN106669711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种球形加氢催化剂组合物及其制备方法,包括加氢活性金属、助剂及氧化铝载体;所述的加氢活性金属组分为第VIB族金属和第VIII族金属中的一种或多种;助剂为以下I、II和III几种组合中的一种:I‑氟和磷,II‑氟和硼,III‑氟、磷和硼,优选III‑氟、磷和硼,余量为氧化铝载体;所述的加氢活性金属浓度和助剂浓度从催化剂颗粒中心到外表面逐渐减小;所述的球形加氢催化剂组合物具有双重孔道分布,孔径为10~15nm和15~30nm。制备方法如下:采用在成胶和混捏的过程中加入不同分子大小和不同助剂元素种类的离子液体,然后经干燥、焙烧得到产物。该催化剂能够使孔结构和酸性分布有机地相互配合,具有高脱金属活性、较强的容金属能力,在劣质蜡油、渣油等原料高脱硫、脱氮金属反应中有广阔的应用前景。

Description

球形加氢催化剂组合物及其制备方法
技术领域
本发明涉及一种球形加氢催化剂组合物及其制备方法,具体地说是一种活性金属和助剂浓度递减且具有双重孔道分布的加氢催化剂组合物及其制备方法。
背景技术
原油以及从原油中得到的馏分油中含有硫、氮、氧和金属等杂质。这些杂质的存在不仅影响油品的安定性,而且在使用过程中还会排放SOX、NOX等有害气体污染环境。在油品的二次加工过程中,硫、氮、氧和金属等杂质的存在会使催化剂中毒。因此,脱除上述杂质是油品加工中的重要过程。馏分油加氢处理是指在一定温度和压力下,原料油和氢气与催化剂接触,脱除杂质,以及芳烃饱和的过程。
目前,炼油工业的加氢处理几乎全部采用氧化铝载体。由于表面羟基的不规则缩合,氧化铝载体均具有一定的酸性,这些酸性中心容易导致烃类缩合而形成积炭,致使催化剂失活。尤其是对于某些极易导致积炭的重质油加氢处理过程,催化剂载体表面酸性的强弱直接决定催化剂能够稳定运行周期的长短。目前,加氢处理催化剂均以氧化铝或含一种或多种其他元素如Si、Ti、P、B、F等的氧化铝为载体。在催化剂制备过程中,可在不同阶段向体系内引入上述元素,其目的在于调变催化剂的酸性,以及改善活性组分与载体间的相互作用。常规催化剂的制备方法,其颗粒内助剂的浓度分布往往比较均匀。目前,关于助剂浓度呈不均匀分布的文献报道较少。
CN101927192A公开了一种酸性助剂浓度呈梯度减少分布的加氢催化剂载体及其制备方法;以Al2O3或含有SiO2、TiO2、ZrO2的Al2O3为载体,通过配制酸性助剂浓度较高的溶液,在载体浸渍过程中,逐步添加去离子水稀释溶液的方法饱和喷浸载体;或通过配制至少两种不同酸性助剂浓度的溶液,按酸性助剂浓度从高到低顺序喷浸在载体上;再在80~150℃下干燥1~8小时,然后在300~650℃的空气中焙烧2~6小时;酸性助剂为含P、B或F的化合物;制备简单,制造成本低,载体用于重质油加氢催化剂的载体,制备方法简单,制造成本低,能有效调变载体的酸性、孔性质,有效地调变催化剂的酸性和/或改善活性组分与载体间的相互作用。
CN201210462040.9具体涉及一种含磷、氟、钛的微球形催化剂载体的制备方法。该方法是先将含磷无定形硅铝干胶、含氟无定形硅铝干胶与含钛无定形硅铝干胶混合均匀后,再将混合干胶润湿、挤条成型,经造粒、筛分、干燥、焙烧制成含磷、氟、钛的微球形催化剂载体。
发明内容
针对现有技术的不足,本发明提供一种球形加氢催化剂组合物及其制备方法。该催化剂组合物中的加氢活性金属和助剂浓度由内至外逐渐递减,且具有双重孔道分布,孔结构和酸性分布有机地相互配合,具有高脱金属活性、较强的容金属能力。
本发明的球形加氢催化剂组合物,包括加氢活性金属、助剂及氧化铝载体;所述的加氢活性金属组分为第VIB族金属和第VIII族金属中的一种或多种,其中第VIB族金属优选为W和/或Mo,第VIII族金属优选为Co和/或Ni;以催化剂的重量为基准,第VIB族金属氧化物含量为5.0wt%~30.0wt%,优选为10.0wt%~15.0wt%,第VIII族金属氧化物含量为0.5wt%~10.0 wt%,优选为1.0wt%~10.0wt%;助剂为以下I、II和III几种组合中的一种:I-氟和磷,II-氟和硼,III-氟、磷和硼,优选III-氟、磷和硼;助剂以元素计为1.5%~2.0%,助剂为I时,氟占助剂质量的50%~55%,磷占助剂总质量的45%~50%;助剂为II时,氟占助剂质量的50%~55%,硼占助剂总质量的45%~50%;当助剂为III时,氟占助剂总量的50%~55%,磷占助剂总量的30%~35%,硼占助剂总量的15%~20%;余量为氧化铝载体;
所述的加氢活性金属浓度从催化剂颗粒中心到外表面逐渐递减,其中催化剂颗粒中的1/4R处、1/2R处和R 处的加氢活性金属浓度满足如下比例关系:C1/4R:C1/2R:CR=2.5~3.0:1.5~2.0:1;助剂浓度从催化剂颗粒中心到外表面逐渐递减,其中催化剂颗粒中的1/4R处、1/2R处和R 处的助剂浓度满足如下比例关系:C1/4R:C1/2R:CR=3~5:2~4:1;其中R为以球形催化剂组合物中心为初始点的催化剂颗粒的半径;
所述的球形加氢催化剂组合物的比表面积200~250m2/g,孔容0.4~0.7ml/g,具有双重孔道分布,孔径为10~15nm和15~30nm;其中10~15nm的孔分布占总孔容30%~35%,15-30nm的孔分布占总孔容的35%~40%。
本发明的球形加氢催化剂组合物的制备方法,包括如下内容:
(1)离子液体的制备
由M1分别和M2、M3制成离子液体I、II;
(2)拟薄水铝石的制备
在偏铝酸钠溶液与硫酸铝溶液成胶过程中加入离子液体I,成胶结束后,进行老化,然后过滤,干燥后得到拟薄水铝石I;
在偏铝酸钠溶液与硫酸铝溶液成胶过程中加入中量离子液体II,成胶结束后,进行老化,然后过滤,干燥后得到拟薄水铝石II;
在偏铝酸钠溶液与硫酸铝溶液成胶过程中加入少量离子液体II,成胶结束后,进行老化,然后过滤,干燥后得到拟薄水铝石III;
(3)加氢活性金属溶液的配制
配制加氢活性金属浓度逐渐递减的浸渍液I、II和III,以氧化物计,浸渍液I中加氢活性金属的浓度为85~110 g/100ml,浸渍液II中加氢活性金属的浓度为60~75g/100ml,浸渍液III中加氢活性金属的浓度为36~50g/100ml,其中浸渍液I和II或浸渍液II和III的浓度减小幅度为5~20g/100ml;加氢活性金属以Mo和Ni为例,浸渍液I中MoO3的浓度为45~55g/100ml,NiO的浓度为25~30g/100ml;浸渍液II中MoO3的浓度为30~40g/100ml,NiO的浓度为15~20g/100ml;浸渍液III中MoO3的浓度为20~30 g/100ml,NiO的浓度为6~10g/100ml。
(4)球形加氢催化剂组合物的制备
拟薄水铝石I置于转盘成型机内充分混合,经喷雾器将离子液体I水溶液和浸渍液I喷洒到转盘内的氧化铝上,经混合接触后,得到球形催化剂前驱体I;
再将拟薄水铝石II与球形催化剂前驱体I在转盘成型机内充分混合,经喷雾器喷洒中量离子液体II水溶液和浸渍液II,经混合接触后,球形催化剂前驱体II;
然后将拟薄水铝石III与球形催化剂前驱体II在转盘成型机内充分混合,经喷雾器喷洒少量离子液体II水溶液和浸渍液III,经混合接触后,得到球形催化剂前驱体III,经干燥,焙烧后得到球形加氢催化剂组合物。
本发明方法中,步骤(1)所述M1为四氟硼酸铵、四氟硼酸钠、四氟硼酸钾六氟磷酸铵、六氟磷酸钠、六氟磷酸钾等中的一种或几种,优选为六氟磷酸铵和/或四氟硼酸按。
本发明方法中,步骤(1)所述的M2为碳原子数为1~8个的烷基卤化铵中的一种或几种,烷基优选为甲基、乙基中的一种或几种,卤素优选氯,进一步优选为卤化三乙基铵、卤化四乙基铵、乙基卤化铵。
本发明方法中,步骤(1)所述的M3为碳原子数为8~12个的烷基卤化铵中的一种或几种,优选卤化甲基三正丁胺、卤化二甲基二正丁胺、卤化丙基三正丁胺、卤化二丙基二正丁胺、卤化甲基苯铵、卤化二甲基苯铵、卤化三甲基苯铵等中的一种或几种,优选为卤化甲基苯铵或卤化二甲基二正丁胺中的一种或几种,卤素优选氯。
本发明方法中,步骤(1)中离子液体I的制备方法可采用常规方法进行一般为将M1和M2加入水中,在搅拌条件下加热至反应温度,恒温反应,反应结束后,冷却,离心得到离子液体I;其中M1与M2的摩尔比为1:1~1:2,反应条件一般为反应温度为60~150℃,优选70~100℃,恒温反应时间为1~4h,优选1~2h。离子液体II的制备方法和制备条件与离子液体I相同,将上述方法中的M2替换成M3,即得到离子液体II。
本发明方法中,步骤(2)所述偏铝酸钠溶液与硫酸铝溶液成胶可以采用常规方法进行,最好采用并流成胶法。成胶条件一般为:反应温度为50~80℃,pH值 为6.5~9.0,反应时间 为0.5~2.0小时。成胶后老化条件如下:老化温度为50~80℃,pH值为8.5~11.0,老化时间为0.1~1.0小时。所用偏铝酸钠溶液以氧化铝计的浓度为10~30g/100mL,硫酸铝溶液以氧化铝计的浓度为3~10g/100mL。
本发明方法中,步骤(2)离子液体I、II的加入量以其含有的助剂元素的量来计算,其中离子液体I中的助剂元素占催化剂组合物质量为0.95wt%~1.35wt%,中量离子液体II中的助剂元素占催化剂组合物质量为0.55wt%~0.9wt%,少量离子液体II中的助剂元素占催化剂组合物质量为0.2wt%~0.45wt%。
本发明方法中,步骤(2)中所述的干燥温度为40~200℃,优选60~120℃;干燥时间为1~5小时,优选1~3小时。
本发明方法中,步骤(4)中所述的浸渍液I、II和III加入量以其含有的加氢活性金属量来计算,其中浸渍液I中的加氢活性金属以氧化物计占催化剂组合物的质量为20wt%~25wt%,浸渍液II中的加氢活性金属以氧化物计占催化剂组合物的质量为15.0wt%~18.0wt%,浸渍液III中的加氢活性金属以氧化物计占催化剂组合物的质量为8.5wt%~10.0wt%。
本发明方法中,步骤(4)中离子液体I水溶液的浓度以离子液体在水溶液中的质量百分数来表示,其浓度为22%~25%;中量离子液体II水溶液的浓度为15%~20%;少量离子液体II水溶液的浓度为8%~15%;离子液体I与中量离子液体II的浓度差为3%~5%;中量离子液体II与少量离子液体II的浓度差为3%~5%。
本发明方法中,步骤(4)中所述的离子液体I、II加入量以其含有的助剂元素量来计算,其中离子液体I中的助剂元素占催化剂组合物的质量为0.95wt%~1.35wt%,中量离子液体II中的助剂元素占催化剂组合物的质量为0.55wt%~0.9wt%,少量离子液体II中的助剂元素占催化剂组合物的质量为0.2wt%~0.45wt%。
本发明方法中,步骤(4)制备球形催化剂前驱体I、II和III中所述的转盘成型机转动操作条件中,转盘的倾角为40~70º,优选40~60º;转盘的转速为10~20rpm;物料在转盘内的成型时间为10~30min。
本发明方法中,步骤(4)催化剂制备方法是技术人员所熟知的。所述干燥和焙烧的条件均是常规的,例如,干燥温度为60℃~180℃,优选为80℃~150℃,干燥时间为0.5h~15.0h,优选为1h~6h;焙烧温度为500℃~700℃,焙烧时间为0.5h~15.0h。
本发明方法中的孔结构采用氮吸附及压汞法来进行测定;助剂及活性金属分布采用场发射扫描电镜进行测定。
与现有技术相比较,本发明具有以下优点:
1、本方法采用在成胶和混捏的过程中加入不同种类的离子液体,利用不同离子液体具有不同的空间大小,使得所制备的加氢催化剂具有双重孔道结构,能够适应劣质原料的性质,很适合用于蜡油、渣油等加氢反应过程。
2、本方法中采用不同离子液体、离子液体以及加氢活性金属的用量有针对性地调节球形加氢催化剂的孔结构、酸性分布以及金属分布,即孔分布主要集中在10~15nm和15~30nm;中含量的氟、硼、磷等助剂通过离子液体Ⅰ以及活性金属的引入,对10~15nm孔道进行修饰;高含量的氟、硼、磷等助剂以及活性金属通过大分子离子液体II的引入,对15~30nm孔道进行修饰,这样使其相互配合,从而提高加氢催化剂的综合性能。
3、本发明加氢催化剂组合物中的活性金属和助剂元素浓度在球形催化剂中呈梯度递减分布,可以有效改善催化剂表面酸性,氧化铝中心的活性较高,金属更容易沉积于催化剂中心,避免了孔道的堵塞,从而提高了催化剂的脱金属和容金属能力。
具体实施方式
下面通过具体实施例对本发明的加氢催化剂组合物的制备方法进行更详细的描述。实施例只是对本发明方法的具体实施方式的举例说明,并不构成本发明保护范围的限制,助剂的加入方式只是多种引入方式中的一种或几种。
本发明实施例和比较例中:氧化钼,碱式碳酸镍,磷酸,硝酸(浓度为65wt%)、柠檬酸(浓度为99wt%)为分析纯,田菁粉为化学纯,沈阳力诚试剂厂生产;氢氧化钠、氢氧化铝、硫酸铝,烟台恒辉化工有限公司;四氟硼酸铵,四氟硼酸钠,武汉海德化工发展有限公司;三乙基氯化铵,二乙基氯化铵,二甲基苯基氯化铵,三甲基苯基氯化铵,甲基苯基氯化铵,四乙基氯化铵,青岛金马化工有限公司。
实施例1
三乙基氯化铵400g,六氟磷酸钠220g,纯水450g,混合,在搅拌下加热到90℃,恒温3h后,澄清,自然冷却至30℃左右,离心过滤出固体得离子液体Ⅰ450g,含水约3.5wt%,收率72wt%。
三甲基苯基氯化铵500g,六氟磷酸钠260g,纯水450g,混合,在搅拌下加热到90℃,恒温3h后,澄清,自然冷却至30℃左右,离心过滤出固体得离子液体Ⅱ550g,含水约3.5wt%,收率74wt%。
在反应釜内加入离子液体Ⅰ15g及2L蒸馏水,调整反应温度为60℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和硫酸铝(以氧化铝计,浓度为8g/mL)并流进行中和反应,pH值为7.5,反应1h后,进行老化,老化pH为11,老化时间30min,过滤、100℃干燥2h得到拟薄水铝石Ⅰ。
在反应釜内加入离子液体Ⅱ10g及3L蒸馏水,调整反应温度为70℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和硫酸铝(以氧化铝计,浓度为8g/mL)并流进行中和反应,pH值为8.0,反应1h后,进行老化,老化pH为11,老化时间30min,过滤、100℃干燥2h得到拟薄水铝石Ⅱ。
在反应釜内加入离子液体II5g及3L蒸馏水,调整反应温度为80℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和硫酸铝(以氧化铝计,浓度为8g/mL)并流进行中和反应,pH值为8.5,反应1h后,进行老化,老化pH为11,老化时间30min,过滤、100℃干燥2h得到拟薄水铝石Ⅲ。
取386g氧化钼,123g碱式碳酸镍放入多口烧瓶中,加入一定量的去离子水后,进行搅拌直至瓶中物质呈浆状,然后缓慢添加86g磷酸,等起始反应过后再缓慢加热,保持溶液温度90℃~110℃时间为1h~3h.停止加热后,趁热对所得溶液过滤,滤掉某些不溶杂质后,得到澄清的深绿色浸渍液Ⅰ,然后加水以一定比例稀释浸渍液分别得到浸渍液Ⅱ、Ⅲ。浸渍液Ⅰ的浓度为MoO3:70g/100ml;NiO:28g/100ml;浸渍液Ⅱ的浓度为MoO3:48g/100ml;NiO:16.7g/100ml;浸渍液Ⅲ的浓度为MoO3:31g/100ml;NiO:7.2g/100ml。
将120g的拟薄水铝石Ⅰ置于转盘成型机内充分混合,调节转盘的倾角为40º,转盘的转速为10rpm;经喷雾干燥将15g离子液体Ⅰ和53g水的混合水溶液以及65ml浸渍液Ⅰ和60g水的混合水溶液喷洒到转盘内的拟薄水铝石I上经混合接触后,物料在转盘内的成型时间为10min,得到直径0.1~0.5mm的球形催化剂前驱体I;
将120g的拟薄水铝石Ⅱ和上述步骤制备的球形催化剂前驱体I于转盘成型机内充分混合,调节转盘的倾角为40º,转盘的转速为10rpm;经喷雾器将10g离子液体Ⅱ和60g水的混合水溶液以及42ml浸渍液喷Ⅱ和60g水的混合水溶液洒到转盘内的氧化铝Ⅱ上经混合接触后,物料在转盘内的成型时间为10min,得到直径1.0~1.5mm的球形催化剂前驱体Ⅱ;
将120g的拟薄水铝石Ⅲ和上述步骤制备的球形催化剂前驱体Ⅱ于转盘成型机内充分混合,调节转盘的倾角为40º,转盘的转速为10rpm;经喷雾器将5g离子液体Ⅱ和120g水的混合水溶液以及30ml浸渍液Ⅲ和120g水的混合水溶液喷洒到转盘内的拟薄水铝石Ⅲ上经混合接触后,物料在转盘内的成型时间为10min,得到直径1.0~1.5mm的球形催化剂前驱体Ⅲ;将球形催化剂前驱体Ⅲ经过120℃干燥3h,500℃焙烧3h后,得到所需的球形催化剂,记作CT-1,性质列于表1中。
实施例2
三乙基氯化铵300g,六氟磷酸钠160g,纯水350g,混合,在搅拌下加热到100℃,恒温2.5h后,澄清,自然冷却至30℃左右,离心过滤出固体得离子液体I420g,含水约3.7wt%,收率72wt%。
二甲基苯基氯化铵600g,六氟磷酸钠300g,纯水550g,混合,在搅拌下加热到70℃,恒温3h后,澄清,自然冷却至30℃左右,离心过滤出固体得离子液体Ⅱ550g,含水约4.0wt%,收率74wt%。
在反应釜内加入离子液体Ⅰ20g及2L蒸馏水,调整反应温度为60℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和硫酸铝(以氧化铝计,浓度为8g/mL)并流进行中和反应,pH值为7.5,反应1h后,进行老化,老化pH为10,老化时间30min,过滤、120℃干燥1h得到拟薄水铝石Ⅰ。
在反应釜内加入离子液体Ⅱ15g及3L蒸馏水,调整反应温度为70℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和硫酸铝(以氧化铝计,浓度为8g/mL)并流进行中和反应,pH值为8.0,反应1h后,进行老化,老化pH为10,老化时间30min,过滤、120℃干燥1.5h得到拟薄水铝石Ⅱ。
在反应釜内加入离子液体Ⅱ10g及3L蒸馏水,调整反应温度为80℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和硫酸铝(以氧化铝计,浓度为8g/mL)并流进行中和反应,pH值为8.5,反应1h后,进行老化,老化pH为10,老化时间30min,过滤、120℃干燥2h得到拟薄水铝石Ⅲ。
取276g氧化钼,109g碱式碳酸镍放入多口烧瓶中,加入一定量的去离子水后,进行搅拌直至瓶中物质呈浆状,然后缓慢添加72g磷酸,等起始反应过后再缓慢加热,保持溶液温度90℃~110℃时间为1h~3h.停止加热后,趁热对所得溶液过滤,滤掉某些不溶杂质后,得到澄清的深绿色浸渍液Ⅰ,然后加水以一定比例稀释浸渍液分别得到浸渍液Ⅱ、Ⅲ。浸渍液Ⅰ的浓度为MoO3:79g/100ml;NiO:28g/100ml;浸渍液Ⅱ的浓度为MoO3:54g/100ml;NiO:18g/100ml;浸渍液Ⅲ的浓度为MoO3:40g/100ml;NiO:9.5g/100ml。
将150g的拟薄水铝石Ⅰ置于转盘成型机内充分混合,调节转盘的倾角为40º,转盘的转速为10rpm;经喷雾器将21g离子液体I和75g水的混合水溶液以及69ml浸渍液Ⅰ和75g水的混合水溶液喷洒到转盘内的拟薄水铝石I上经混合接触后,物料在转盘内的成型时间为10min,得到直径0.1~0.5mm的球形催化剂前驱体I;
将150g的拟薄水铝石Ⅱ和上述步骤所制备的球形催化剂前驱体I于转盘成型机内充分混合,调节转盘的倾角为50º,转盘的转速为15rpm;经喷雾器将15g离子液体Ⅱ和90g水的混合水溶液以及46ml浸渍液Ⅱ和75g水的混合水溶液喷洒到转盘内的拟薄水铝石Ⅱ上经混合接触后,物料在转盘内的成型时间为10min,得到直径1.0~1.5mm的球形催化剂前驱体Ⅱ;
将150g的拟薄水铝石Ⅲ和上述步骤所制备的球形前驱体Ⅱ于转盘成型机内充分混合,调节转盘的倾角为50º,转盘的转速为15rpm;经喷雾器将10g离子液体II和190g水的混合水溶液以及30ml浸渍液Ⅲ以及110g水的混合水溶液喷洒到转盘内的拟薄水铝石Ⅲ上经混合接触后,物料在转盘内的成型时间为10min,得到直径1.0~1.5mm的球形催化剂前驱体Ⅲ;将球形催化剂前驱体Ⅲ经过150℃干燥2h,600℃焙烧2h后,得到所需的球形催化剂,记作CT-2,性质列于表1中。
实施例3
四乙基氯化铵450g,六氟磷酸钠250g,纯水500g,混合,在搅拌下加热到90℃,恒温3h后,澄清,自然冷却至30℃左右,离心过滤出固体得离子液体I 650g,含水约3.9wt%,收率75wt%。
甲基苯基氯化铵500g,六氟磷酸钠260g,纯水450g,混合,在搅拌下加热到90℃,恒温3h后,澄清,自然冷却至30℃左右,离心过滤出固体得离子液体Ⅱ550g,含水约3.5wt%,收率74wt%。
在反应釜内加入离子液体Ⅰ25g及2L蒸馏水,调整反应温度为65℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和硫酸铝(以氧化铝计,浓度为8g/mL)并流进行中和反应,pH值为8.0,反应1h后,进行老化,老化pH为9.0,老化时间30min,过滤、110℃干燥2.5h后得到拟薄水铝石Ⅰ。
在反应釜内加入离子液体II20g及3L蒸馏水,调整反应温度为75℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和硫酸铝(以氧化铝计,浓度为8g/mL)并流进行中和反应,pH值为8.0,反应1.5h后,进行老化,老化pH为9.0,老化时间30min,过滤、110℃干燥2.0h后得到拟薄水铝石Ⅱ。
在反应釜内加入离子液体II15g及3L蒸馏水,调整反应温度为85℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和硫酸铝(以氧化铝计,浓度为8g/mL)并流进行中和反应,pH值为8.5,反应1h后,进行老化,老化pH为9.0,老化时间30min,过滤、110℃干燥2.0h后得到拟薄水铝石Ⅲ。
取525g氧化钼,159g碱式碳酸镍放入多口烧瓶中,加入一定量的去离子水后,进行搅拌直至瓶中物质呈浆状,然后缓慢添加125g磷酸,等起始反应过后再缓慢加热,保持溶液温度90℃~110℃时间为1h~3h.停止加热后,趁热对所得溶液过滤,滤掉某些不溶杂质后,得到澄清的深绿色浸渍液Ⅰ,然后加水以一定比例稀释浸渍液分别得到浸渍液Ⅱ、Ⅲ。浸渍液Ⅰ的浓度为MoO3:71g/100ml;NiO:26g/100ml;浸渍液Ⅱ的浓度为MoO3:50g/100ml;NiO:17g/100ml;浸渍液Ⅲ的浓度为MoO3:36g/100ml;NiO:8.4g/100ml。
将200g的拟薄水铝石Ⅰ置于转盘成型机内充分混合,调节转盘的倾角为50º,转盘的转速为20rpm;经喷雾器将31g离子液体I和110g水的混合水溶液以及90ml浸渍液Ⅰ和90g水的混合水溶液喷洒到转盘内的拟薄水铝石I上经混合接触后,物料在转盘内的成型时间为10min,得到直径0.1~0.5mm的球形催化剂前驱体I;
将200g的拟薄水铝石Ⅱ和上述步骤所制备的球形催化剂前驱体I于转盘成型机内充分混合,调节转盘的倾角为50º,转盘的转速为20rpm;经喷雾器将20g离子液体Ⅱ和120g水的混合水溶液以及58ml离子液体Ⅱ和90g水的混合水溶液喷洒到转盘内的拟薄水铝石Ⅱ上经混合接触后,物料在转盘内的成型时间为10min,得到直径1.0~1.5mm的球形催化剂前驱体Ⅱ;
将200g的拟薄水铝石Ⅲ和上述步骤所制备的球形催化剂前驱体Ⅱ于转盘成型机内充分混合,调节转盘的倾角为50º,转盘的转速为20rpm;经喷雾器将12g离子液体II和150g水的混合水溶液喷洒以及42ml浸渍液和90g水的混合水溶液到转盘内的拟薄水铝石Ⅲ上经混合接触后,物料在转盘内的成型时间为10min,得到直径1.0~1.5mm的球形催化剂前驱体Ⅲ;将球形前驱体Ⅲ经过120℃干燥4h,550℃焙烧2.5h后,得到所需的球形催化剂,记作CT-3,性质列于表1中。
比较例1
在反应釜内加入2L蒸馏水,调整反应温度为70℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和硫酸铝以氧化铝计,浓度为8g/mL并流进行中和反应,pH值为7.5,反应1h后,进行老化,老化pH为11,老化时间30min,过滤、干燥得到所需的拟薄水铝石。
将600g的上述改性拟薄水铝石置于转盘成型机内充分混合,调节转盘的倾角为40º,转盘的转速为15rpm;经喷雾器将180g水和/或和粘结剂(含有540g水、28g硝酸)的混合溶液以及180ml实施例3中的浸渍液Ⅰ喷洒到转盘内的改性拟薄水铝石上经混合接触后,物料在转盘内的成型时间为30min,得到直径1.0~1.5mm的球形前驱体;将球形前驱体经过120℃干燥4h,600℃焙烧3h后,得到所需的球形催化剂,记作CD-1,性质列于表1中。
比较例2
在硫酸铝水溶液(以氧化铝计,浓度为8g/mL)中加入按实施例1的用量加入四氟硼酸铵和六氟磷酸钠,得到含氟、硼和磷的硫酸铝溶液。在反应釜内加入2L蒸馏水,调整反应温度为70℃,将偏铝酸钠(以氧化铝计,浓度为26g/mL)和含氟、硼和磷的硫酸铝溶液并流进行中和反应,pH值为7.5,反应1h后,进行老化,老化pH为11,老化时间30min,过滤、干燥得到改性的拟薄水铝石。
将450g的上述改性拟薄水铝石置于转盘成型机内充分混合,调节转盘的倾角为40º,转盘的转速为10rpm;经喷雾器将360g水和/或和粘结剂(含有360g水、29g硝酸)的混合溶液以及210ml实施例3中的浸渍液Ⅰ喷洒到转盘内的改性拟薄水铝石上经混合接触后,物料在转盘内的成型时间为30min,得到直径1.0~1.5mm的球形前驱体;将球形前驱体经过120℃干燥4h,600℃焙烧3h后,得到所需的球形催化剂,记作CD-2,性质列于表1中。
比较例3
与实施例1相比,将离子液体Ⅱ换成离子液体I,用量保持不变,同时将浸渍液Ⅱ、Ⅲ换成浸渍液I得球形催化剂CD-3,性质列于表1中。
表1催化剂的性质。
表1(续)
活性评价实验:
将实施例1-3以及比较例1-3中的催化剂以VGO与DAO的混合油为原料进行催化剂的活性评价,催化剂活性评价实验在50mL小型加氢装置上进行,活性评价前对催化剂进行预硫化。催化剂在反应总压8.0MPa,液时体积空速1.0h-1,氢油体积比800:1,反应温度为380℃,经过2000h运转之后对催化剂进行剖析,结果见表2、3、4和5。
表2 原料油性质。
表3 催化剂活性评价结果。
表4 催化剂剖析结果分析。
表5卸出催化剂金属径向分布。
由表4和表5的数据可以看出,与对比例相比,在相同运转时间的条件下,由于本方法所制备的催化剂中助剂和活性金属百分含量在催化剂中呈梯度减小分布,有助于金属杂质在催化剂中心内部分布,且更多的金属杂质沉积到催化剂内部,避免了金属沉积堵塞孔道所导致的降低催化剂容金属能力及加氢活性的现象。

Claims (11)

1.一种球形加氢催化剂组合物,其特征在于包括加氢活性金属、助剂及氧化铝载体;所述的加氢活性金属组分为第VIB族金属和第VIII族金属中的一种或多种,其中第VIB族金属为W和/或Mo,第VIII族金属为Co和/或Ni;以催化剂的重量为基准,第VIB族金属氧化物含量为5.0wt%~30.0wt%,第VIII族金属氧化物含量为0.5wt%~10.0 wt%;助剂为以下I、II和III几种组合中的一种:I-氟和磷,II-氟和硼,III-氟、磷和硼;余量为氧化铝载体;所述的加氢活性金属浓度从催化剂颗粒中心到外表面逐渐递减,其中催化剂颗粒中的1/4R处、1/2R处和R 处的加氢活性金属浓度满足如下比例关系:C1/4R:C1/2R:CR=2.5~3.0:1.5~2.0:1;助剂浓度从催化剂颗粒中心到外表面逐渐递减,其中催化剂颗粒中的1/4R处、1/2R处和R 处的助剂浓度满足如下比例关系:C1/4R:C1/2R:CR=3~5:2~4:1;其中R为以球形催化剂组合物中心为初始点的催化剂颗粒的半径;所述的球形加氢催化剂组合物的制备方法,包括如下内容:
(1)离子液体的制备
由M1分别和M2、M3制成离子液体I、II;所述M1为四氟硼酸铵、四氟硼酸钠、四氟硼酸钾、六氟磷酸铵、六氟磷酸钠、六氟磷酸钾中的一种或几种;所述的M2为碳原子数为1~8个的烷基卤化铵中的一种或几种;所述的M3为碳原子数为8~12个的烷基卤化铵中的一种或几种;
(2)薄水铝石的制备
在偏铝酸钠溶液与硫酸铝溶液成胶过程中加入离子液体I,成胶结束后,进行老化,然后过滤,干燥后得到拟薄水铝石I;
在偏铝酸钠溶液与硫酸铝溶液成胶过程中分别加入中量离子液体II,成胶结束后,进行老化,然后过滤,干燥后得到拟薄水铝石II;
在偏铝酸钠溶液与硫酸铝溶液成胶过程中分别加入少量离子液体II,成胶结束后,进行老化,然后过滤,干燥后得到拟薄水铝石III;
所述的离子液体I、II的加入量以其含有的助剂元素的量来计算,其中离子液体I中的助剂元素占催化剂组合物质量为0.95wt%~1.35wt%,中量离子液体II中的助剂元素占催化剂组合物质量为0.55wt%~0.9wt%,少量离子液体II中的助剂元素占催化剂组合物质量为0.2wt%~0.45wt%;
(3)加氢活性金属溶液的配制
配制加氢活性金属浓度逐渐减少的浸渍液I、II和III,以氧化物计,浸渍液I中加氢活性金属的浓度为85~110g/100mL,浸渍液II中加氢活性金属的浓度为60~75g/100mL,浸渍液III中加氢活性金属的浓度为36~50g/100mL;
(4)球形加氢催化剂组合物的制备
拟薄水铝石I置于转盘成型机内充分混合,经喷雾器将离子液体I水溶液和浸渍液I喷洒到转盘内的氧化铝上,经混合接触后,得到球形催化剂前驱体I;
再将拟薄水铝石II与球形催化剂前驱体I在转盘成型机内充分混合,经喷雾器喷洒中量离子液体II水溶液和浸渍液II,经混合接触后,球形催化剂前驱体II;
然后将拟薄水铝石III与球形催化剂前驱体II在转盘成型机内充分混合,经喷雾器喷洒少量离子液体II水溶液和浸渍液III,经混合接触后,得到球形催化剂前驱体III,经干燥,焙烧后得到球形加氢催化剂组合物;
其中,所述的浸渍液I、II和III加入量以其含有的加氢活性金属量来计算,其中浸渍液I中的加氢活性金属以氧化物计占催化剂组合物的质量为20wt%~25wt%,浸渍液II中的加氢活性金属以氧化物计占催化剂组合物的质量为15.0wt%~18.0wt%,浸渍液III中的加氢活性金属以氧化物计占催化剂组合物的质量为8.5wt%~10.0wt%;
步骤(4)中所述的离子液体I、II加入量以其含有的助剂元素量来计算,其中离子液体I中的助剂元素占催化剂组合物的质量为0.95wt%~1.35wt%,中量离子液体II中的助剂元素占催化剂组合物的质量为0.55wt%~0.9wt%,少量离子液体II中的助剂元素占催化剂组合物的质量为0.2wt%~0.45wt%。
2.按照权利要求1所述的催化剂组合物,其特征在于:所述的球形加氢催化剂组合物的比表面积200~250m2/g,孔容0.4~0.7mL/g,具有双重孔道分布,孔径为10~15nm和15~30nm;其中10~15nm的孔分布占总孔容30%~35%,15-30nm的孔分布占总孔容的35%~40%。
3.一种权利要求1或2所述的球形加氢催化剂组合物的制备方法,其特征在于包括如下内容:
(1)离子液体的制备
由M1分别和M2、M3制成离子液体I、II;所述M1为四氟硼酸铵、四氟硼酸钠、四氟硼酸钾、六氟磷酸铵、六氟磷酸钠、六氟磷酸钾中的一种或几种;所述的M2为碳原子数为1~8个的烷基卤化铵中的一种或几种;所述的M3为碳原子数为8~12个的烷基卤化铵中的一种或几种;
(2)薄水铝石的制备
在偏铝酸钠溶液与硫酸铝溶液成胶过程中加入离子液体I,成胶结束后,进行老化,然后过滤,干燥后得到拟薄水铝石I;
在偏铝酸钠溶液与硫酸铝溶液成胶过程中分别加入中量离子液体II,成胶结束后,进行老化,然后过滤,干燥后得到拟薄水铝石II;
在偏铝酸钠溶液与硫酸铝溶液成胶过程中分别加入少量离子液体II,成胶结束后,进行老化,然后过滤,干燥后得到拟薄水铝石III;
所述的离子液体I、II的加入量以其含有的助剂元素的量来计算,其中离子液体I中的助剂元素占催化剂组合物质量为0.95wt%~1.35wt%,中量离子液体II中的助剂元素占催化剂组合物质量为0.55wt%~0.9wt%,少量离子液体II中的助剂元素占催化剂组合物质量为0.2wt%~0.45wt%;
(3)加氢活性金属溶液的配制
配制加氢活性金属浓度逐渐减少的浸渍液I、II和III,以氧化物计,浸渍液I中加氢活性金属的浓度为85~110g/100mL,浸渍液II中加氢活性金属的浓度为60~75g/100mL,浸渍液III中加氢活性金属的浓度为36~50g/100mL,其中浸渍液I和II或浸渍液II和III的浓度减小幅度为22.5g/100mL或22.6g/100mL或26.5g/100mL或30g/100mL或33.3g/100mL或35g/100mL;
(4)球形加氢催化剂组合物的制备
拟薄水铝石I置于转盘成型机内充分混合,经喷雾器将离子液体I水溶液和浸渍液I喷洒到转盘内的氧化铝上,经混合接触后,得到球形催化剂前驱体I;
再将拟薄水铝石II与球形催化剂前驱体I在转盘成型机内充分混合,经喷雾器喷洒中量离子液体II水溶液和浸渍液II,经混合接触后,球形催化剂前驱体II;
然后将拟薄水铝石III与球形催化剂前驱体II在转盘成型机内充分混合,经喷雾器喷洒少量离子液体II水溶液和浸渍液III,经混合接触后,得到球形催化剂前驱体III,经干燥,焙烧后得到球形加氢催化剂组合物;
其中,所述的浸渍液I、II和III加入量以其含有的加氢活性金属量来计算,其中浸渍液I中的加氢活性金属以氧化物计占催化剂组合物的质量为20wt%~25wt%,浸渍液II中的加氢活性金属以氧化物计占催化剂组合物的质量为15.0wt%~18.0wt%,浸渍液III中的加氢活性金属以氧化物计占催化剂组合物的质量为8.5wt%~10.0wt%;
步骤(4)中所述的离子液体I、II加入量以其含有的助剂元素量来计算,其中离子液体I中的助剂元素占催化剂组合物的质量为0.95wt%~1.35wt%,中量离子液体II中的助剂元素占催化剂组合物的质量为0.55wt%~0.9wt%,少量离子液体II中的助剂元素占催化剂组合物的质量为0.2wt%~0.45wt%。
4.按照权利要求3所述的方法,其特征在于:步骤(1)所述M1为六氟磷酸铵和/或四氟硼酸铵。
5.按照权利要求3所述的方法,其特征在于:步骤(1)所述的M2为碳原子数为1~8个的烷基卤化铵中的一种或几种,其中烷基为甲基、乙基、丙基中的一种或多种,卤素为氯。
6.按照权利要求3所述的方法,其特征在于:步骤(1)所述的M3为卤化甲基三正丁胺、卤化二甲基二正丁胺、卤化丙基三正丁胺、卤化二丙基二正丁胺、卤化甲基苯铵、卤化二甲基苯铵、卤化三甲基苯铵中的一种或几种。
7.按照权利要求3所述的方法,其特征在于:步骤(2)所述偏铝酸钠溶液与硫酸铝溶液成胶采用并流成胶法,成胶条件为:反应温度为50~80℃,pH值 为6.5~9.0,反应时间为0.5~2.0小时;成胶后老化条件如下:老化温度为50~80℃,pH值为8.5~11.0,老化时间为0.1~1.0小时;所用偏铝酸钠溶液以氧化铝计的浓度为10~30g/100mL,硫酸铝溶液以氧化铝计的浓度为3~10g/100mL。
8.按照权利要求3所述的方法,其特征在于:步骤(2)中所述的干燥温度为40~200℃,干燥时间为1~5小时。
9.按照权利要求3所述的方法,其特征在于:步骤(4)中离子液体I水溶液的浓度以离子液体在水溶液中的质量百分数来表示,其浓度为22~25%;中量离子液体II水溶液的浓度为15%~20%;少量离子液体II水溶液的浓度为8%~15%;离子液体I与中量离子液体II的浓度差为3%~5%;中量离子液体II与少量离子液体II的浓度差为3%~5%。
10.按照权利要求3所述的方法,其特征在于:步骤(4)制备球形催化剂前驱体I、II和III中所述的转盘成型机转动操作条件中,转盘的倾角为40~70º;转盘的转速为10~20rpm;物料在转盘内的成型时间为10~30min。
11.一种权利要求1或2所述的球形加氢催化剂组合物在蜡油或渣油加氢反应过程中的应用。
CN201510761499.2A 2015-11-11 2015-11-11 球形加氢催化剂组合物及其制备方法 Active CN106669711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510761499.2A CN106669711B (zh) 2015-11-11 2015-11-11 球形加氢催化剂组合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510761499.2A CN106669711B (zh) 2015-11-11 2015-11-11 球形加氢催化剂组合物及其制备方法

Publications (2)

Publication Number Publication Date
CN106669711A CN106669711A (zh) 2017-05-17
CN106669711B true CN106669711B (zh) 2019-03-19

Family

ID=58864602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510761499.2A Active CN106669711B (zh) 2015-11-11 2015-11-11 球形加氢催化剂组合物及其制备方法

Country Status (1)

Country Link
CN (1) CN106669711B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888690A (zh) * 2023-01-03 2023-04-04 中化泉州石化有限公司 用于上流式反应器的重油加氢脱金属催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928592A (zh) * 2009-06-26 2010-12-29 中国石油天然气股份有限公司 一种加氢催化剂的级配组合
CN101927197A (zh) * 2009-06-26 2010-12-29 中国石油天然气股份有限公司 活性金属和酸性助剂浓度呈梯度减少分布的加氢催化剂及制备方法
CN103657670A (zh) * 2012-09-20 2014-03-26 中国石油化工股份有限公司 裂解汽油镍系选择性加氢催化剂及其制备方法
CN103936399A (zh) * 2013-01-22 2014-07-23 中国石油化工股份有限公司 一种氧化铝成型物及其制备方法
CN103962147A (zh) * 2014-05-13 2014-08-06 山东金诚重油化工技术研究院 一种重质馏分油加氢精制催化剂及制备方法和应用
CN104324710A (zh) * 2013-07-22 2015-02-04 中国石油化工股份有限公司 一种加氢保护催化剂及其制备方法与应用
CN105013525A (zh) * 2014-04-24 2015-11-04 中国石油化工股份有限公司 一种提高低碳烯烃浓度的催化裂化助剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928592A (zh) * 2009-06-26 2010-12-29 中国石油天然气股份有限公司 一种加氢催化剂的级配组合
CN101927197A (zh) * 2009-06-26 2010-12-29 中国石油天然气股份有限公司 活性金属和酸性助剂浓度呈梯度减少分布的加氢催化剂及制备方法
CN103657670A (zh) * 2012-09-20 2014-03-26 中国石油化工股份有限公司 裂解汽油镍系选择性加氢催化剂及其制备方法
CN103936399A (zh) * 2013-01-22 2014-07-23 中国石油化工股份有限公司 一种氧化铝成型物及其制备方法
CN104324710A (zh) * 2013-07-22 2015-02-04 中国石油化工股份有限公司 一种加氢保护催化剂及其制备方法与应用
CN105013525A (zh) * 2014-04-24 2015-11-04 中国石油化工股份有限公司 一种提高低碳烯烃浓度的催化裂化助剂及其制备方法
CN103962147A (zh) * 2014-05-13 2014-08-06 山东金诚重油化工技术研究院 一种重质馏分油加氢精制催化剂及制备方法和应用

Also Published As

Publication number Publication date
CN106669711A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN100400165C (zh) 一种含硅和硼的氧化铝载体及其制备方法
CN101927169B (zh) 活性金属组分浓度呈梯度增加分布的加氢催化剂及制备方法
CN1854260A (zh) 一种重质馏分油加氢处理催化剂及其制备方法
CN108745392B (zh) 一种加氢脱金属催化剂及其制备方法
CN101905165B (zh) 一种汽油选择性加氢脱硫催化剂的制备和应用
CN101927191A (zh) 一种酸性助剂浓度呈梯度增加分布的加氢催化剂载体及其制备方法
CN106669851B (zh) 一种球形氧化铝载体及其制备方法
CN105709711B (zh) 一种氧化铝载体的制备方法
CN110433819A (zh) 费托合成蜡加氢裂化催化剂及其制备方法以及费托合成蜡加氢裂化的方法
CN103769179A (zh) 一种渣油加氢处理催化剂的制备方法
CN103657667A (zh) 一种新型大孔结构重油加氢脱金属催化剂的制备方法
CN103769178B (zh) 一种加氢脱硫催化剂及其制备方法
CN106669711B (zh) 球形加氢催化剂组合物及其制备方法
CN106669752B (zh) 一种球形加氢催化剂组合物及其制备方法
CN105618113A (zh) 一种制备加氢裂化催化剂组合物的方法
CN106669708B (zh) 一种球形加氢催化剂及其制备方法
CN106669709B (zh) 球形加氢催化剂及其制备方法
CN106179388B (zh) 一种加氢处理催化剂的制备方法
CN111097489A (zh) 石蜡加氢精制催化剂及其制法
CN106669853B (zh) 一种球形改性氧化铝载体的制备方法
CN101260317B (zh) 一种加氢精制催化剂及其制备方法
CN105983415B (zh) 加氢处理催化剂的制备方法
CN100432194C (zh) 一种石蜡加氢精制催化剂及其制备方法和应用
CN104293383B (zh) 一种优化催化裂化原料性质的加氢处理方法
RU2665486C1 (ru) Способ приготовления катализатора гидроочистки сырья гидрокрекинга

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant