CN106669602A - 一种碳点/介孔二氧化硅复合材料的制备方法和应用 - Google Patents

一种碳点/介孔二氧化硅复合材料的制备方法和应用 Download PDF

Info

Publication number
CN106669602A
CN106669602A CN201611110922.3A CN201611110922A CN106669602A CN 106669602 A CN106669602 A CN 106669602A CN 201611110922 A CN201611110922 A CN 201611110922A CN 106669602 A CN106669602 A CN 106669602A
Authority
CN
China
Prior art keywords
carbon point
meso
titanium dioxide
porous titanium
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611110922.3A
Other languages
English (en)
Other versions
CN106669602B (zh
Inventor
陆跃翔
王哲
魏国玉
陈靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201611110922.3A priority Critical patent/CN106669602B/zh
Publication of CN106669602A publication Critical patent/CN106669602A/zh
Application granted granted Critical
Publication of CN106669602B publication Critical patent/CN106669602B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Silicon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明公开了一种碳点/介孔二氧化硅复合材料的制备方法和应用,属于荧光碳纳米材料及介孔复合材料的合成及应用领域。该方法是将柠檬酸、乙二胺、介孔二氧化硅和硝酸钠共混于去离子水中,超声分散后置于反应器中,进行常压微等离子体放电处理,放电结束后离心分离,固体经洗涤、干燥得到碳点/介孔二氧化硅复合材料,该复合材料用于铀酰离子吸附及吸附过程监测方面。该方法快速、简单、能耗低,制备得到的碳点/介孔二氧化硅复合材料具有很好的荧光性质和孔道结构,对铀酰离子的吸附性能良好,且复合材料的荧光性质用于监测吸附过程,实现吸附过程的可视化。

Description

一种碳点/介孔二氧化硅复合材料的制备方法和应用
技术领域
本发明属于荧光碳纳米材料、介孔复合材料的合成及应用领域,具体涉及一种碳点/介孔二氧化硅复合材料的制备方法和应用。
背景技术
随着经济的快速发展,能源短缺问题日益严重。传统化石能源燃烧所带来的环境问题使得我国对清洁高效的低碳能源的需求越来越强烈。在众多清洁能源中核能的发展尤为迅速,其中作为核能的主要燃料-铀的消耗也会逐年增长。此外,在采矿和生产过程中,产生的含铀废水对人类的健康和环境的保护构成威胁。因此,实时监测、去除和富集铀资源在经济效益和环境保护等方面均具有重要意义。在众多技术中,吸附法由于具有效率高、操作简便等优点而备受关注。近年来,许多科研工作者致力于寻找吸附性能更好地吸附剂。其中碳材料如活性炭、碳纳米管、石墨烯等由于具有比表面积大、结构多样化、表面功能基团多和廉价易得等优点被广泛应用于铀酰离子的吸附富集中。然而,对于吸附过程的监测则需要很复杂的步骤,首先需要将固液混合液分离得到澄清溶液,然后经过一系列操作后在ICP-MS或ICP-AES等复杂仪器上进行分析并获得数据。因此,开发新的材料以及新的分析手段用于在实现高效吸附的同时监测吸附过程是很有必要的。
碳点是一种新型的荧光碳纳米材料,它具有荧光可调、光稳定性高、激发光谱宽、制备原料来源广泛、低廉等优点,备受人们的青睐,且其表面大量的功能基团赋予碳点许多优异的性质,功能基团的种类和含量均可以通过改变原料以及反应条件等方法调节,使得碳点在金属离子检测方面具有广泛应用,是一种潜在的吸附材料。然而碳点由于粒径比较小,大部分易溶于水,难以分离等特点,又限制了碳点在金属离子吸附方面的应用。故而需要将碳点与其他材料相结合,制备含有碳点的复合材料。近年来,科研工作者们制备了一些碳点的复合材料用于吸附重金属离子或有机染料,如Wang,J.等(Wang J.,Zhang W.,YueX.,et.al,J.Mater.Chem.A,2016,4,3893-3900)制备磁性铁氧体MoS2和碳点的复合材料用于去除重金属离子Pb2+。Lingzhi Wang等(Wang L.,Cheng C.,Tapas S.,et.al,JMater.Chem.A,2015,3(25),13357-13364)将碳点修饰的介孔二氧化硅做吸附剂吸附重金属离子Hg2+,Cu2+,Pb2+。但是这些碳点介孔硅的复合材料制备方法比较复杂,过程繁琐,不易快速、一步法制备,且在应用方面只是将碳点作为一种吸附位点,并未将碳点的荧光性质应用到对离子的吸附过程中,而基于常压微等离子体辅助一步法制备碳点/介孔二氧化硅复合材料则鲜有研究,且并没有研究将碳点的复合材料用于吸附铀酰离子。
发明内容
本发明针对碳点/介孔二氧化硅复合材料准备方法复杂繁琐的不足,提供了一种碳点/介孔二氧化硅复合材料的制备方法及其应用,其特征在于,该制备方法包括如下步骤:
(1)将介孔二氧化硅与含有柠檬酸和乙二胺的溶液混合,超声分散得到悬浊液;
(2)将步骤(1)的悬浊液置于反应器中,进行常压微等离子体放电处理,保持电流稳定,放电反应结束后将悬浊液用离心分离;
(3)将步骤(2)分离后的固体洗涤,真空干燥,即得到碳点/介孔二氧化硅复合材料。
步骤(1)中,所述介孔二氧化硅的浓度为1-10mg/mL,柠檬酸与乙二胺的摩尔比为1:(0.1-10),柠檬酸和乙二胺的总质量与介孔二氧化硅的质量比为(10-150):1。
步骤(1)中,含有柠檬酸和乙二胺的溶液还可以进一步含有硝酸钠电解质以增加溶液的导电性,硝酸钠的浓度为0-10mg/mL。
步骤(2)中,放电的输出电流为2-20mA,放电稳定持续时间为10-40min。
步骤(2)中,放电的输出电流优选为10mA,放电时的电压可以为2900V。
步骤(3)具体为:将步骤(2)分离后的固体先用去离子水洗涤3-4次后,再用乙醇洗涤2-3次,洗涤后的固体放入真空烘箱中干燥,得到淡黄色固体粉末,即为碳点/介孔二氧化硅复合材料。其中,真空干燥的温度优选为80℃。
制备的碳点/介孔二氧化硅复合材料用于铀酰离子吸附及吸附过程监测方面。
所述吸附反应的温度25℃,吸附时间24h,吸附剂和含铀酰离子溶液的固液比为1mg:2mL。
碳点/介孔二氧化硅复合材料的荧光下降的程度和吸附容量之间存在很好的对应关系,利用荧光性质方便、快速的实现对吸附过程的监测,实现对吸附铀酰离子过程的可视化。
本发明的优点是:采用常压微等离子体辅助一步法原位快速制备碳点/介孔二氧化硅复合材料,具有快速、简单、能耗低的特点;制备得到的碳点/介孔二氧化硅复合材料具有很好的荧光性质和孔道结构,复合材料对铀酰离子的吸附性能良好,且复合材料的荧光性质用于监测吸附过程,实现吸附过程的可视化。吸附在复合材料上的铀酰离子可以很容易的被洗脱下来,实现铀酰离子的分离和富集。
附图说明
图1是制备的碳点/介孔二氧化硅复合材料荧光光谱图;
图2是制备的碳点/介孔二氧化硅复合材料TEM图;
图3不同放电反应时间下的碳点/介孔二氧化硅复合材料的荧光强度;
图4不加硝酸钠的条件下的碳点/介孔二氧化硅复合材料的荧光强度;
图5是碳点/介孔二氧化硅复合材料在吸附铀酰离子时荧光和吸附量之间的关系。
具体实施方式
本发明提供了一种碳点/介孔二氧化硅复合材料的制备方法及其应用,下面结合附图和具体实例对本发明做进一步阐述。
实施例1
一种碳点/介孔二氧化硅复合材料的制备:将25mL的烧杯用去离子水冲洗干净,烘干备用,称取0.960g柠檬酸放入烧杯中,量取500μL的乙二胺倒入烧杯,并向其中加入10mL去离子水,30mg的介孔二氧化硅以及50mg硝酸钠,超声分散得到白色悬浊液;将溶液倒入H型反应器皿中,将反应器放在试验台上,调节氩气气流为60mL/min,两个放电电极分别在H型反应器的正上方,阴极为铂丝电极,阳极为内径180μm氩气管,调节恒流电源的输出电流为10mA,电压为2900V,实验开始后,将阴极铂丝电极浸没在溶液中,阳极的氩气管缓慢下降,直至放电开始,此时开始用秒表计时;保持放电稳定持续10min,放电结束后将悬浊液用离心机离心分离,并用去离子水和乙醇洗涤,将洗涤后的固体放入真空烘箱中干燥,得到淡黄色固体粉末。
用荧光光谱仪测试表明,所制备的碳点/介孔二氧化硅复合材料具有很好的荧光性能,其荧光强度最高的峰是在360nm激发波长下,峰位置在450nm左右(图1);透射电子显微镜(TEM)测试表明,在介孔二氧化硅上能够较为清楚地看到碳点的存在(图2)。
实施例2
保持放电稳定地持续20min,其他条件与实施例1相同,所制备的碳点/介孔二氧化硅复合材料的荧光光谱如图3所示,表明该复合材料具有很好的荧光性能。
实施例3
保持放电稳定地持续30min,其他条件与实施例1相同,所制备的碳点/介孔二氧化硅复合材料的荧光光谱如图3所示,表明该复合材料具有很好的荧光性能。
实施例4
保持放电稳定地持续40min,其他条件与实施例1相同,所制备的碳点/介孔二氧化硅复合材料的荧光光谱如图3所示,表明该复合材料具有很好的荧光性能。
实施例5
保持放电稳定地持续40min,硝酸钠用量为0mg,其他条件与实施例1相同,所制备的碳点/介孔二氧化硅复合材料的荧光光谱如图4所示,表明该复合材料具有很好的荧光性能。
实施例6
碳点/介孔二氧化硅复合材料对铀酰离子吸附性能
1.碳点/介孔二氧化硅复合材料的制备
此实施例中的碳点/介孔二氧化硅复合材料制备方法如实施例4所示。
2.等离子体处理的介孔二氧化硅的制备
称取30mg的介孔二氧化硅和50mg的硝酸钠放入25mL烧杯中,加入10mL的去离子水,超声分散得到白色悬浊液;将溶液倒入H型反应器皿中,将反应器放在试验台上,调节氩气气流为60mL/min,两个放电电极分别在H型反应器的正上方,阴极为铂丝电极,阳极为内径180μm氩气管,调节恒流电源的输出电流为10mA,电压为2900V;实验开始后,将阴极铂丝电极浸没在溶液中,阳极的氩气管缓慢下降,直至放电开始,此时开始用秒表计时;保持放电稳定持续40min。放电结束后将悬浊液用离心机离心分离,并用去离子水和乙醇洗涤,将洗涤后的固体放入真空烘箱中干燥,得到白色固体粉末。
3.碳点/介孔二氧化硅复合材料在铀酰离子吸附中的应用
分别称取5mg的介孔二氧化硅、等离子体处理后的介孔二氧化硅以及碳点/介孔二氧化硅复合材料放入离心管中,加入10mL浓度为100ppm,pH值为3和5的铀酰离子溶液。超声分散5min后,得到悬浊液,在空气浴中设定温度为25℃,振荡24h,后用滤膜进行固液分离,取澄清溶液用分光光度法测溶液中剩余铀酰离子的浓度。测试结果的表1显示,等离子体处理后的介孔二氧化硅的吸附性能和介孔二氧化硅基本相当,说明等离子体的处理并没有影响介孔二氧化硅的吸附性能,而碳点/介孔二氧化硅复合材料的吸附性能则要高于介孔二氧化硅,说明复合材料对铀酰离子具有很好的吸附性能。
实施例7
碳点/介孔二氧化硅复合材料的荧光监测铀酰离子吸附过程
1.碳点/介孔二氧化硅复合材料的制备
此实施例中的碳点/介孔二氧化硅复合材料制备方法如实施例4所示。
2.碳点/介孔二氧化硅复合材料的荧光监测铀酰离子吸附过程
称取5mg的碳点/介孔二氧化硅复合材料分别放入5个离心管中,向其中分别加入10mL浓度为10,20,40,70和100ppm,pH值为3的铀酰离子溶液。超声分散5min后,得到悬浊液,在空气浴中设定温度为25℃,振荡24h,后用滤膜进行固液分离,取澄清溶液用分光光度法测溶液中剩余铀酰离子的浓度。复合材料的荧光强度随着铀酰离子浓度的增加逐渐下降,而吸附容量随着铀酰离子浓度的增加而逐渐增加,且在铀酰离子初始浓度增大到40ppm以后荧光强度与吸附容量均基本达到平衡,复合材料的荧光强度的变化趋势和吸附容量的变化趋势基本保持一致,说明此碳点/介孔二氧化硅复合材料的荧光可以监测吸附过程(图5),利用荧光性质可以轻松实现对吸附过程的可视化监测。吸附在复合材料上的铀酰离子可以很容易的被洗脱下来,实现铀酰离子的吸附分离和富集。
表1不同吸附剂对铀酰离子的吸附容量

Claims (8)

1.一种碳点/介孔二氧化硅复合材料的制备方法,其特征在于,包含如下步骤:
(1)将介孔二氧化硅与含有柠檬酸和乙二胺的溶液混合,超声分散得到悬浊液;
(2)将步骤(1)的悬浊液置于反应器中,进行常压微等离子体放电处理,保持电流稳定,放电反应结束后将悬浊液用离心分离;
(3)将步骤(2)分离后的固体洗涤,真空干燥,即得到碳点/介孔二氧化硅复合材料。
2.根据权利要求1所述的一种碳点/介孔二氧化硅复合材料的制备方法,其特征在于,步骤(1)中,所述介孔二氧化硅的浓度为1-10mg/mL,柠檬酸与乙二胺的摩尔比为1:(0.1-10),柠檬酸和乙二胺的总质量与介孔二氧化硅的质量比为(10-150):1。
3.根据权利要求1所述的一种碳点/介孔二氧化硅复合材料的制备方法,其特征在于,步骤(2)中放电的输出电流为2-20mA,放电稳定持续时间为10-40min。
4.根据权利要求3所述的一种碳点/介孔二氧化硅复合材料的制备方法,其特征在于,步骤(2)中放电的输出电流为10mA。
5.根据权利要求1所述的一种碳点/介孔二氧化硅复合材料的制备方法,其特征在于,所述步骤(3)具体为:将步骤(2)分离后的固体先用去离子水洗涤3-4次后,再用乙醇洗涤2-3次,洗涤后的固体放入真空烘箱中干燥,得到淡黄色固体粉末,即为碳点/介孔二氧化硅复合材料。
6.根据权利要求1所述的一种碳点/介孔二氧化硅复合材料的制备方法,其特征在于,步骤(3)中真空干燥的温度为80℃。
7.一种权利要求1制备的碳点/介孔二氧化硅复合材料的应用,其特征在于,所述复合材料用于铀酰离子的吸附。
8.一种权利要求1制备的碳点/介孔二氧化硅复合材料的应用,其特征在于,所述复合材料用于铀酰离子的吸附过程监测。
CN201611110922.3A 2016-12-06 2016-12-06 一种碳点/介孔二氧化硅复合材料的制备方法和应用 Active CN106669602B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611110922.3A CN106669602B (zh) 2016-12-06 2016-12-06 一种碳点/介孔二氧化硅复合材料的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611110922.3A CN106669602B (zh) 2016-12-06 2016-12-06 一种碳点/介孔二氧化硅复合材料的制备方法和应用

Publications (2)

Publication Number Publication Date
CN106669602A true CN106669602A (zh) 2017-05-17
CN106669602B CN106669602B (zh) 2019-07-02

Family

ID=58867674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611110922.3A Active CN106669602B (zh) 2016-12-06 2016-12-06 一种碳点/介孔二氧化硅复合材料的制备方法和应用

Country Status (1)

Country Link
CN (1) CN106669602B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107029687A (zh) * 2017-02-22 2017-08-11 东莞市佳乾新材料科技有限公司 一种含碳点的二氧化硅/二氧化钛复合材料及其制备方法
CN107434972A (zh) * 2017-08-11 2017-12-05 中国农业科学院农业质量标准与检测技术研究所 一种分子筛‑碳量子点探针及其制备方法与在酸性有机气体检测中的应用
CN107828417A (zh) * 2017-11-15 2018-03-23 华北电力大学 一种双通道荧光铀酰离子探针及其应用
CN109705627A (zh) * 2019-01-30 2019-05-03 东华大学 一种以锻烧法制备介孔二氧化硅修饰碳点的方法
CN113198534A (zh) * 2021-04-29 2021-08-03 华北电力大学 一种碳点/聚氨酯复合材料及其制备方法和应用
CN114453023A (zh) * 2021-12-14 2022-05-10 中国科学院深圳先进技术研究院 一种发光光纤复合催化材料及其等离子体制备方法
CN114570350A (zh) * 2022-03-07 2022-06-03 华北电力大学 一种碳点/二氧化硅复合材料、制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877677A (zh) * 2015-05-29 2015-09-02 周口师范学院 介孔二氧化硅/碳量子点纳米复合材料及其制备方法
CN105038782A (zh) * 2015-07-17 2015-11-11 清华大学 耐酸性碳量子点的制备及在铀离子检测中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877677A (zh) * 2015-05-29 2015-09-02 周口师范学院 介孔二氧化硅/碳量子点纳米复合材料及其制备方法
CN105038782A (zh) * 2015-07-17 2015-11-11 清华大学 耐酸性碳量子点的制备及在铀离子检测中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINGZHI WANG ET AL.: "Carbon dots modified mesoporous organosilica as an adsorbent for the removal of 2,4- dichlorophenol and heavy metal ions", 《J. MATER. CHEM. A》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107029687A (zh) * 2017-02-22 2017-08-11 东莞市佳乾新材料科技有限公司 一种含碳点的二氧化硅/二氧化钛复合材料及其制备方法
CN107434972A (zh) * 2017-08-11 2017-12-05 中国农业科学院农业质量标准与检测技术研究所 一种分子筛‑碳量子点探针及其制备方法与在酸性有机气体检测中的应用
CN107434972B (zh) * 2017-08-11 2019-10-25 中国农业科学院农业质量标准与检测技术研究所 一种分子筛-碳量子点探针及其制备方法与在酸性有机气体检测中的应用
CN107828417A (zh) * 2017-11-15 2018-03-23 华北电力大学 一种双通道荧光铀酰离子探针及其应用
CN107828417B (zh) * 2017-11-15 2020-07-10 华北电力大学 一种双通道荧光铀酰离子探针及其应用
CN109705627A (zh) * 2019-01-30 2019-05-03 东华大学 一种以锻烧法制备介孔二氧化硅修饰碳点的方法
CN113198534A (zh) * 2021-04-29 2021-08-03 华北电力大学 一种碳点/聚氨酯复合材料及其制备方法和应用
CN113198534B (zh) * 2021-04-29 2021-12-14 华北电力大学 一种碳点/聚氨酯复合材料及其制备方法和应用
CN114453023A (zh) * 2021-12-14 2022-05-10 中国科学院深圳先进技术研究院 一种发光光纤复合催化材料及其等离子体制备方法
CN114453023B (zh) * 2021-12-14 2024-06-07 中国科学院深圳先进技术研究院 一种发光光纤复合催化材料及其等离子体制备方法
CN114570350A (zh) * 2022-03-07 2022-06-03 华北电力大学 一种碳点/二氧化硅复合材料、制备方法及其应用
CN114570350B (zh) * 2022-03-07 2022-09-06 华北电力大学 一种碳点/二氧化硅复合材料、制备方法及其应用

Also Published As

Publication number Publication date
CN106669602B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
CN106669602A (zh) 一种碳点/介孔二氧化硅复合材料的制备方法和应用
Mo et al. On-line separation and pre-concentration on a mesoporous silica-grafted graphene oxide adsorbent coupled with solution cathode glow discharge-atomic emission spectrometry for the determination of lead
Li et al. Separation and preconcentration of Se (IV)/Se (VI) species by selective adsorption onto nanometer-sized titanium dioxide and determination by graphite furnace atomic absorption spectrometry
Liang et al. Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination
Deng et al. Ultrasensitive determination of selenium by atomic fluorescence spectrometry using nano-TiO 2 pre-concentration and in situ hydride generation
Luo et al. Preconcentration on metal organic framework UiO-66 for slurry sampling hydride generation-atomic fluorescence spectrometric determination of ultratrace arsenic
Yang et al. Preconcentration and in-situ photoreduction of trace selenium using TiO 2 nanoparticles, followed by its determination by slurry photochemical vapor generation atomic fluorescence spectrometry
CN105806689B (zh) 一种原子荧光法测砷的装置及方法
Zhang et al. In situ fabrication of hollow ZnO@ NC polyhedra from ZIF-8 for the determination of trace Cd (ii)
Zhang et al. Magnetic solid-phase extraction combined with in situ slurry cold vapor generation atomic fluorescence spectrometry for preconcentration and determination of ultratrace mercury
Scott Spark elutriation of powders into an inductively coupled plasma
Lu et al. Capillary electrophoresis on‐line coupled with hydride generation‐atomic fluorescence spectrometry for speciation analysis of selenium
CN109731551A (zh) 一种金属有机框架膜在富氦天然气中提取氦气的应用
Zhang et al. Application of alkaline mode electrochemical hydride generation for the detection of As and Sb using atomic fluorescence spectrometry
Krawczyk-Coda Sequential determination of gallium, indium, and thallium in environmental samples after preconcentration on halloysite nanotubes using ultrasound-assisted dispersive micro solid-phase extraction
CN114226709A (zh) 一种纳米多孔铋及其制备方法及其应用
Amiri et al. Multivariate optimization, preconcentration and determination of mercury ions with (1-(p-acetyl phenyl)-3-(o-methyl benzoate)) triazene in aqueous samples using ICP-AES
Hu et al. Slurry sampling thermospray flame furnace atomic absorption spectrometric determination of bismuth in water and geological samples combined with ultrasound-assisted dispersive micro solid phase extraction
Liu et al. Preparation of an Al 2 O 3/SiO 2 core–shell composite material for solid phase extraction of flavonoids
CN110940716A (zh) 一种纳米复合电极材料及制备方法和应用
CN112126427B (zh) 一种水溶性荧光碳点及其制备方法和多种重金属检测应用
He et al. Sensitive and environmentally friendly field analysis of waterborne arsenic by electrochemical hydride generation microplasma optical emission spectrometry
CN107029687A (zh) 一种含碳点的二氧化硅/二氧化钛复合材料及其制备方法
Lin et al. In Situ Synthesis of Porous Carbons by Using Room‐Temperature, Atmospheric‐Pressure Dielectric Barrier Discharge Plasma as High‐Performance Adsorbents for Solid‐Phase Microextraction
Peng et al. In-atomizer atom trapping on gold nanoparticles for sensitive determination of mercury by flow injection cold vapor generation atomic absorption spectrometry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant