CN105806689B - 一种原子荧光法测砷的装置及方法 - Google Patents

一种原子荧光法测砷的装置及方法 Download PDF

Info

Publication number
CN105806689B
CN105806689B CN201610141066.1A CN201610141066A CN105806689B CN 105806689 B CN105806689 B CN 105806689B CN 201610141066 A CN201610141066 A CN 201610141066A CN 105806689 B CN105806689 B CN 105806689B
Authority
CN
China
Prior art keywords
arsenic
barrier discharge
dielectric barrier
discharge reactor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610141066.1A
Other languages
English (en)
Other versions
CN105806689A (zh
Inventor
刘霁欣
毛雪飞
钱永忠
王敏
齐悦涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Original Assignee
Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS filed Critical Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Priority to CN201610141066.1A priority Critical patent/CN105806689B/zh
Publication of CN105806689A publication Critical patent/CN105806689A/zh
Application granted granted Critical
Publication of CN105806689B publication Critical patent/CN105806689B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • G01N21/6404Atomic fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N2001/4038Concentrating samples electric methods, e.g. electromigration, electrophoresis, ionisation

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供了一种原子荧光法测砷的装置及其方法,包括氢化物发生装置、介质阻挡放电反应器、电源、气路和原子荧光光谱仪。预富集砷的原子荧光光谱测定方法,包括生产砷的氢化物,在氩氧混合气气氛下,介质阻挡放电反应器发生放电反应,并完成砷的捕获;在氩氢混合气气氛下,介质阻挡放电反应器发生放电反应,并完成砷的释放,释放出的砷被原子荧光光谱仪分析含量。该装置解决了介质阻挡放电装置捕获和释放砷元素不易控制的难题,其优点在于与光谱仪器直接串联,即可实现样品中痕量砷的在线高效富集以及准确、稳定的分析。

Description

一种原子荧光法测砷的装置及方法
技术领域
本发明涉及化学分析领域,具体涉及一种原子荧光法测砷的装置及方法。
背景技术:
砷是一种有害元素,其中无机砷已经被国际癌症研究中心(IARC)认定为一级致癌物。目前,由于过度的矿藏开采、三废排放以及含砷的农业投入品的使用,环境中的砷污染问题已十分突出。2014年,环境保护部和国土资源部发布了全国土壤污染状况调查公报,结果显示,全国土壤环境状况总体不容乐观,部分地区土壤污染较重,总的点位超标率达到16.1%,其中土壤中砷为第三大污染物。有研究显示,饮用水一直是普通公众摄入砷的主要暴露来源,其次是食品,因此水中砷是环境、农业、卫生等领域常规检测的污染物指标。目前,用于水中砷检测的标准方法主要有GB/T7485-1987《水质总砷的测定二乙基二硫代氨基甲酸银分光光度法》、GB/T 11900-1989《水质痕量砷的测定硼氢化钾-硝酸银分光光度法》、SL 327.1-2005《水质砷的测定.原子荧光光度法》、HY/T152-2013《海水中三价砷和五价砷形态分析原子荧光光谱法》、HJ 694-2014《水质汞、砷、硒、铋和锑的测定原子荧光法》等。这些标准中,原子荧光光谱法(AFS)是最为常用的方法,AFS也是我国少数具有自主知识产权的大型仪器设备。但是,由于水中的砷多为痕量或者超痕量,在μg/L级或亚μg/L级,因此如果可以在进入检测器之前有效地将痕量砷进行预富集,则可以有效降低仪器方法检出限(LOD),从而提高光谱仪器对水中痕量砷的分析灵敏度。目前,有研究采用固相萃取(SPE)、纳米材料固相吸附等方法来预富集水中的痕量砷,但是都需要在检测前对样品进行单独处理,过程相对复杂,且不可重复使用,成本较高,因此实际使用率并不高。
介质阻挡放电(DBD)也称无声放电,是一种典型的非平衡态交流气体放电技术,可在常温常压下产生非平衡态的微等离子体,也是一种低温等离子体(Non-thermal plasma,NTP)。DBD装置一般分为平板型和同轴型,结构简单,通常仅需在2个电极之间放置玻璃、石英、陶瓷或聚合物等阻挡介质,放电区充满氩气、氦气、氮气、氧气等或混合工作气体即可。当电极两端施加的高压交流电超过帕邢(Paschen)击穿电压时,工作气体被击穿而产生电子,从而激发或解离气体分子,并产生包含紫外辐射以及大量自由基、离子、激发态原子、分子碎片等化学性质异常活跃物质的NTP。DBD产生的辐射和活性物质,能够为所需的化学反应提供足够的能量,这也是DBD应用的基础。目前,DBD因其简单、低廉、易控制、能耗少、用途广而成为放电技术研究的热点。在原子光谱分析方面,DBD多用于原子吸收光谱仪(AAS)、原子发射光谱仪(AES)、AFS等的原子化器。目前,尚未见有利用DBD作为砷元素捕获装置用于光谱分析的报道。
发明内容:
本发明的目的是针对上述问题,提供一种用于原子荧光法测砷的介质阻挡放电预富集装置,该装置结构简单,解决了介质阻挡放电装置捕获和释放砷元素不易控制的难题,可与光谱仪器直接串联,即可实现样品中痕量砷的在线高效富集以及准确、稳定的分析。
本发明所提供的原子荧光法测砷的介质阻挡放电预富集装置,包括氢化物发生装置、介质阻挡放电反应器、电源、气路和原子荧光光谱仪,所述介质阻挡放电反应器由两个同轴石英管、铜线圈(地线)、铜棒电极(高压电极)组成,所述同轴石英管由内层石英管架空置于外层石英管中央,所述铜线圈缠绕在外层石英管外表面,所述铜棒电极架空置于内层石英管腔体中央;所述气路包括氩气源、氧气源、氢气源,氩气源三通连接四通混合器和介质阻挡放电反应器,氧气源和氢气源均接入介质阻挡放电反应器,介质阻挡放电反应器的气体出口连接原子荧光光谱仪。
所述氢化物发生装置包括蠕动泵1、蠕动泵2、四通混合器3、反应环5、气液分离器6。
所述氩气4、氧气11和氢气12均由质量流量计控制气流速度。
所述铜线圈接入电源7的地线9,铜棒电极接入电源7的高压电极8。
所述气路采用聚四氟乙烯软管连接。
本发明所提供的预富集砷的原子荧光光谱分析方法,包括如下步骤:
含有砷的水样或样品消解液(含体积比5%的盐酸)通过样品蠕动泵1与反应试剂蠕动泵2泵出的含5g/L硼氢化钾的溶液在四通混合器3中混合,被氩气源4三通中的氩气载气带入反应环5,反应生成砷的氢化物在气液分离器6中完成气液分离。
气液分离器6中砷氢化物随载气进入介质阻挡放电反应器10,同时由氧气源11将40mL/min的氧气通入介质阻挡放电反应器10,此时电源7的电压为9.2kV,介质阻挡放电反应器10发生放电,产生低温等离子体,在此条件下完成砷的捕获。
所述氩气源4三通切换气路至介质阻挡放电反应器10方向,氩气吹扫180秒,之后由氢气源12将200mL/min的氢气通入介质阻挡放电反应器10,此时电源7的电压为9.5kV,介质阻挡放电反应器10发生放电,产生低温等离子体,在此条件下完成砷的释放,再进入原子荧光光谱仪13分析砷的含量。
发明有益效果:
该装置结构简单,解决了介质阻挡放电装置捕获和释放砷元素不易控制的难题,可与光谱仪器直接串联;本发明的显著优点在于解决了介质阻挡放电装置捕获和释放砷元素不易控制的难题,可与光谱仪器直接串联,即可实现样品中痕量砷的在线高效富集以及准确、稳定的分析。
附图说明:
图1:为原子荧光法测砷的富集装置结构图。
其中1为样品蠕动泵,2为反应试剂蠕动泵,3为四通混合器,4为氩气源,5为反应环,6为气液分离器,7为电源,8为铜棒电极(高压电极),9为铜线圈(地线),10为介质阻挡放电反应器,11为氧气源,12为氢气源,13为原子荧光光谱仪。
具体实施方式:
本发明所提供了一种用于原子荧光法测砷的富集装置及其使用方法,其特征在于:包括氢化物发生装置、介质阻挡放电反应器10、电源7、气路和原子荧光光谱仪13,所述介质阻挡放电反应器10由两个同轴石英管、铜线圈(地线)9、铜棒电极(高压电极)8组成,所述同轴石英管由内层石英管架空置于外层石英管中央,所述铜线圈9缠绕在外层石英管外表面,所述铜棒电极8架空置于内层石英管腔体中央;所述氢化物发生装置包括样品蠕动泵1、反应试剂蠕动泵2、四通混合器3、反应环5、气液分离器6;所述气路包括氩气源4、氧气源11、氢气源12,氩气源4三通连接四通混合器3和介质阻挡放电反应器10,氧气源11和氢气源12均接入介质阻挡放电反应器10,介质阻挡放电反应器10的气体出口连接原子荧光光谱仪13。
实施例一
当含有砷的标准溶液通入样品蠕动泵1,与反应试剂蠕动泵2中的硼氢化钾溶液在四通混合器3中混合,由氩气源4三通通入的600mL/min氩气带入反应环5生产砷的氢化物,并进入气液分离器6完成气液分离,在氧气源11通入40mL/min氧气、电源7电压设定为9.2kV的条件下,介质阻挡放电反应器10完成砷的捕获;再由氩气源4三通通入氩气吹扫180s,之后由氢气源12通入200mL/min的氢气,此时电源7电压为9.5kV,完成砷的释放;含有砷的气体随载气进入原子荧光光谱仪13。在最优条件下,测砷的线性范围为0.05μg/L至5μg/L,标准曲线的回归系数在0.995以上,20mL进样量时砷的检出限可以达到1.0ng/L,多次测定的相对标准偏差在5%以内,可以实现8倍以上的富集效率。
实施例二
以含砷水样(国标物GBW08605)为例,用本发明的介质阻挡放电预富集装置与原子荧光光谱仪串联,其他条件与实施例一相同。测定样品中砷的含量为499±4微克/升,平均值在该标准物质的标准值500±8微克/升之内,3次测定的相对标准偏差为0.8%。
实施例三
以含砷水样(标准物质GSB-Z50004-200431)为例,用本发明的介质阻挡放电预富集装置与原子荧光光谱仪串联,其他条件与实施例一相同。测定样品中砷的含量为58.5±0.4微克/升,平均值在该标准物质的标准值60.6±4.2微克/升之内,3次测定的相对标准偏差为0.7%。
上述三例说明本发明提供的一种用于原子荧光法测砷的富集装置及其使用方法,可以有效富集水样品中的痕量砷,能够保障测定的准确性和稳定性。
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (1)

1.一种原子荧光法测砷的装置的分析方法,包括如下步骤: (1)含有砷的水样或样品消解液含体积比5%的盐酸,通过样品蠕动泵与反应试剂蠕动泵泵出 的含5g/L硼氢化钾溶液在四通混合器中混合,被氩气源三通中的氩气载气带入反应环,反应生成砷 的氢化物在气液分离器中完成气液分离; (2)气液分离器中砷氢化物随载气进入介质阻挡放电反应器,同时由氧气源将40mL/min的氧 气通入介质阻挡放电反应器,此时电源的电压为9.2kV,介质阻挡放电反应器发生放电,产生低温等离子体,在此条件下完成砷的捕获; (3)所述氩气源三通切换气路至介质阻挡放电反应器方向,氩气吹扫180秒,之后由氢气源将200mL/min的氢气通入介质阻挡放电反应器,此时电源的电压为9.5kV,介质阻挡放电反应器发生放电,产生低温等离子体,在此条件下完成砷的释放,再进入原子荧光光谱仪分析砷的含量;所述原子荧光法测砷的装置,包括氢化物发生装置、介质阻挡放电反应器、电源、气路和原子荧光光谱仪,所述介质阻挡放电反应器由两个同轴石英管、铜线圈、铜棒电极组成,所述同轴 石英管由内层石英管架空置于外层石英管中央,所述铜线圈缠绕在外层石英管外表面,所述铜棒电 极架空置于内层石英管腔体中央;所述氢化物发生装置包括蠕动泵、四通混合器、反应环、气液分 离器;所述气路包括氩气源、氧气 源、氢气源,氩气源三通连接四通混合器和介质阻挡放电反应器,氧气源和氢气源均接入介质阻挡 放电反应器,介质阻挡放电反应器的气体出口连接原子荧光光谱仪。
CN201610141066.1A 2016-03-11 2016-03-11 一种原子荧光法测砷的装置及方法 Expired - Fee Related CN105806689B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610141066.1A CN105806689B (zh) 2016-03-11 2016-03-11 一种原子荧光法测砷的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610141066.1A CN105806689B (zh) 2016-03-11 2016-03-11 一种原子荧光法测砷的装置及方法

Publications (2)

Publication Number Publication Date
CN105806689A CN105806689A (zh) 2016-07-27
CN105806689B true CN105806689B (zh) 2018-10-30

Family

ID=56468263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610141066.1A Expired - Fee Related CN105806689B (zh) 2016-03-11 2016-03-11 一种原子荧光法测砷的装置及方法

Country Status (1)

Country Link
CN (1) CN105806689B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106198477A (zh) * 2016-07-29 2016-12-07 北京宝德仪器有限公司 用于原子荧光光谱仪的氢化物发生装置以及发生方法
FR3068787B1 (fr) * 2017-07-10 2019-08-09 Centre National De La Recherche Scientifique Dispositif et methode d'analyse en continu de la concentration du carbone inorganique dissous (dic) et de ses compositions isotopiques en carbone et oxygene
CN107561050A (zh) * 2017-10-18 2018-01-09 蓝靖 便携式低温等离子体原子荧光测砷分析装置
CN107917909A (zh) * 2017-12-19 2018-04-17 农业部环境保护科研监测所 在线富集微型低温等离子体原子发射测砷分析装置
CN109724963B (zh) * 2019-03-19 2020-08-04 中国科学院生态环境研究中心 定量测定水溶液中氧化石墨烯的系统及方法
CN110398403B (zh) * 2019-07-29 2022-05-17 华北电力大学(保定) 一种稳定的三氧化二砷标气的制备方法及装置
CN111624272A (zh) * 2020-06-16 2020-09-04 中国农业科学院农业质量标准与检测技术研究所 一种提高液相色谱原子光谱法分析灵敏度的装置及方法
CN114609320B (zh) * 2022-03-08 2024-04-09 苏州恒润商品检验有限公司 石油裂解气相产物中痕量砷的冷原子荧光分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519938A (zh) * 2011-12-13 2012-06-27 清华大学 一种基于介质阻挡放电的原子蒸气发生方法及装置
CN103969323A (zh) * 2014-05-08 2014-08-06 浙江中烟工业有限责任公司 一种利用75AS16O+测定烟草及烟草制品中As的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205826395U (zh) * 2016-03-11 2016-12-21 中国农业科学院农业质量标准与检测技术研究所 一种用于原子荧光法测砷的介质阻挡放电预富集装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519938A (zh) * 2011-12-13 2012-06-27 清华大学 一种基于介质阻挡放电的原子蒸气发生方法及装置
CN103969323A (zh) * 2014-05-08 2014-08-06 浙江中烟工业有限责任公司 一种利用75AS16O+测定烟草及烟草制品中As的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Atomization of Hydride with a Low-Temperature, Atmospheric Pressure Dielectric Barrier Discharge and Its Application to Arsenic Speciation with Atomic Absorption Spectrometry;Zhenli Zhu,Sichun Zhang,Yi Lv等;《Analytical Chemistry》;20060201;第78卷(第3期);865-872 *
Determination of Se,Pb,and Sb by atomic fluorescence spectrometry using a new flameless,dielectric barrier discharge atomizer;Zhenli Zhu,Jixin Liu,Sichun Zhang等;《Spectrochimica Acta Part B》;20080102;431-436 *
介质阻挡放电在原子光谱分析中应用研究的新进展;邓宇佳,李成辉,蒋小明等;《分析化学》;20150930;第43卷(第9期);1278-1284 *
砷、硒、锑、锡元素的分析方法及仪器小型化研究;薛俊海;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20100315;5-7 *

Also Published As

Publication number Publication date
CN105806689A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
CN105806689B (zh) 一种原子荧光法测砷的装置及方法
He et al. Dielectric barrier discharge plasma for nanomaterials: Fabrication, modification and analytical applications
Yu et al. Evaluation of liquid cathode glow discharge-atomic emission spectrometry for determination of copper and lead in ores samples
Long et al. Recent advance of hydride generation–analytical atomic spectrometry: part I—technique development
Lu et al. Direct determination of Cu by liquid cathode glow discharge-atomic emission spectrometry
Xing et al. Simultaneous determination of arsenic and antimony by hydride generation atomic fluorescence spectrometry with dielectric barrier discharge atomizer
Yang et al. Low temperature hydrogen plasma assisted chemical vapor generation for Atomic Fluorescence Spectrometry
Zhang et al. Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water
Liu et al. Determination of trace cadmium in rice by liquid spray dielectric barrier discharge induced plasma− chemical vapor generation coupled with atomic fluorescence spectrometry
Wang et al. Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death
McKay et al. Observations of ionic species produced in an atmospheric pressure pulse-modulated RF plasma needle
Oh et al. Effect of plasma jet diameter on the efficiency of reactive oxygen and nitrogen species generation in water
Duan et al. Photochemical vapor generation of lead for inductively coupled plasma mass spectrometric detection
Tao et al. Advanced oxidation technology for H2S odor gas using non-thermal plasma
Xing et al. Determination of bismuth in solid samples by hydride generation atomic fluorescence spectrometry with a dielectric barrier discharge atomizer
Kawasaki et al. Effects of surrounding gas on plasma-induced downward liquid flow
CN205826395U (zh) 一种用于原子荧光法测砷的介质阻挡放电预富集装置
Huijuan et al. Analysis of the critical active species for methylene blue decoloration in a dielectric barrier discharge plasma system
He et al. High-yield sample introduction using nebulized film dielectric barrier discharge assisted chelate vapor generation for trace rare earth elements determination by inductively coupled plasma mass spectrometry
He et al. Sensitive and environmentally friendly field analysis of waterborne arsenic by electrochemical hydride generation microplasma optical emission spectrometry
An-Qin et al. Progress and application of liquid electrode glow discharge for atomic spectrometry
Li et al. Microdischarge in flame as a source-in-source for boosted excitation of optical emission of chromium
Feng et al. Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen
Li et al. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array
Jiang et al. Decomposition of a gas mixture of four n-alkanes using a DBD reactor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181030