CN106660022A - 分子筛催化剂组合物、催化剂复合材料、体系和方法 - Google Patents

分子筛催化剂组合物、催化剂复合材料、体系和方法 Download PDF

Info

Publication number
CN106660022A
CN106660022A CN201580044158.1A CN201580044158A CN106660022A CN 106660022 A CN106660022 A CN 106660022A CN 201580044158 A CN201580044158 A CN 201580044158A CN 106660022 A CN106660022 A CN 106660022A
Authority
CN
China
Prior art keywords
scr catalyst
molecular sieve
catalyst material
scr
cha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580044158.1A
Other languages
English (en)
Other versions
CN106660022B (zh
Inventor
N·特鲁汉
U·米勒
M·布林
B·斯拉夫斯基
Q·傅
J·L·莫哈南
M·W·克劳斯
A·莫伊尼
杨晓帆
J·K·霍克默思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/687,097 external-priority patent/US9889437B2/en
Application filed by BASF SE filed Critical BASF SE
Priority claimed from PCT/US2015/036243 external-priority patent/WO2015195809A1/en
Publication of CN106660022A publication Critical patent/CN106660022A/zh
Application granted granted Critical
Publication of CN106660022B publication Critical patent/CN106660022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/911NH3-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

本申请描述了一种包含球形粒子的选择性催化还原材料,所述球形粒子包括分子筛晶体的聚集体。所述催化剂能有效地催化氮氧化物在200‑600℃的温度范围内在还原剂存在下的选择性催化还原反应。还描述了选择性还原氮氧化物的方法和废气处理体系。

Description

分子筛催化剂组合物、催化剂复合材料、体系和方法
发明领域
本发明总体涉及选择性催化还原材料、选择性催化还原复合材料以及选择性还原氮氧化物的方法的领域。更特别是,本发明的实施方案涉及SCR催化剂材料,其包含包括分子筛晶体的聚集体的球形粒子。
背景技术
随着时间的推移,氮氧化物(NOx)的有害组分已经导致大气污染。在例如来自内燃发动机(例如汽车和卡车)、来自燃烧装置(例如由天然气、油或煤加热的电站)和来自硝酸生产装置的废气中含有NOx
各种方法已经用于处理含有NOx的气体混合物。一种类型的处理方法涉及氮氧化物的催化还原。有两种方法:(1)非选择性还原方法,其中一氧化碳、氢气或低级烃用作还原剂,和(2)选择性还原方法,其中氨或氨前体用作还原剂。在选择性还原方法中。可以用少量还原剂实现氮氧化物的高度去除。
选择性还原方法称为SCR方法(选择性催化还原)。SCR方法使用氨将氮氧化物在大气氧的存在下催化还原,其中主要形成氮气和水蒸气:
4NO+4NH3+O2→4N2+6H2O(标准SCR反应)
2NO2+4NH3→3N2+6H2O(缓慢SCR反应)
NO+NO2+NH3→2N2+3H2O(快速SCR反应)
用于SCR方法中的催化剂理想地应当能在宽的使用温度范围内在水热条件下保持良好的催化活性,例如200-600℃或更高。水热条件通常在实践中遇到,例如在烟灰过滤器的再生期间,其是用于除去粒子的废气处理体系的元件。
已经在用还原剂例如氨、脲或烃在氧气存在下进行氮氧化物的选择性催化还原(SCR)中使用分子筛,例如沸石。沸石是结晶材料,其具有相当均匀的孔径,这取决于沸石的类型和在沸石晶格中的阳离子含量,具有约3-10埃的直径。沸石具有8-环孔开口和两个6-环二次结构单元,特别是具有笼状结构的那些,最近发现这种沸石特别用作SCR催化剂。具有这些性能的特定类型的沸石是菱沸石(CHA),其是具有8元环孔开口的小孔沸石(约3.8埃),这可通过其三维孔隙率实现。笼状结构是来自两个6-环结构单元被4个环连接。
公知的是金属助催化的沸石催化剂,其中包括铁助催化的和铜助催化的沸石催化剂,用于用氨进行氮氧化物的选择性催化还原。铁助催化的β沸石已经是有效的商业催化剂,用于用氨进行氮氧化物的选择性还原。不幸的是,已经发现在苛刻的水热条件、例如在烟灰过滤器的再生期间,其中温度局部超过700℃,许多金属助催化的沸石的活性开始下降。这种下降通常归因于沸石的脱铝并且随后损失在沸石内的含金属的活性中心。
金属助催化的、特别是铜助催化的具有CHA结构类型的硅铝酸盐沸石最近已经受到高度关注,作为催化剂用于在使用含氮还原剂进行在稀燃发动机中的氮氧化物的SCR。这是因为这些材料具有宽的温度范围以及优异的水热耐久性,参见美国专利No.7,601,662。在发现如美国专利No.7,601,662所述的金属助催化的沸石之前,虽然文献已经显示在专利和科学文献中建议大量的金属助催化的沸石能用作SCR催化剂,但是所建议的这些材料存在一个或两个以下缺点:(1)氮氧化物在低温下的转化率差,例如350℃和更低的温度;和(2)水热稳定性差,这由在通过SCR转化氮氧化物中的催化活性显著降低反映出来。因此,在美国专利No.7,601,662中描述的发明提到迫切的未解决的需要:提供一种材料,其能在低温下转化氮氧化物并能在超过650℃的温度下水热老化之后保持SCR催化活性。
虽然现有技术的催化剂显示优异的性能,但是仍然需要减少在SCR反应期间的N2O量。因此,SCR催化剂需要具有与现有技术相比改进的NOx转化效率以及更低的N2O量。
概述
本发明的第一个方面涉及一种选择性催化还原(SCR)材料。在第1个实施方案中,选择性催化还原材料包含球形粒子,球形粒子包括分子筛晶体的聚集体,其中球形粒子具有在约0.5-5微米范围内的中值粒径。
在第2个实施方案中,改进第1个实施方案的SCR催化剂材料,其中分子筛包含d6r单元。
在第3个实施方案中,改进第1和2个实施方案的SCR催化剂材料,其中分子筛具有选自以下的结构类型:AEI,AFT,AFX,CHA,EAB,EMT,ERI,FAU,GME,JSR,KFI,LEV,LTL,LTN,MOZ,MSO,MWW,OFF,SAS,SAT,SAV,SBS,SBT,SFW,SSF,SZR,TSC,WEN,和它们的组合。
在第4个实施方案中,改进第1-3个实施方案的SCR催化剂材料,其中分子筛具有选自以下的结构类型:AEI,AFT,AFX,CHA,EAB,ERI,KFI,LEV,SAS,SAT,和SAV。
在第5个实施方案中,改进第1-4个实施方案的SCR催化剂材料,其中分子筛具有选自以下的结构类型:AEI,CHA,和AFX。
在第6个实施方案中,改进第1-5个实施方案的SCR催化剂材料,其中分子筛具有CHA结构类型。
在第7个实施方案中,改进第1-6个实施方案的SCR催化剂材料,其中具有CHA结构类型的分子筛是选自硅铝酸盐沸石,硼硅酸盐,镓硅酸盐,SAPO,AlPO,MeAPSO,和MeAPO。
在第8个实施方案中,改进第1-7个实施方案的SCR催化剂材料,其中具有CHA结构类型的分子筛是选自SSZ-13,SSZ-62,天然菱沸石,沸石K-G,Linde D,Linde R,LZ-218,LZ-235,LZ-236,ZK-14,SAPO-34,SAPO-44,SAPO-47,和ZYT-6。
在第9个实施方案中,改进第1-8个实施方案的SCR催化剂材料,其中分子筛是选自SSZ-13和SSZ-62。
在第10个实施方案中,改进第1-9个实施方案的SCR催化剂材料,其中分子筛是用选自以下的金属助催化的:Cu,Fe,Co,Ni,La,Ce,Mn,V,Ag,和它们的组合。
在第11个实施方案中,改进第1-10个实施方案的SCR催化剂材料,其中分子筛是用选自以下的金属助催化的:Cu,Fe,和它们的组合。
在第12个实施方案中,改进第1-11个实施方案的SCR催化剂材料,其中SCR催化剂材料能催化氮氧化物在还原剂的存在下在200-600℃温度下的选择性催化还原反应。
在第13个实施方案中,改进第6个实施方案的SCR催化剂材料,其中具有CHA结构类型的分子筛具有在10-100范围内的氧化硅与氧化铝之间的比率。
在第14个实施方案中,改进第10和11个实施方案的SCR催化剂材料,其中金属的存在量是在按照氧化物计的约0.1-10重量%的范围内。
在第15个实施方案中,改进第1-14个实施方案的SCR催化剂材料,其中球形粒子具有在约1.2-3.5微米范围内的中值粒径。
在第16个实施方案中,改进第1-15个实施方案的SCR催化剂材料,其中晶体具有在约1-250nm范围内的晶体尺寸。
在第17个实施方案中,改进第1-16个实施方案的SCR催化剂材料,其中晶体具有在约100-250nm范围内的晶体尺寸。
在第18个实施方案中,改进第1-17个实施方案的SCR催化剂材料,其中SCR催化剂材料是载体涂层的形式。
在第19个实施方案中,改进第18个实施方案的SCR催化剂材料,其中载体涂层是沉积在基材上的层。
在第20个实施方案中,改进第19个实施方案的SCR催化剂材料,其中基材包含过滤器。
在第21个实施方案中,改进第20个实施方案的SCR催化剂材料,其中过滤器是壁流式过滤器。
在第22个实施方案中,改进第20个实施方案的SCR催化剂材料,其中过滤器是流通式过滤器。
在第23个实施方案中,改进第1-22个实施方案的SCR催化剂材料,其中至少80%的球形粒子具有在0.5-2.5微米范围内的中值粒径。
在第24个实施方案中,改进第1-23个实施方案的SCR催化剂材料,其中分子筛包含硅和铝原子的沸石骨架材料,其中一定比例的硅原子是被四价金属同晶取代的。
在第25个实施方案中,改进第24个实施方案的SCR催化剂材料,其中分子筛是用选自以下的金属助催化的:Cu,Fe,Co,Ni,La,Ce,Mn,V,Ag,和它们的组合。
在第26个实施方案中,改进第24和25个实施方案的SCR催化剂材料,其中四价金属包含四价过渡金属。
在第27个实施方案中,改进第24-26个实施方案的SCR催化剂材料,其中四价过渡金属是选自Ti,Zr,Hf,Ge,和它们的组合。
在第28个实施方案中,改进第24-27个实施方案的SCR催化剂材料,其中四价过渡金属包含Ti。
本发明的第二个方面涉及一种选择性地还原氮氧化物(NOx)的方法。在第29个实施方案中,选择性地还原氮氧化物(NOx)的方法包括使含有NOx的废气料流与SCR催化剂材料接触,所述SCR催化剂材料包含球形粒子,球形粒子包括分子筛晶体的聚集体,其中球形粒子具有在约0.5-5微米范围内的中值粒径。在其它实施方案中,选择性地还原氮氧化物(NOx)的方法包括使含有NOx的废气料流与第1-28个实施方案的SCR催化剂材料接触。
本发明的第三个方面涉及一种用于处理来自稀燃发动机的含有NOx的废气的体系。在第30个实施方案中,用于处理来自稀燃发动机的含有NOx的废气的体系包含第1-28个实施方案的SCR催化剂材料和至少一种其它废气处理组分。
第31个实施方案涉及SCR催化剂,其包含硅和铝原子的沸石骨架材料,其中一定比例的硅原子是被四价金属同晶取代的,并且催化剂是用选自以下的金属助催化的:Cu,Fe,Co,Ni,La,Ce,Mn,V,Ag,和它们的组合。
在第32个实施方案中,改进第31个实施方案的SCR催化剂,其中四价金属包含四价过渡金属。
在第33个实施方案中,改进第31和32个实施方案的SCR催化剂,其中四价过渡金属是选自Ti,Zr,Hf,Ge,和它们的组合。
在第34个实施方案中,改进第31-33个实施方案的SCR催化剂,其中四价过渡金属包含Ti。
在第35个实施方案中,改进第31-34个实施方案的SCR催化剂,其中氧化硅与氧化铝之间的比率是在1-300的范围内。
在第36个实施方案中,改进第31-35个实施方案的SCR催化剂,其中氧化硅与氧化铝之间的比率是在1-50的范围内。
在第37个实施方案中,改进第31-36个实施方案的SCR催化剂,其中四价金属与氧化铝之间的比率是在0.0001-1000的范围内。
在第38个实施方案中,改进第31-37个实施方案的SCR催化剂,其中四价金属与氧化铝之间的比率是在0.01-10的范围内。
在第39个实施方案中,改进第31-38个实施方案的SCR催化剂,其中四价金属与氧化铝之间的比率是在0.01-2的范围内。
在第40个实施方案中,改进第31-39个实施方案的SCR催化剂,其中氧化硅与四价金属之间的比率是在1-100的范围内。
在第41个实施方案中,改进第31-40个实施方案的SCR催化剂,其中氧化硅与四价金属之间的比率是在5-20的范围内。
在第42个实施方案中,改进第31-41个实施方案的SCR催化剂,其中沸石骨架材料包含不大于12的环尺寸。
在第43个实施方案中,改进第31-42个实施方案的SCR催化剂,其中沸石骨架材料包含d6r单元。
在第44个实施方案中,改进第31-43个实施方案的SCR催化剂,其中沸石骨架材料是选自AEI,AFT,AFX,CHA,EAB,EMT,ERI,FAU,GME,JSR,KFI,LEV,LTL,LTN,MOZ,MSO,MWW,OFF,SAS,SAT,SAV,SBS,SBT,SFW,SSF,SZR,TSC,WEN,和它们的组合。
在第45个实施方案中,改进第31-44个实施方案的SCR催化剂,其中沸石骨架材料是选自AEI,CHA,AFX,ERI,KFI,LEV,和它们的组合。
在第46个实施方案中,改进第31-45个实施方案的SCR催化剂,其中沸石骨架材料是选自AEI、CHA和AFX。
在第47个实施方案中,改进第31-46个实施方案的SCR催化剂,其中沸石骨架材料是CHA。
在第48个实施方案中,改进第31-47个实施方案的SCR催化剂,其中催化剂是用Cu、Fe和其组合助催化的。
在第49个实施方案中,改进第31-48个实施方案的SCR催化剂,其中催化剂能促进NO+的形成。
在第50个实施方案中,改进第31-49个实施方案的SCR催化剂,前提是沸石骨架不包括磷原子。
本发明另一方面的实施方案涉及一种选择性地还原氮氧化物(NOx)的方法。在第51个实施方案中,选择性地还原氮氧化物(NOx)的方法包括使含有NOx的废气料流与第31-50个实施方案的催化剂接触。
本发明另一方面的实施方案涉及一种废气处理体系。在第52个实施方案中,废气处理体系包含含有氨的废气料流和根据第31-50个实施方案的催化剂。
在另一个方面中,提供第53个实施方案,其涉及第31-50个实施方案中任一项的催化剂作为催化剂用于NOx在氨存在下的选择性催化还原的用途。
第54个实施方案涉及SCR催化剂复合材料,其包含:SCR催化剂材料,其能促进氨与氮氧化物在150-600℃的温度范围内选择性地反应以形成氮气和H2O;和氨储存材料,其包含具有氧化态IV的过渡金属,所述SCR催化剂材料能在400℃和更高的温度下储存氨,并且在400℃时的最小NH3储存量是0.1g/L。
在第55个实施方案中,改进第54个实施方案的SCR催化剂复合材料,其中过渡金属是选自Ti,Ce,Zr,Hf,Ge,和它们的组合。
在第56个实施方案中,改进第54和55个实施方案的SCR催化剂复合材料,其中SCR催化剂材料是被氨储存材料同晶取代的。
在第57个实施方案中,改进第54和55个实施方案的SCR催化剂复合材料,其中氨储存材料分散在SCR催化剂材料中。
在第58个实施方案中,改进第54和55个实施方案的SCR催化剂复合材料,其中氨储存材料是作为在SCR催化剂材料上的层分散的。
在第59个实施方案中,改进第54和55个实施方案的SCR催化剂复合材料,其中氨储存材料和SCR催化剂材料是按照区域化构造排布的。
在第60个实施方案中,改进第59个实施方案的SCR催化剂复合材料,其中氨储存材料处于SCR催化剂材料的上游。
在第61个实施方案中,改进第54和55个实施方案的SCR催化剂复合材料,其中SCR催化剂材料用氨储存材料进行离子交换。
在第62个实施方案中,改进第54-61个实施方案的SCR催化剂复合材料,其中SCR催化剂材料置于过滤器上。
在第63个实施方案中,改进第62个实施方案的SCR催化剂复合材料,其中过滤器是壁流式过滤器。
在第64个实施方案中,改进第62个实施方案的SCR催化剂复合材料,其中过滤器是流通式过滤器。
在第65个实施方案中,改进第54-64个实施方案的SCR催化剂复合材料,其中SCR催化剂材料包含分子筛、混合氧化物和活化的耐火金属氧化物载体中的一种或多种。
在第66个实施方案中,改进第65个实施方案的SCR催化剂复合材料,其中混合氧化物是选自Fe/氧化钛,Fe/氧化铝,Mg/氧化钛,Mg/氧化铝,Mn/氧化铝,Mn/氧化钛,Cu/氧化钛,Ce/Zr,Ti/Zr,氧化钒/氧化钛,和它们的混合物。
在第67个实施方案中,改进第65和66个实施方案的SCR催化剂复合材料,其中混合氧化物包含氧化钒/氧化钛,并且被钨稳定。
在第68个实施方案中,改进第65个实施方案的SCR催化剂复合材料,其中分子筛具有硅、磷和铝原子的骨架。
在第69个实施方案中,改进第68个实施方案的SCR催化剂复合材料,其中氧化硅与氧化铝之间的比率是在1-300的范围内。
在第70个实施方案中,改进第68和69个实施方案的SCR催化剂复合材料,其中氧化硅与氧化铝之间的比率是在1-50的范围内。
在第71个实施方案中,改进第68-70个实施方案的SCR催化剂复合材料,其中氧化铝与四价金属之间的比率是在1:10至10:1的范围内。
在第72个实施方案中,改进第68-71个实施方案的SCR催化剂复合材料,其中一定比例的硅离子是被氨储存材料的金属同晶取代的。
在第73个实施方案中,改进第65个实施方案的SCR催化剂复合材料,其中分子筛包含不大于12的环尺寸。
在第74个实施方案中,改进第65-73个实施方案的SCR催化剂复合材料,其中分子筛具有选自以下的结构类型:MFI,BEA,AEI,AFT,AFX,CHA,EAB,EMT,ERI,FAU,GME,JSR,KFI,LEV,LTL,LTN,MOZ,MSO,MWW,OFF,SAS,SAT,SAV,SBS,SBT,SFW,SSF,SZR,TSC,WEN,和它们的组合。
在第75个实施方案中,改进第72个实施方案的SCR催化剂复合材料,其中分子筛具有选自以下的结构类型:MFI,BEA,CHA,AEI,AFX,ERI,KFI,LEV,和它们的组合。
在第74个实施方案中,改进第73个实施方案的SCR催化剂复合材料,其中分子筛具有选自以下的结构类型:AEI,CHA,AFX,和它们的组合。
在第75个实施方案中,改进第54-74个实施方案的SCR催化剂复合材料,其中SCR催化剂材料是被选自以下的金属助催化的:Cu,Fe,Co,Ni,La,Ce,Mn,V,Ag,和它们的组合。
在第76个实施方案中,改进第54-75个实施方案的SCR催化剂复合材料,其中SCR催化剂材料是被选自以下的金属助催化的:Cu,Fe,和它们的组合。
在第77个实施方案中,改进第76个实施方案的SCR催化剂复合材料,其中分子筛包含SSZ-13,SSZ-39,或SAPO-34。
在第78个实施方案中,改进第65个实施方案的SCR催化剂复合材料,其中活化的耐火金属氧化物载体是选自氧化铝,氧化铈,氧化锆,氧化硅,氧化钛,氧化硅-氧化铝,氧化锆-氧化铝,氧化钛-氧化铝,氧化镧-氧化铝,氧化镧-氧化锆-氧化铝,氧化钡-氧化铝,氧化钡-氧化镧-氧化铝,氧化钡-氧化镧-氧化钕-氧化铝,氧化铝-氧化铬,氧化铝-氧化铈,氧化锆-氧化硅,氧化钛-氧化硅,或氧化锆-氧化钛,和它们的组合。
在第79个实施方案中,改进第78个实施方案的SCR催化剂复合材料,其中活化的耐火金属氧化物载体是用选自以下的金属交换的:Cu,Fe,Co,Ni,La,Ce,Mn,V,Ag,和它们的组合。
在第80个实施方案中,改进第65个实施方案的SCR催化剂复合材料,其中过渡金属包含Ti。
在第81个实施方案中,改进第80个实施方案的SCR催化剂复合材料,其中氧化铝与钛之间的比率是在1:10至10:1的范围内。
本发明的另一个方面涉及一种方法。在第82个实施方案中,同时选择性地还原氮氧化物(NOx)和储存氨的方法包括使含有NOx的废气料流与第54-81个实施方案的SCR催化剂复合材料接触。
在第83个实施方案中,改进第82个实施方案的方法,其中废气料流的氧气含量是1-30%,并且废气料流的水含量是1-20%。
本发明的另一个方面涉及SCR催化剂复合材料。在第84个实施方案中,SCR催化剂复合材料包含:SCR催化剂材料,其能有效地促进氨与氮氧化物在200-600℃的温度范围内选择性地反应以形成氮气和H2O,其中SCR催化剂材料包含SSZ-13;以及含有Ti的氨储存材料,其能有效地在400℃和更高温度下储存氨。
附图简述
图1是根据一个或多个实施方案的SCR催化剂材料的横截面的示意图;
图2显示根据一个或多个实施方案的SCR催化剂复合材料的部分横截面视图;
图3显示根据一个或多个实施方案的SCR催化剂复合材料的部分横截面视图;
图4A显示壁流式过滤器基材的透视图;
图4B显示壁流式过滤器基材的部分的剖视图;
图5是SEM图像,其中显示根据实施例的催化剂材料的晶体形态;
图6是SEM图像,其中显示根据对比例的催化剂材料的晶体形态;
图7是条形图,其中比较根据实施例的催化剂的NOx转化率;
图8是条形图,其中比较根据实施例的催化剂的N2O量;
图9是图表,其中比较根据实施例的催化剂的NOx转化率;
图10是图表,其中比较根据实施例的催化剂的N2O量;
图11是条形图,其中比较根据实施例的催化剂在20ppm NH3逃逸时的NOx转化率;
图12是根据实施例的催化剂的ATR分析;
图13是根据实施例的催化剂的FTIR分析;
图14是根据实施例的催化剂的FTIR分析;
图15是根据实施例的材料的扫描电子显微镜图像;
图16比较根据实施例的催化剂的NOx转化率;
图17比较根据实施例的催化剂的NOx转化率;
图18A和18B是根据实施例的材料的扫描电子显微镜图像;
图19是根据实施例的催化剂的载体涂层孔隙率检测;
图20比较根据实施例的催化剂的NH3吸收率;
图21比较根据实施例的催化剂的NH3吸收率;
图22比较根据实施例的催化剂的NH3吸收率;
图23比较根据实施例的催化剂的NH3吸收率;和
图24比较根据实施例的催化剂的NH3吸收率。
发明详述
在描述本发明的多个示例性实施方案之前,应当理解的是本发明并不限于下文所述的结构或工艺步骤的细节。本发明能按照各种方式进行或实施其它实施方案。
政府法规要求轻载型和重载型交通工具使用NOx还原技术。使用脲进行NOx的选择性催化还原(SCR)是一种用于控制NOx的有效和主要的排放控制技术。为了符合政府法规,具有与目前基于Cu-SSZ-13的基准技术相比改进的性能的SCR催化剂是必要的。本发明提供SCR催化剂材料,其具有与目前基于Cu-SSZ-13的基准技术相比改进的NOx转化效率和较低的N2O量。SCR催化剂材料能有效地促进氨与氮氧化物在200-600℃的温度范围内选择性地反应以形成氮气和H2O。
本发明的实施方案涉及选择性催化还原材料,其包含球形粒子,所述球形粒子包括分子筛晶体的聚集体。惊奇地发现,具有分子筛晶体聚集体的球形粒子特别适用于废气提纯催化剂组分中,特别是用作SCR催化剂材料。
关于本文中使用的术语,提供以下定义。
这里使用的术语"催化剂"或"催化剂组合物"或"催化剂材料"表示能促进反应的材料。
这里使用的术语"催化制品"或"催化剂复合材料"表示一种用于促进所需反应的物质。例如,催化制品或催化剂复合材料可以包含在基材上含有催化物质的载体涂层,催化物质例如是催化剂组合物。
这里使用的术语"选择性催化还原"(SCR)表示使用含氮还原剂将氮氧化物还原成氮气(N2)的催化方法。
这里使用的术语"FTIR"表示傅里叶变换红外光谱,这是用于得到固体、液体或气体的吸收、发射、光导率或雷曼散射的红外光谱技术。
这里使用的术语"ATR"表示衰减全反射,这是一种与红外光谱、特别是FTIR联用的取样技术,能在不需要其它准备的情况下直接检测在固态或液态下的样品。
根据一个或多个实施方案,选择性催化还原催化剂材料包含球形粒子,所述球形粒子包括分子筛晶体的聚集体,其中球形粒子具有在约0.5-5微米的范围内的中值粒径。
这里使用的"分子筛"表示骨架材料,例如沸石和其它骨架材料(例如同晶取代的材料),其可以是颗粒形式,与一种或多种助催化剂金属组合用作催化剂。分子筛是基于氧离子的广泛三维网络的材料,其通常含有四面体类型的位点,并具有基本上均匀的孔分布,其平均孔径不大于20埃。孔径是由环尺寸限定的。这里使用的术语"沸石"表示分子筛的一个具体例子,其包含硅和铝原子。根据一个或多个实施方案,应当理解的是通过用其结构类型限定分子筛,要包括所述结构类型和任何和所有异构类型的骨架材料用作沸石材料,例如具有相同结构类型的SAPO、ALPO和MeAPO材料。
在更特定的实施方案中,硅铝酸盐沸石结构类型将材料限定为在骨架中不含磷或取代的其它金属的分子筛。但是,为了清楚起见,这里使用的"硅铝酸盐沸石"不包括铝磷酸盐材料,例如SAPO、ALPO和MeAPO材料,并且更广义的术语"沸石"应当包括硅铝酸盐和铝磷酸盐。沸石是结晶材料,其具有相当均匀的孔径,其中根据沸石的类型和在沸石晶格中的阳离子含量,孔径是在约3-10埃的范围内。沸石通常具有氧化硅与氧化铝之间的摩尔比率(SAR)为2或更大。
术语"铝磷酸盐"表示分子筛的另一个实例,其包含铝和磷酸盐原子。铝磷酸盐是具有相当均匀的孔径的结晶材料。
通常,分子筛、例如沸石定义为具有开放的三维骨架结构的硅铝酸盐,其由角共享的TO4四面体组成,其中T是Al或Si,或任选地P。作为用于平衡阴离子性骨架的电荷的阳离子松散地与骨架氧缔合,并且其余的孔体积被水分子填充。非骨架的阳离子通常是可交换的,并且水分子是可移除的。
在一个示例性实施方案中,分子筛可以是被同晶取代的。这里使用的术语"沸石骨架"和"沸石骨架材料"表示分子筛的一个具体实例,其还包含硅和铝原子。根据本发明的实施方案,分子筛包含硅(Si)和铝(Al)离子的沸石骨架材料,其中一定比例的硅原子是被四价金属同晶取代的。在具体实施方案中,骨架不包含磷(P)原子。
这里使用的术语"同晶取代的"和"同晶取代"表示在矿物中的一个原子被另一个原子取代,且晶体结构没有显著改变。可以彼此取代的元素通常具有相似的离子半径和价态。在一个或多个实施方案中,一定比例的硅原子是被四价金属同晶取代的。换句话说,在沸石骨架中的一定比例的硅原子被四价金属代替。这种同晶取代不会显著改变沸石骨架材料的晶体结构。
这里使用的术语"四价金属"表示这样的金属,在其价键中具有可用于共价化学键合的四个电子的状态(最外的电子壳)。四价金属包括锗(Ge)和元素周期表第4族的那些过渡金属,钛(Ti),锆(Zr),和铪(Hf)。在一个或多个实施方案中,四价金属是选自Ti,Zr,Hf,Ge,和它们的组合。在具体实施方案中,四价金属包含Ti。
在其它实施方案中,一定比例的硅原子是被具有氧化态IV的过渡金属同晶取代的。不意欲受限于任何理论,认为具有正常氧化态IV的过渡金属的存在能帮助增加在高温下的氨储存。在一个或多个实施方案中,具有氧化态IV的过渡金属可以是氧化物的形式,或固有地包埋在SCR催化剂材料中。这里使用的术语"具有氧化态IV的过渡金属"表示这样的金属,在其价键中具有可用于共价化学键合的四个电子的状态(最外的电子壳)。具有氧化态IV的过渡金属包括锗(Ge),铈(Ce),和在元素周期表第4族中的那些过渡金属,钛(Ti),锆(Zr),和铪(Hf)。在一个或多个实施方案中,具有氧化态IV的过渡金属是选自Ti,Ce,Zr,Hf,Ge,和它们的组合。在具体实施方案中,具有氧化态IV的过渡金属包含Ti。
在一个或多个实施方案中,沸石骨架材料包含MO4/SiO4/AlO4四面体(其中M是四价金属),并且经由共同的氧原子连接以形成三维网络。同晶取代的四价金属作为四面体原子(MO4)被包埋在沸石骨架材料中。同晶取代的四面体单元则与硅和铝四面体单元一起形成沸石材料的骨架。在具体实施方案中,四价金属包含钛,并且沸石骨架材料包括TiO4/SiO4/A1O4四面体。因此,在一个或多个实施方案中,催化剂包含硅和铝原子的沸石骨架,其中一定比例的硅原子被钛同晶取代。
一个或多个实施方案的同晶取代的沸石骨架材料是主要根据空隙的几何形状区分的,这些空隙是由MO4/(SiO4)/A1O4四面体(其中M是四价金属)的刚性网络形成的。
在一个或多个实施方案中,分子筛包含SiO4/AlO4四面体,并且经由共同的氧原子连接以形成三维网络。在其它实施方案中,分子筛包含SiO4/AlO4/PO4四面体。一个或多个实施方案的分子筛是主要根据空隙的几何形状区分的,这些空隙是由(SiO4)/A1O4或SiO4/AlO4/PO4四面体的刚性网络形成的。进入空隙的入口是从6、8、10或12个环原子形成的,相对于形成入口开口的原子计。在一个或多个实施方案中,分子筛包含不大于12的环尺寸,包括6、8、10和12。
根据一个或多个实施方案,分子筛可以是基于由其结构确认的骨架拓扑结构。通常,可以使用任何结构类型,例如以下结构类型:ABW,ACO,AEI,AEL,AEN,AET,AFG,AFI,AFN,AFO,AFR,AFS,AFT,AFX,AFY,AHT,ANA,APC,APD,AST,ASV,ATN,ATO,ATS,ATT,ATV,AWO,AWW,BCT,BEA,BEC,BIK,BOG,BPH,BRE,CAN,CAS,SCO,CFI,SGF,CGS,CHA,CHI,CLO,CON,CZP,DAC,DDR,DFO,DFT,DOH,DON,EAB,EDI,EMT,EON,EPI,ERI,ESV,ETR,EUO,FAU,FER,FRA,GIS,GIU,GME,GON,GOO,HEU,IFR,IHW,ISV,ITE,ITH,ITW,IWR,IWW,JBW,KFI,LAU,LEV,LIO,LIT,LOS,LOV,LTA,LTL,LTN,MAR,MAZ,MEI,MEL,MEP,MER,MFI,MFS,MON,MOR,MOZ,MSO,MTF,MTN,MTT,MTW,MWW,NAB,NAT,NES,NON,NPO,NSI,OBW,OFF,OSI,OSO,OWE,PAR,PAU,PHI,PON,RHO,RON,RRO,RSN,RTE,RTH,RUT,RWR,RWY,SAO,SAS,SAT,SAV,SBE,SBS,SBT,SFE,SFF,SFG,SFH,SFN,SFO,SGT,SOD,SOS,SSY,STF,STI,STT,TER,THO,TON,TSC,UEI,UFI,UOZ,USI,UTL,VET,VFI,VNI,VSV,WIE,WEN,YUG,ZON,或它们的组合。
在一个或多个实施方案中,分子筛包含8-环小孔硅铝酸盐沸石。这里使用的"小孔"表示孔开口小于约5埃,例如是~3.8埃的级别。词语"8-环"沸石表示沸石具有8-环孔开口和两个6-环二次结构单元,并且具有笼状结构,此结构是来自两个6-环结构单元经由4个环连接。沸石是由二次结构单元(SBU)和复合结构单元(CBU)组成,并且表现为许多不同的骨架结构。二次结构单元含有至多16个四面体原子,并且是非手性的。复合结构单元不需要是手性的,并且可以不必须用于构成整个骨架。例如,一类沸石在其骨架结构中具有单个4-环(s4r)复合结构单元。在4-环中,"4"表示四面体硅和铝原子的位置,并且氧原子处于这些四面体原子之间。其它复合结构单元包括例如单个6-环(s6r)单元,两个4-环(d4r)单元,和两个6-环(d6r)单元。d4r单元是由两个s4r单元连接形成的。d6r单元是由两个s6r单元连接形成的。在d6r单元中有12个四面体原子。具有d6r二次结构单元的沸石结构类型包括AEI,AFT,AFX,CHA,EAB,EMT,ERI,FAU,GME,JSR,KFI,LEV,LTL,LTN,MOZ,MSO,MWW,OFF,SAS,SAT,SAV,SBS,SBT,SFW,SSF,SZR,TSC,和WEN。
在一个或多个实施方案中,分子筛包含d6r单元。不意欲受限于任何理论,在一个或多个实施方案中,认为d6r单元能促进NO+的形成。因此,在一个或多个实施方案中,分子筛具有选自以下的结构类型:AEI,AFT,AFX,CHA,EAB,EMT,ERI,FAU,GME,JSR,KFI,LEV,LTL,LTN,MOZ,MSO,MWW,OFF,SAS,SAT,SAV,SBS,SBT,SFW,SSF,SZR,TSC,WEN,和它们的组合。在其它具体实施方案中,分子筛具有选自以下的结构类型:CHA,AEI,AFX,ERI,KFI,LEV,和它们的组合。在其它具体实施方案中,分子筛具有选自CHA、AEI和AFX的结构类型。在一个或多个非常特定的实施方案中,分子筛具有CHA结构类型。
作为沸石的菱沸石包括天然的沸石类架状硅酸盐矿物,其具有大约下式:(Ca,Na2,K2,Mg)Al2Si4O12*6H2O(例如水合钙铝硅酸盐)。作为沸石的菱沸石的三种合成形式可以参见"沸石分子筛",D.W.Breck,1973年John Wiley&SonS出版,将其引入本文以供参考。Breck所报告的三种合成形式是:沸石K-G,参见J.Chem.SoC,第2822页(1956),Barrer等;沸石D,参见英国专利No.868,846(1961);和沸石R,参见美国专利No.3,030,181,将其引入本文以供参考。另一种作为沸石的菱沸石的合成形式SSZ-13的合成方法可以参美国专利No.4,544,538,将其引入本文以供参考。具有菱沸石晶体结构的分子筛合成形式、即硅铝磷酸盐34(SAPO-34)的合成方法可以参见美国专利4,440,871和No.7,264,789,将其引入本文以供参考。制备另一种具有菱沸石结构的合成分子筛、即SAPO-44的方法可以参见美国专利No.6,162,415,将其引入本文以供参考。
在一个或多个实施方案中,分子筛可以包括所有的硅铝酸盐、硼硅酸盐、镓硅酸盐、MeAPSO、和MeAPO组合物。这些包括、但不限于SSZ-13,SSZ-62,天然菱沸石,沸石K-G,Linde D,Linde R,LZ-218,LZ-235,LZ-236,ZK-14,SAPO-34,SAPO-44,SAPO-47,ZYT-6,CuSAPO-34,CuSAPO-44,和CuSAPO-47。
硅铝酸盐分子筛中的氧化硅与氧化铝之间的比率可以在宽范围内变化。在一个或多个实施方案中,分子筛组分具有的氧化硅与氧化铝之间的摩尔比率(SAR)是在2-300的范围内,包括5-250;5-200;5-100;和5-50。在一个或多个具体实施方案中,分子筛具有的氧化硅与氧化铝之间的摩尔比率(SAR)是10-200,10-100,10-75,10-60,和10-50;15-100,15-75,15-60,和15-50;20-100,20-75,20-60,和20-50。在更特定的实施方案中,分子筛具有任何上述SAR范围之一,分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.0-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
硅被四价金属的同晶取代将影响沸石骨架材料的氧化硅/氧化铝比率。在一个或多个实施方案中,分子筛是被四价金属同晶取代的,并且具有氧化硅与氧化铝之间的摩尔比率(SAR)是在2-300的范围内,包括5-250;5-200;5-100;和5-50。在一个或多个具体实施方案中,第一个和第二个分子筛独立地具有氧化硅与氧化铝之间的摩尔比率(SAR)为10-200,10-100,10-75,10-60,和10-50;15-100,15-75,15-60,和15-50;20-100,20-75,20-60,和20-50。
在其中分子筛被四价金属同晶取代的实施方案中,四价金属与氧化铝之间的比率可以在非常宽的范围内变化。应当注意的是,此比率是原子比率,而不是摩尔比率。在一个或多个实施方案中,四价金属与氧化铝之间的比率是在0.0001-10000的范围内,包括0.0001-10000,0.001-1000,和0.01-10。在其它实施方案中,四价金属与氧化铝之间的比率是在0.01-10的范围内,包括0.01-10,0.01-5,0.01-2,和0.01-1。在具体实施方案中,四价金属与氧化铝之间的比率是在0.01-2的范围内。
在其中分子筛被四价金属同晶取代的具体实施方案中,四价金属包含钛,并且氧化钛与氧化铝之间的比率是在0.0001-10000的范围内,包括0.0001-10000,0.001-1000,和0.01-10。在其它实施方案中,氧化钛与氧化铝之间的比率是在0.01-10的范围内,包括0.01-10,0.01-5,0.01-2,和0.01-1。在具体实施方案中,氧化钛与氧化铝之间的比率是在0.01-2的范围内。
氧化硅与四价金属之间的比率可以在宽范围内变化。应当注意的是,此比率是原子比率,而不是摩尔比率。在一个或多个实施方案中,氧化硅与四价金属之间的比率是在1-100的范围内,包括1-50,1-30,1-25,1-20,5-20,和10-20。在具体实施方案中,氧化硅与四价金属之间的比率是约15。在一个或多个实施方案中,四价金属包含钛,并且氧化硅与氧化钛之间的比率是在1-100的范围内,包括1-50,1-30,1-25,1-20,5-20,和10-20。在具体实施方案中,氧化硅与氧化钛之间的比率是约15。
助催化剂金属:
一个或多个实施方案的分子筛可以随后与一种或多种助催化剂金属进行离子交换,例如铁、铜、钴、镍、铈或铂族金属。沸石以及相关的微孔和大孔材料的合成方法是根据沸石材料的结构类型而不同的,但是通常涉及组合多种组分(例如氧化硅、氧化铝、磷、碱金属、有机模板等)以形成合成凝胶,其然后进行水热结晶以形成最终产物。结构定向剂可以是有机形式,即四乙基氢氧化铵(TEAOH),或无机阳离子,即Na+或K+。在结晶期间,四面体单元组织在SDA周围以形成所需的骨架,SDA通常被包埋在沸石晶体的孔结构内。在一个或多个实施方案中,分子筛的结晶可以通过加入结构定向剂/模板、晶核或元素得到。在一些情况下,结晶可以在小于100℃的温度下进行。
这里使用的"助催化的"表示特意加入分子筛中的组分,其与在分子筛内的固有杂质不同。因此,与未特意加入助催化剂的催化剂相比,特意加入助催化剂以提高催化剂的活性。为了促进氮氧化物的SCR,在一个或多个实施方案中,合适的金属被交换到分子筛中。根据一个或多个实施方案,分子筛是被选自以下的金属助催化的:Cu,Fe,Co,Ni,La,Ce,Mn,V,Ag,和它们的组合。在具体实施方案中,分子筛是被选自以下的金属助催化的:Cu,Fe,和它们的组合。
在一个或多个实施方案中,作为氧化物计算,分子筛的助催化剂金属含量是至少约0.1重量%,在不含挥发物的基础上报告。在具体实施方案中,助催化剂金属包含Cu,并且作为CuO计算的Cu含量是至多约10重量%,包括9重量%、8重量%、7重量%、6重量%、5重量%、4重量%、3重量%、2重量%、1重量%、0.5重量%和0.1重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在具体实施方案中,作为CuO计算,Cu含量是在约2-5重量%的范围内。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为2-300的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为5-250的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为5-200的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为5-100的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为5-50的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为10-250的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为10-200的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为10-100的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为10-75的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为10-60的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为10-50的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为15-100的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为15-75的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为15-60的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为15-50的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为20-100的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为20-75的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为20-60的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
对于具有SAR为20-50的特定分子筛,Cu含量可以是0.1-10重量%,或0.5-8重量%,或0.8-6重量%,或1-4重量%,或甚至2-3重量%,在每种情况下基于煅烧的分子筛的总重量计,在无挥发性的氧化物的基础上报告。在更特定的实施方案中,分子筛具有SAR和Cu含量的这种特定组合,此分子筛的球形粒子具有在约0.5-5微米范围内的中值粒径,更尤其是约1.2-3.5微米,并且各个分子筛晶体具有在约100-250nm范围内的晶体尺寸。
不意欲受限于任何理论,认为当分子筛被四价金属同晶取代时,四价金属作为四面体原子被包埋在沸石骨架中,允许在结构上和在电子上都紧密地偶联到活性助催化剂金属中心。在一个或多个实施方案中,助催化剂金属可以被离子交换到同晶取代的分子筛中。在具体实施方案中,铜被离子交换到同晶取代的分子筛中。金属可以在制备或生产同晶取代的分子筛之后交换。
孔隙率以及粒子的形状和尺寸:
在一个或多个实施方案中,催化剂材料包含球形粒子,此球形粒子包括分子筛晶体的聚集体。这里使用的术语"聚集体"或"聚集"表示初级粒子、即分子筛晶体的簇或集合。
在一个或多个实施方案中,球形粒子具有在约0.5-5微米范围内的中值粒径,包括0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.25,1.3,1.35,1.4,1.45,1.5,1.75,2.0,2.25,2.5,2.75,3.0,3.25,3.5,3.75,4,4.24,4.5,4.75和5微米。球形粒子的粒径可以用显微术检测,更特别是扫描电子显微术(SEM)。在一个或多个具体实施方案中,球形粒子具有在约1.0-5微米范围内的中值粒径,包括约1.2-3.5微米的范围。这里使用的术语"中值粒径"表示球形粒子的中等横截面直径。在一个或多个实施方案中,至少80%的球形粒子具有0.5-2.5微米的中值粒径。
在一个或多个实施方案中,分子筛的各个晶体具有在约1-250nm范围内的晶体尺寸,包括1,5,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230,240和250nm。各个分子筛晶体的晶体尺寸可以用显微术检测,更特别是扫描电子显微术(SEM)。在具体实施方案中,各个分子筛晶体的晶体尺寸是约100-250nm,或约100-200nm。通常,对于各个分子筛晶体的形状没有特别的限制。在一个或多个实施方案中,分子筛的各个晶体毫无限制地可以是立方形,球形,小片状,针状,等角的,八边形,四边形,六边形,斜方形,三角形等等,或它们的任何组合。
不意欲受限于任何理论,在一个或多个实施方案中,认为催化剂材料具有单分散的雪球结构。这里使用的单分散雪球表示许多分子筛晶体排布或集合成基本球形的物质。这里使用的术语"单分散"表示各个分子筛晶体是均匀的并具有大约相同的尺寸,其晶体尺寸在约1-250纳米的范围内。单分散雪球是与形成雪球的各个雪粒子相似的。在其它实施方案中,催化剂材料具有球形的雪球结构,其中至少80%的球形粒子具有在0.5-2.5微米的范围内的中值粒径。
在一个或多个实施方案中,各个分子筛晶体形成微型聚集体,其然后形成宏观聚集的雪球结构。在一个或多个实施方案中,微型聚集体具有小于1.0微米的尺寸,包括小于0.9、小于0.8、小于0.7、小于0.6、小于0.5、小于0.4、小于0.3、小于0.2和小于0.1微米,并且宏观聚集体的球形雪球具有在约0.5至约5微米的范围内的粒径,包括约1.2至约3.5微米。微型聚集体的尺寸可以用显微术检测,更特别是扫描电子显微术(SEM)。
在一个或多个实施方案中,分子筛包含同晶取代的沸石骨架材料,其中一定比例的硅原子是被四价金属同晶取代的。根据本发明实施方案的同晶取代的沸石骨架材料可以作为载体涂层提供。同晶取代的沸石骨架材料提供载体涂层,其通常是十分多孔的。同晶取代的沸石骨架材料通常具有在1-2μm范围内的粒径。另外,不意欲受限于任何理论,认为四价金属、尤其是钛的存在能控制沸石晶体,从而得到单分散的雪球结构。换句话说,分子筛包括分子筛晶体的聚集体,其被四价金属同晶取代。对于本领域技术人员而言显然的是,包含同晶取代沸石骨架材料的分子筛的粒子显著大于根据本领域常规方法制备的具有CHA结构的分子筛。已知这种常规制备的分子筛具有小于约0.5μm的粒径。
一个或多个实施方案的单分散雪球结构可以通过图1更好地理解。参见图1,显示催化剂材料的示例性实施方案。催化剂材料包含球形粒子10,其包括分子筛晶体20的聚集体。球形粒子10具有粒径Sp为约0.5-5微米,包括约1.2-3.5微米。各个分子筛晶体20的晶体尺寸Sc是在约1-250纳米的范围内,包括约100-250nm,或100-200nm。在一个或多个实施方案中,各个分子筛晶体20形成微型聚集体30,其然后形成宏观聚集的雪球结构10。微型聚集体30的尺寸Sm是在小于1.0微米且大于0微米的范围内。
对于本领域技术人员而言显然的是,分子筛晶体的球形粒子在结构方面显然不同于具有CHA结构的分子筛,后者不具有聚集的雪球结构。
根据本发明实施方案的催化剂材料可以以粉末或喷涂材料的形式从分离技术提供,分离技术包括滗析、过滤、离心或喷洒。
通常,粉末或喷涂材料可以在没有任何其它化合物的情况下成型,例如通过合适的压实,从而得到具有所需几何形状的模制品,例如粒料、圆柱体、球形体等等。
例如,粉末或喷涂材料与本领域公知的合适改进剂混合或被其涂覆。例如,可以使用改进剂,例如氧化硅、氧化铝、沸石或耐火粘合剂(例如锆前体)。粉末或喷涂材料,任选地在与合适改进剂混合或被其涂覆之后,可以形成浆液,例如与水形成浆液,此浆液沉积到合适的耐火载体上,例如流通式蜂窝基材载体或壁流式蜂窝基材载体。
根据本发明实施方案的催化剂材料也可以以挤出物、粒料、片料或任何其它合适形状的粒子的形式提供,用作颗粒催化剂的填充床,或用作成型料例如片料、鞍形体、管等等。
SCR催化剂复合材料:
政府法规要求轻载型和重载型交通工具必须使用NOx还原技术。使用氨进行NOx的选择性催化还原(SCR)是一种有效和主要的用于NOx控制的排放控制技术。在一个示例性实施方案中提供一种SCR催化剂复合材料,其在400℃和更高的温度下具有改进的氨储存能力,并具有在水中促进氨储存的能力。虽然一个或多个实施方案的催化剂材料可以用于任何稀燃发动机中,包括柴油发动机、稀燃汽油直接注射式发动机和压缩天然气发动机,在具体实施方案中的催化剂材料用于稀燃汽油直接注射式(GDI)发动机中。
本发明的实施方案涉及催化剂复合材料,其包含SCR催化剂材料和氨储存材料,所述氨储存材料含有具有氧化态IV的过渡金属。SCR催化剂复合材料能在400℃和更高的温度下储存氨,并且在400℃时的最小NH3储存量是0.1g/L。在一个或多个实施方案中,SCR催化剂材料促进氨与氮氧化物选择性地在150-600℃的温度范围内反应以形成氮气和H2O,并且氨储存材料能在400℃和更高的温度下储存氨,并且在400℃时的最小NH3储存量是0.1g/L。惊奇地发现此催化剂复合材料特别适用于废气提纯催化剂组分中,特别是作为SCR催化剂。
根据一个或多个实施方案,SCR催化剂复合材料包含SCR催化剂材料和氨储存材料。在一个或多个实施方案中,SCR催化剂材料包含分子筛、混合氧化物和活化的耐火金属氧化物载体中的一种或多种。
在一个或多个实施方案中,SCR催化剂材料包含分子筛。根据一个或多个实施方案,氨储存材料包含具有氧化态IV的过渡金属。不意欲受限于任何理论,认为具有正式氧化态为IV的元素的存在有助于提高在高温下的氨储存。在一个或多个实施方案中,具有氧化态IV的过渡金属可以是氧化物的形式,或固有地包埋在SCR催化剂材料中。这里使用的术语“具有氧化态IV的过渡金属”表示金属具有这样的状态:在其价键中具有可用于共价化学键合的四个电子(最外的电子壳)。具有氧化态IV的过渡金属包括锗(Ge),铈(Ce),和在元素周期表第4族中的那些过渡金属,钛(Ti),锆(Zr),和铪(Hf)。在一个或多个实施方案中,具有氧化态IV的过渡金属是选自Ti,Ce,Zr,Hf,Ge,和它们的组合。在具体实施方案中,具有氧化态IV的过渡金属包含Ti。
本发明的一个或多个实施方案涉及SCR催化剂复合材料,其包含SCR催化剂材料和氨储存材料,所述氨储存材料含有具有氧化态IV的过渡金属,其中SCR催化剂材料和氨储存材料具有层状的排布或关系。在一个或多个实施方案中,氨储存材料可以是任何柔性形式,例如层状或均匀地与SCR催化剂材料混合,和固有地适用于相同的SCR催化剂材料中。根据一个或多个实施方案,氨储存材料作为层分散在SCR催化剂材料的顶部。根据一个或多个实施方案,SCR催化剂材料是涂覆在基材上的载体涂层,和然后氨储存材料被载体涂覆到覆盖SCR催化剂材料的层中。
在其它实施方案中,SCR催化剂材料和氨储存材料是按照区域化构造排布的。在一个或多个实施方案中,SCR催化剂材料和氨储存材料是按照侧向区域化构造排布的,其中氨储存材料处于SCR催化剂材料的上游。这里使用的术语“侧向区域化”表示SCR催化剂材料和氨储存材料彼此的相对位置。侧向表示肩并肩的方式,以使SCR催化剂材料和氨储存材料处于相邻位置,且氨储存材料处于SCR催化剂材料的上游。这里使用的术语“上游”和“下游”表示根据发动机废气料流从发动机向尾气管流动的相对方向,其中发动机处于上游位置,尾气管和任何污染物减少制品例如过滤器和催化剂是处于发动机的下游。根据一个或多个实施方案,侧向区域化的氨储存材料和SCR催化剂材料可以布置在相同或共同的基材上,或者处于彼此分开的不同基材上。
在另一个实施方案中,SCR催化剂材料与氨储存材料进行离子交换。
在一个或多个实施方案中,当在层状或区域化的排布中时,具有氧化态IV的过渡金属可以以氧化物形式存在,可以进行离子交换,或可以在沸石骨架位置处被同晶取代。例如,在具体实施方案中,具有氧化态IV的过渡金属包含钛。在其中具有氧化态IV的过渡金属以氧化形式存在的实施方案中,包含具有氧化态IV的过渡金属的氨储存材料被分散在载体材料中。
参见图2,显示了侧向区域化体系的示例性实施方案。SCR催化剂复合材料200显示在侧向区域化排布中,其中氨储存材料210处于在共同的基材230上的SCR催化剂材料220的上游。基材230具有入口端240和出口端250以限定轴向长度L。在一个或多个实施方案中,基材230通常包含蜂窝基材的多个通道260,其中为了清楚,在横截面中仅仅显示一个通道。氨储存材料210从基材230的入口端240延伸经过小于基材230的整个轴向长度L。氨储存材料210的长度是在图2中表示为第一个区域210a。氨储存材料210包含具有氧化态IV的过渡金属。SCR催化剂材料220从基材230的出口端250延伸经过小于基材230的整个轴向长度L。SCR催化剂材料220的长度是在图2中表示为第二个区域220a。SCR催化剂材料220促进氨与氮氧化物选择性地在150-600℃的温度范围内反应以形成氮气和H2O,并且氨储存材料210能在400℃和更高的温度下储存氨,且最小NH3储存量是0.00001g/L。
应当理解的是,第一个区域210a的长度和第二个区域220a的长度可以变化。在一个或多个实施方案中,第一个区域210a和第二个区域220a可以具有相等的长度。在其它实施方案中,第一个区域可以是基材长度L的20%、25%、35%或40%、60%、65%,75%或80%,其中第二个区域相应地覆盖基材长度L的其余部分。
参见图3,显示侧向区域化SCR催化剂复合材料110的另一个实施方案。所示的SCR催化剂复合材料110是侧向区域化排布,其中氨储存材料118处于在分开的基材112和113上的SCR催化剂材料120的上游。氨储存材料118处于基材112上,和SCR催化剂材料处于另一个基材113上。基材112和113可以由相同的材料或不同的材料构成。基材112具有入口端122a和出口端124a,后者限定轴向长度L1。基材113具有入口端122b和出口端124b以限定轴向长度L2。在一个或多个实施方案中,基材112和113通常包含蜂窝基材的多个通道114,其中为了清楚起见在横截面中显示仅仅一个通道。氨储存材料118从基材112的入口端122a延伸经过基材112的整个轴向长度L1至出口端124a。氨储存材料118的长度在图3中表示为第一个区域118a。氨储存材料118包含具有氧化态IV的过渡金属。SCR催化剂材料120从基材113的出口端124b延伸经过基材113的整个轴向长度L2至入口端122b。SCR催化剂材料120限定了第二个区域120a。SCR催化剂材料的长度在图3中表示为第二个区域20b。SCR催化剂材料120促进氨与氮氧化物选择性地在150-600℃的温度范围内反应以形成氮气和H2O,并且氨储存材料118能在400℃和更高的温度下储存氨,且最小NH3储存量是0.00001g/L。区域118a和120a的长度可以如图2所示变化。
在一个或多个实施方案中,包含氨储存材料和SCR催化剂材料的SCR催化剂复合材料被涂覆到流通式或壁流式过滤器上。图4A和4B显示壁流式过滤器基材35,其具有多个通道52。这些通道是被过滤器基材的内壁53以管状封闭的。基材具有入口端54和出口端56。其它通道是在具有入口塞子58的入口端和具有出口塞子60的出口端被塞住,从而形成在入口54和出口56处的相反棋盘格子图案。气体料流62进入未塞住的通道入口64,被出口塞子60截住,并经由通道壁53(其是多孔的)扩散到出口侧66。气体不能返回壁的入口侧,这是因为入口塞子58。
在一个或多个实施方案中,壁流式过滤器基材是由陶瓷类材料组成的,例如堇青石,α-氧化铝,碳化硅,氮化硅,氧化锆,莫来石,锂辉石,氧化铝-氧化硅-氧化镁或硅酸锆,或是由多孔的耐火金属组成。在其它实施方案中,壁流式基材是由陶瓷纤维复合材料形成的。在具体实施方案中,壁流式基材是从堇青石和碳化硅形成的。这些材料能够耐受在处理废气料流中遇到的环境,特别是高温。
在一个或多个实施方案中,壁流式基材包括多孔薄壁的蜂窝整料,流体料流从此整料通过,且不会引起背压或沿着制品的压力的过大增加。通常,干净的壁流式制品的存在将产生1英寸水柱至10psig的背压。在此体系中使用的陶瓷壁流式基材是由具有孔隙率为至少50%(例如50-75%)且平均孔径为至少5微米(例如5-30微米)的材料形成的。在一个或多个实施方案中,基材具有至少55%的孔隙率和具有至少10微米的平均孔径。当具有这些孔隙率和平均孔径的基材用如下所述的技术涂覆时,充足水平的催化剂组合物可以负载到基材上以实现优异的NOx转化效率。尽管负载了SCR催化剂,这些基材仍然能保持充足的废气流动特性,即可接受的背压。将美国专利No.4,329,162中关于合适壁流式基材的内容引入本文以供参考。
典型的在工业中使用的壁流式过滤器具有比用于本发明中的壁流式过滤器更低的壁孔隙率,例如约35-50%。通常,工业壁流式过滤器的孔径分布通常是非常宽的,平均孔径小于17微米。
用于一个或多个实施方案中的多孔壁流式过滤器进行催化,因为所述元件的壁在其上具有或在其中含有一种或多种SCR催化材料。催化材料可以存在于元件壁的仅仅入口侧上,仅仅存在于出口侧上,或同时存在于入口和出口侧上,或壁本身可以全部或部分地由催化材料组成。本发明包括在元件的入口和/或出口壁上使用一层或多层的催化材料以及一层或多层催化材料的组合。
为了用一个或多个实施方案的SCR催化剂复合材料涂覆壁流式基材,将基材垂直地浸入一部分的催化剂浆液中,使得基材的顶部刚好位于浆液表面上。以此方式,浆液接触每个蜂窝壁的入口端面,但是防止与每个壁的出口端面接触。样品留在浆液中达到约30秒。从浆液取出基材,并从壁流式基材除去过量的浆液,这通过首先从通道排干,然后用压缩空气吹扫进行(与浆液穿透的方向相反),并然后从浆液穿透方向施加真空。通过使用此技术,催化剂浆液渗透基材的壁,但是这些孔不会被包藏达到在最终基材中形成不合理背压的程度。当用于描述在基材上分散催化剂浆液时,这里使用的术语"渗透物"表示催化剂组合物被分散在基材的壁中。
经涂覆的基材通常在约100℃下干燥,并在更高的温度下煅烧(例如300-450℃)。在煅烧之后,催化剂负载量可以通过计算经涂覆和未涂覆的基材重量测定。本领域技术人员将能理解,催化剂负载量可以通过改变涂料浆液的固含量改进。或者,可以将基材在涂料浆液中重复浸渍,然后如上所述除去过量的浆液。
根据一个或多个实施方案,SCR催化剂复合材料的氨储存材料被分散在SCR催化剂材料中。因此,根据本发明的实施方案,SCR催化剂材料包含分子筛,其具有硅(Si)和铝(Al)离子和任选地磷(P)离子的骨架,其中一定比例的硅原子被包含具有氧化态IV的过渡金属的氨储存材料同晶取代。
在一个或多个实施方案中,可以在SCR催化剂复合材料的下游提供氨氧化(AMOx)催化剂以除去任何从废气处理体系逃逸的氨。在具体实施方案中,AMOx催化剂可以包含铂族金属例如铂、钯、铑或它们的组合。
AMOx和/或SCR催化剂材料可以涂覆在流通式或壁流式过滤器上。如果使用壁流式基材,则所得的体系将能除去颗粒物质和气态污染物。壁流式过滤器基材可以由本领域公知的材料制成,例如堇青石、钛酸铝或碳化硅。应当理解的是,催化组合物在壁流式基材上的负载量将取决于基材性能,例如孔隙率和壁厚度,并将通常低于在流通式基材上的负载量。
在一个或多个实施方案中,一定比例的硅原子是被具有氧化态IV的过渡金属同晶取代的。换句话说,在沸石骨架材料中的一定比例的硅原子被具有氧化态IV的过渡金属代替。这种同晶取代不会显著改变沸石骨架材料的晶体结构。
通常,需要抑制在沸石SCR催化剂上的NH3储存以获取更快的对于高度动态发动机操作的NOx转化响应。不意欲受限于任何理论,认为使用现有技术的SCR催化剂,所需的高温NH3储存是不可能依靠在沸石孔隙率中的弱NH3物理吸附作用或者未使用的交换位点的布朗斯台德酸性实现的,这是由于存在较高量的竞争性水蒸气。
所以,必须利用第二功能位点,也就是利用路易斯酸性,其能进行高温NH3储存,并能区分用于储存的NH3和H2O。认为因为NH3本身是亲核性的(或更通常是碱性的),所以路易斯酸性可以提供另一种NH3储存方式。因此,具有不同氧化态的过渡金属可以提供可调节的路易斯酸性强度。通常,过渡金属的氧化态越高,预计路易斯酸性越强。因此,认为具有氧化态IV的过渡金属将获得能在较高温度下储存NH3的催化剂材料。
在一个或多个实施方案中,SCR催化剂材料包含含有SiO4/AlO4四面体的分子筛。在一个或多个实施方案中,SCR催化剂材料是被氨储存材料同晶取代的。在这种实施方案中,SCR催化剂材料包含MO4/SiO4/AlO4四面体(其中M是具有氧化态IV的过渡金属),并且经由共同的氧原子连接以形成三维网络。同晶取代的具有氧化态IV的过渡金属作为四面体原子(MO4)被包埋在分子筛中。同晶取代的四面体单元则与硅和铝四面体单元一起形成分子筛的骨架。在具体实施方案中,具有氧化态IV的过渡金属包含钛,SCR催化剂材料则包括TiO4/SiO4/AlO4四面体。
在其它实施方案中,SCR催化剂材料包含含有SiO4/AlO4/PO4四面体的分子筛。在一个或多个实施方案中,SCR催化剂材料是被氨储存材料同晶取代的。在这种实施方案中,SCR催化剂材料包含MO4/SiO4/AlO4/PO4四面体(其中M是具有氧化态IV的过渡金属)并且经由共同的氧原子连接以形成三维网络。同晶取代的具有氧化态IV的过渡金属作为四面体原子(MO4)被包埋在分子筛中。同晶取代的四面体单元则与硅、铝和磷四面体单元一起形成分子筛的骨架。在具体实施方案中,具有氧化态IV的过渡金属包含钛,SCR催化剂材料则包括TiO4/SiO4/AlO4/PO4四面体。
一个或多个实施方案的同晶取代的分子筛是主要根据空隙的几何形状区分的,这些空隙是经由MO4/(SiO4)/AlO4四面体的刚性网络形成的(其中M是具有氧化态IV的过渡金属)。
在一个或多个实施方案中,SCR催化剂材料的分子筛具有选自上文所述任何一种的结构类型。在一个或多个具体实施方案中,分子筛具有选自以下的结构类型:MFI,BEA,AEI,AFT,AFX,CHA,EAB,EMT,ERI,FAU,GME,JSR,KFI,LEV,LTL,LTN,MOZ,MSO,MWW,OFF,SAS,SAT,SAV,SBS,SBT,SFW,SSF,SZR,TSC,WEN,和它们的组合。在其它具体实施方案中,分子材料具有选自以下的结构类型:MFI,BEA,CHA,AEI,AFX,ERI,KFI,LEV,和它们的组合。在非常特定的实施方案中,分子筛具有选自CHA、AEI和AFX的结构类型。在非常特定的实施方案中,分子筛包含SSZ-13,SSZ-39,或SAPO-34。在另一个非常特定的实施方案中,分子筛是硅铝酸盐沸石类型,并具有AEI结构类型,例如SSZ-39。根据一个或多个实施方案,应当理解的是,通过用其结构类型限定分子筛,可以包括此结构类型以及任何一种和全部异构类型的骨架材料,例如具有相同结构类型的SAPO、A1PO和MeAPO材料。
分子筛的氧化硅与氧化铝之间的比率可以在宽范围内变化。在一个或多个实施方案中,分子筛具有氧化硅与氧化铝之间的摩尔比率(SAR)在2-300的范围内,包括5-250;5-200;5-100;和5-50。在一个或多个具体实施方案中,分子筛具有氧化硅与氧化铝之间的摩尔比率(SAR)是10-200,10-100,10-75,10-60,和10-50;15-100,15-75,15-60,和15-50;20-100,20-75,20-60,和20-50。
具有氧化态IV的过渡金属与氧化铝之间的比率可以在非常宽的范围内变化。在一个或多个实施方案中,具有氧化态IV的过渡金属与氧化铝之间的比率是在0.001-10000的范围内,包括0.001:10000,0.001-1000,0.01-10。在其它实施方案中,具有氧化态IV的过渡金属与氧化铝之间的比率是在0.01-10的范围内,包括0.01-10,0.01-5,0.01-2,和0.01-1。在具体实施方案中,具有氧化态IV的过渡金属与氧化铝之间的比率是在0.01-2的范围内。
在具体实施方案中,具有氧化态IV的过渡金属包含钛,并且氧化钛与氧化铝之间的比率是在0.001-10000的范围内,包括0.001:10000,0.001-1000,0.01-10。在其它实施方案中,氧化钛与氧化铝之间的比率是在0.01-10的范围内,包括0.01-10,0.01-5,0.01-2,和0.01-1。在具体实施方案中,氧化钛与氧化铝之间的比率是在0.01-2的范围内。在非常特定的实施方案中,氧化钛与氧化铝之间的比率是约1。
氧化硅与具有氧化态IV的过渡金属之间的比率可以在宽范围内变化。应当注意的是,此比率是原子比率,不是摩尔比率。在一个或多个实施方案中,氧化硅与具有氧化态IV的过渡金属之间的比率是在1-100的范围内,包括1-50,1-30,1-25,1-20,5-20,和10-20。在具体实施方案中,氧化硅与具有氧化态IV的过渡金属之间的比率是约15。在一个或多个实施方案中,具有氧化态IV的过渡金属包含钛,并且氧化硅与氧化钛之间的比率是在1-100的范围内,包括1-50,1-30,1-25,1-20,5-20,和10-20。在具体实施方案中,氧化硅与氧化钛之间的比率是约15。
为了促进氮氧化物的SCR,在一个或多个实施方案中,合适的金属被交换到SCR催化剂材料中。根据一个或多个实施方案,SCR催化剂材料是被选自以下的金属助催化的:Cu,Fe,Co,Ni,La,Ce,Mn,V,Ag,和它们的组合。在具体实施方案中,SCR催化剂材料是被选自以下的金属助催化的:Cu,Fe,和它们的组合。
SCR催化剂材料的助催化剂金属含量,作为氧化物计算,在一个或多个实施方案中是至少约0.1重量%,在不含挥发物的基础上报告。在具体实施方案中,助催化剂金属包含Cu,并且作为CuO计算,Cu含量是在至多约10重量%的范围内,包括9重量%,8重量%,7重量%,6重量%,5重量%,4重量%,3重量%,2重量%和1重量%,在每种情况下基于煅烧的SCR催化剂材料的总重量计,在无挥发物的基础上报告。在具体实施方案中,作为CuO计算,Cu含量是在约2-5重量%的范围内。
不意欲受限于任何理论,认为当SCR催化剂材料被含有具有氧化态IV的过渡金属的氨储存材料同晶取代时,具有氧化态IV的过渡金属作为四面体原子被包埋到分子筛骨架中,这允许在结构和电子上都紧密地偶联到活性助催化剂金属中心。在一个或多个实施方案中,助催化剂金属可以被离子交换到SCR催化剂材料中。在具体实施方案中,铜被离子交换到SCR催化剂材料中。金属可以在制备或生产SCR催化剂材料之后交换。
根据一个或多个实施方案,SCR催化剂材料包含混合氧化物。这里使用的术语"混合氧化物"表示氧化物,其含有多于一种化学元素的阳离子或者单种元素在多种氧化态下的阳离子。在一个或多个实施方案中,混合氧化物是选自Fe/氧化钛(例如FeTiO3),Fe/氧化铝(例如FeAl2O3),Mg/氧化钛(例如MgTiO3),Mg/氧化铝(例如MgAl2O3),Mn/氧化铝,Mn/氧化钛(例如MnOx/TiO2)(例如MnOx/Al2O),Cu/氧化钛(例如CuTiO),Ce/Zr(例如CeZrO2),Ti/Zr(例如TiZrO2),氧化钒/氧化钛(例如V2O5/TiO2),和它们的混合物。在具体实施方案中,混合氧化物包含氧化钒/氧化钛。氧化钒/氧化钛氧化物可以用钨(例如WO3)活化或稳定以提供V2O5/TiO2/WO3。在一个或多个实施方案中,SCR催化剂材料包含氧化钛,在其上已经分散了氧化钒。氧化钒可以按照1-10重量%的浓度分散,包括1、2、3、4、5、6、7、8、9、10重量%。在具体实施方案中,氧化钒被钨(WO3)活化或稳定。钨可以按照0.5-10重量%的浓度分散,包括1、2、3、4、5、6、7、8、9、10重量%。所有百分比都是基于氧化物计。
根据一个或多个实施方案,SCR催化剂材料包含耐火金属氧化物载体材料。这里使用的术语"耐火金属氧化物载体"和"载体"表示下层的高表面积材料,在其上负载了额外化合物或化学元素。载体粒子具有大于20埃和宽孔分布的孔。如这里所述,这些金属氧化物载体不包括分子筛,尤其不包括沸石。在特别的实施方案中,可以使用高表面积耐火金属氧化物载体,例如氧化铝载体材料,也称为"γ-氧化铝"或"活化氧化铝",其通常显示BET表面积超过60平方米/克("m2/g"),通常高达约200m2/g或更高。这些活化氧化铝通常是γ-和δ-氧化铝相的混合物,但是也可以含有显著量的ε-、κ-和θ-氧化铝相。除活化氧化铝之外的耐火金属氧化物可以作为载体用于在给定催化剂中的至少一部分的催化组分。例如,本体氧化铈、氧化锆、α-氧化铝和其它材料已经用于此用途。虽然许多这些材料的缺点是其BEI表面积显著低于活化氧化铝的表面积,但是此缺点倾向于被较大的耐久性或所得催化剂的性能提高所弥补。"BET表面积"具有其普通含义,参见BrunaueR,EmmetT,通过氮气吸附检测表面积的Teller方法。孔直径和孔体积也可以使用BET型氮气吸附或解吸实验检测。
本发明的一个或多个实施方案包括高表面积耐火金属氧化物载体,其包含选自以下的活化化合物:氧化铝,氧化铈,氧化锆,氧化硅,氧化钛,氧化硅-氧化铝,氧化锆-氧化铝,氧化钛-氧化铝,氧化镧-氧化铝,氧化镧-氧化锆-氧化铝,氧化钡-氧化铝,氧化钡-氧化镧-氧化铝,氧化钡-氧化镧-氧化钕-氧化铝,氧化铝-氧化铬,氧化铝-氧化铈,氧化锆-氧化硅,氧化钛-氧化硅,或氧化锆-氧化钛,和它们的组合。在一个或多个实施方案中,活化的耐火金属氧化物载体是用选自以下的金属交换的:Cu,Fe,Co,Ni,La,Ce,Mn,V,Ag,和它们的组合。
SCR活性:
在一个或多个实施方案中,选择性催化还原材料包含球形粒子,其包括分子筛晶体的聚集体,此材料显示在80000h-1气体小时空速下检测的老化NOx转化率在200℃时是至少50%。在具体实施方案中,催化剂显示在80000h-1气体小时空速下检测的老化NOx转化率在450℃时是至少70%。更尤其是,老化NOx转化率在200℃时是至少55%,和在450℃是至少75%,甚至更尤其是,老化NOx转化率在200℃时是至少60%和在450℃时是至少80%,这在80000h-1气体小时空速下在稳态条件下、在最大NH3逃逸条件下在500ppm NO、500ppm NH3、10%O2、5%H2O和余量N2的气体混合物中检测。这些孔在管式炉中在含有10%H2O、10%O2和余量N2的空气流中在4000h-1空速下于750℃进行水热老化5小时。
SCR活性检测已经在文献中公开,参见例如PCT申请公开No.WO2008/106519。
另外,根据一个或多个实施方案,催化剂材料能有效地降低N2O量。
NO+的形成和氨储存:
另外,根据一个或多个实施方案,特别是当分子筛包含同晶取代的硅和铝原子的沸石骨架材料时,其中一定比例的硅原子被四价金属同晶取代,此材料能促进NO+的形成。不意欲受限于任何理论,认为沸石骨架材料的d6r单元是促进NO+形成的一个重要因素,这是由于d6r单元促进在两个六元环镜面之间的助催化剂金属(例如Cu)短程迁移/跳跃,以产生合适的用于NO+的空位,这要求也由d6r单元提供稳定的配位环境。
另外,根据一个或多个实施方案,特别是当SCR催化剂复合材料包含SCR催化剂材料和含有具有氧化态IV的过渡金属的氨储存材料时,SCR催化剂材料促进氨与氮氧化物选择性地在150-600℃范围内反应以形成氮气和H2O,并且氨储存材料能在约400℃和更高温度下储存氨,且最小氨储存量是0.00001g/L。在一个或多个实施方案中,废气料流的氧气含量是0-30%,水含量是1-20%。根据一个或多个实施方案的SCR催化剂复合材料即使在水的存在下也能吸附NH3。一个或多个实施方案的SCR催化剂复合材料显示比参比SCR催化剂材料和催化剂复合材料更突出的高温氨储存能力。
水也带有独电子对作为亲核物质,是在氨储存方面与路易斯酸位点竞争的最大竞争者。为了有效地被在贫GDI发动机的贫循环中产生的NOx利用,重要的是增加被化学吸附的NH3量,而不是物理吸附的NH3量。不意欲受限于任何理论,认为具有氧化态IV的过渡金属的路易斯酸性提高了SCR催化剂复合材料对于化学吸附氨的能力。因此,根据一个或多个实施方案的SCR催化剂复合材料具有改进的在约400℃和更高温度下的氨储存能力。
基材:
在一个或多个实施方案中,催化剂材料可以作为载体涂层施用到基材上。这里使用的术语"基材"表示整料材料,在其上布置催化剂,通常是载体涂层的形式。载体涂层是如下制备的:制备在液体介质中含有特定固含量(例如30-90重量%)的催化剂的浆液、然后将其涂覆到基材上并干燥以提供载体涂层。
这里使用的术语"载体涂层"具有本领域中的普通含义,即被施用到基材上的催化材料或其它材料的薄的粘附性涂层,例如蜂窝型载体元件,其是足够多孔的,从而允许正在处理的气体料流通过。
在一个或多个实施方案中,基材是具有蜂窝结构的陶瓷或金属。可以使用任何合适的基材,例如具有从基材入口端面或出口端面延伸的多个精细的平行气流通道的整料基材,使得这些通道对于从中流过的流体是开放的。从其流体入口到其流体出口基本成直线路径的那些通道被壁限定,在所述壁上,催化材料作为载体涂层涂覆,以使得从通道流过的气体与催化材料接触。整料基材的流动通道是薄壁的通道,其可以具有任何合适的横截面形状和尺寸,例如梯形、长方形、正方形、正弦形、六边形、椭圆形、圆形等。这些结构可以含有约60-900个或更多个气体入口开口(或"小孔")/平方英寸横截面。
陶瓷基材可以由任何合适的耐火材料制成,例如堇青石,堇青石-α-氧化铝、氮化硅,锆莫来石,锂辉石,氧化铝-氧化硅-氧化镁,硅酸锆,硅线石,硅酸镁,锆石,透锂长石,α-氧化铝,硅铝酸盐等。
用于本发明实施方案的催化剂的基材也可以是金属性质的,并且由一种或多种金属或金属合金组成。金属基材可以作为各种形状使用,例如粒料、波纹片材或整料形式。金属基材的具体例子包括耐热性的基础金属合金,尤其是其中铁是基本或主要组分的那些合金。这些合金可以含有镍、铬和铝中的一种或多种,并且这些金属的总量可以有利地占合金的至少约15重量%,例如约10-25重量%的铬,约1-8重量%的铝,和约0-20重量%的镍。
制备催化剂和催化剂材料:
合成常规CHA类型的分子筛
具有CHA结构的分子筛可以根据本领域公知的各种方法制备,例如参见美国专利Nos.4,544,538(Zones)和6,709,644(Zones),将其内容全部引入本文以供参考。
任选地NH4交换以形成NH4-菱沸石:
任选地,所得的碱金属沸石进行NH4交换以形成NH4-菱沸石。NH4-离子交换可以根据本领域公知的各种技术进行,例如参见Bleken,F.;Bjorgen,M.;PalumbO,L.;BordigA,S.;SvellE,S.;Lillerud,K.-P.;和OlsbyE,U.Topics in Catalysis 52,(2009),218-228。
合成雪球分子筛:
具有雪球型形态水的分子筛可以从金刚烷基三甲基氢氧化铵(ADAOH)、氢氧化钠水溶液、异丙醇铝粉末和胶态氧化硅制备。
合成同晶取代的沸石骨架材料:
根据一个或多个实施方案,提供合成包含同晶取代沸石骨架材料的选择性催化还原催化剂材料的方法。特别是,催化剂材料包含硅和铝原子的沸石骨架材料,其中一定比例的硅原子被四价金属同晶取代。
通常,同晶取代沸石骨架材料的钠形式可以从0.03Al2O3:SiO2:0.07TiO2:0.06Na2O:0.08ATMAOH:2.33H2O凝胶组合物通过高压釜水热合成制备。通过过滤回收产物,并且通过煅烧除去模板。最终的结晶材料可以用x-射线衍射研究表征。
H-形式可以通过氨形式的煅烧制备,这是通过用钠形式交换两次NH4NO3制备的。在NH4NO3交换过程中,Ti含量是未变化的/稳定的。
铜助催化的同晶取代沸石骨架可以通过用H-形式和Cu(OAc)2进行离子交换以得到所需量的助催化剂金属来制备。
合成同晶取代的分子筛:
根据一个或多个实施方案,提供合成SCR催化剂复合材料的方法,其包括SCR催化剂材料,后者包含被含有具有氧化态IV的过渡金属的氨储存材料同晶取代的分子筛。特别是,SCR催化剂复合材料包含SCR催化剂材料,其具有硅和铝原子的沸石骨架材料,其中一定比例的硅原子是被氨储存材料的具有氧化态IV的过渡金属同晶取代的。
通常,同晶取代分子筛的钠形式可以从0.03Al2O3:SiO2:0.07TiO2:0.06Na2O:0.08ATMAOH:2.33H2O凝胶组合物通过高压釜水热合成制备。通过过滤回收产物,并通过煅烧除去模板。最终的结晶材料可以用x-射线衍射研究表征。
H-形式可以通过氨形式的煅烧制备,这是通过用钠形式交换两次NH4NO3制备的。在NH4NO3交换过程中,Ti含量是未变化的/稳定的。
铜助催化的同晶取代沸石骨架可以通过用H-形式和Cu(OAc)2进行离子交换以得到所需量的助催化剂金属来制备。
还原NOx的方法和废气处理体系:
通常,上文所述的沸石材料可以用作分子筛、吸附剂、催化剂、催化剂载体,或其粘合剂。在一个或多个实施方案中,此材料是用作催化剂。
本发明的另一个方面涉及催化化学反应的方法,其中根据本发明实施方案的包括分子筛晶体聚集体的球形粒子用作催化活性材料。
本发明的另一个方面涉及催化化学反应的方法,其中根据本发明实施方案的被四价金属同晶取代的沸石骨架材料用作催化活性材料。
本发明的另一个方面涉及催化化学反应的方法,其中根据本发明实施方案的SCR催化剂复合材料用作催化活性材料,所述SCR催化剂复合材料包含SCR催化剂材料和含有具有氧化态IV的过渡金属的氨储存材料。
另外,所述催化剂材料和催化剂复合材料可以作为催化剂用于氮氧化物(NOx)的选择性还原(SCR),用于NH3的氧化,特别是用于在柴油体系中逃逸的NH3的氧化;用于氧化反应中,在具体实施方案中将额外贵金属金属组分(例如Pd、Pt))加入包含分子筛晶体的聚集体的球形粒子中。
一个或多个实施方案提供一种选择性地还原氮氧化物(NOx)的方法。在一个或多个实施方案中,此方法包括使含有NOx的废气料流与一个或多个实施方案的催化剂材料或催化剂复合材料接触。特别是,在氨或脲的存在下进行氮氧化物的选择性还原反应,其中本发明实施方案的选择性催化还原催化剂材料用作催化活性材料,其包含球形粒子,球形粒子包括分子筛晶体的聚集体,其中球形粒子的中值粒径是约0.5-5微米。
氨是对于静态动力装置选择的还原剂,而脲是对于移动SCR体系选择的还原剂。通常,SCR体系被整合到交通工具的废气处理体系中,并且也通常含有以下主要组件:根据本发明实施方案的选择性催化还原材料,其包含球形粒子,球形粒子包括分子筛晶体的聚集体,其中球形粒子的中值粒径是约0.5-5微米;脲储罐;脲泵;脲计量体系;脲注射器/喷嘴;和相应的控制单元。
在其它实施方案中,根据一个或多个实施方案的SCR催化剂复合材料作为SCR催化剂用于稀燃汽油直接注射式发动机的废气处理体系中。在这种情况下,根据一个或多个实施方案的SCR催化剂复合材料用作被动氨-SCR催化剂,并且能有效地在400℃和更高的温度下储存氨。
这里使用的术语"料流"广义地表示流动气体的任何组合,其可以含有固体或液体颗粒物质。术语"气态料流"或"废气料流"表示气态组分的料流,例如稀燃发动机的废气,其可以含有夹带的非气态组分,例如液滴、固体颗粒等。稀燃发动机的废气料流通常还包含燃烧产物,不完全燃烧的产物,氮氧化物,可燃性和/或碳质的颗粒物质(烟灰),以及未反应的氧气和氮气。
在本发明实施方案中使用的术语氮氧化物,NOx,表示氮的氧化物,尤其是一氧化二氮(N2O)、一氧化氮(NO)、三氧化二氮(N2O3)、二氧化氮(NO2)、四氧化二氮(N2O4)、五氧化二氮(N2O5)、过氧化氮(NO3)。
本发明的另一个方面涉及一种废气处理体系。在一个或多个实施方案中,废气处理体系包含:废气料流,其任选地含有还原剂,例如氨、脲和/或烃,和在具体实施方案中包含氨和/或脲;和选择性催化还原材料,其包含球形粒子,球形粒子包括分子筛晶体的聚集体,其中球形粒子的中值粒径是约0.5-5微米。此催化剂材料能有效地破坏在废气料流中的至少一部分的氨。
在一个或多个实施方案中,SCR催化剂材料可以处于基材上,例如烟灰过滤器。烟灰过滤器是催化或未催化的,可以处于SCR催化剂材料的上游或下游。在一个或多个实施方案中,此体系可以还包含柴油氧化催化剂。在具体实施方案中,柴油氧化催化剂处于SCR催化剂材料的上游。在其它具体实施方案中,柴油氧化催化剂和催化的烟灰过滤器是处于SCR催化剂材料的上游。
在具体实施方案中,废气是从发动机输送到排放系统中的下游的位置,和在更特定的实施方案中含有NOx,其中加入还原剂,并将添加还原剂的废气料流输送到SCR催化剂材料。
例如,催化的烟灰过滤器、柴油氧化催化剂和还原剂可以参见WO2008/106519,将其内容引入本文以供参考。在具体实施方案中,烟灰过滤器包含壁流式过滤器基材,其中这些通道是交替封闭的,允许气态料流从一个方向(入口方向)进入通道,经由通道的壁流过,并从另一个方向(出口方向)离开通道。
可以提供氨氧化(AMOx)催化剂,其处于一个或多个实施方案的SCR催化剂材料或催化剂复合材料的下游,从而除去任何从体系逃逸的氨。在具体实施方案中,AMOx催化剂可以包含铂族金属,例如铂、钯、铑,或它们的组合。
这些AMOx催化剂可以用于包括SCR催化剂的废气处理体系中。如共同申请的美国专利No.5,516,497中所述,将其全部内容引入本文以供参考,含有氧气、氮氧化物和氨的气态料流可以依次从第一种和第二种催化剂通过,第一种催化剂促进氮氧化物的还原,第二种催化剂促进过量氨的氧化或其它分解。如美国专利No.5,516,497所述,第一种催化剂可以是包含沸石的SCR催化剂,第二种催化剂可以是包含沸石的AMOx催化剂。
AMOx和/或SCR催化剂组合物可以被涂覆在流通式或壁流式过滤器上。如果使用壁流式基材,所得的体系将能除去颗粒物质和气态污染物。壁流式过滤器基材可以从本领域公知的材料制成,例如堇青石、钛酸铝或碳化硅。应当理解的是,在壁流式基材上的催化组合物的负载量将取决于基材性能,例如孔隙率和壁厚度,并将通常低于在流通式基材上的负载量。
下面通过实施例描述本发明。在描述这些示例性的本发明实施方案之前,应当理解的是本发明不限于在以下描述中提到的关于结构或工艺步骤的细节。本发明可以按照其它实施方案和按照不同的方式进行或实施。
实施例
对比例1-制备催化剂组合物和制品
CuCHA粉末催化剂是如下制备的:使用含有ADAOH(三甲基-1-金刚烷基氢氧化铵)的合成凝胶将菱沸石结晶,分离菱沸石产物,干燥和煅烧以除去有机模板(ADAOH)。将水、ADAOH溶液和氢氧化钠水溶液加入调配罐,并混合数分钟。然后在3-5分钟内加入铝源。然后在搅拌下在5分钟内加入胶态二氧化硅。混合继续进行另外30分钟,获得具有均匀组成的粘性凝胶。将凝胶转移到高压釜。将高压釜加热到170℃,并在搅拌的同时继续结晶18小时。将反应器冷却到<50℃并在卸载之前排空到大气压。在水热结晶之后,所得的悬浮液具有11.5的pH。将悬浮液与去离子水混合,并用陶瓷吸滤器过滤。然后将湿产物在空气中加热到120℃的温度达到4小时。干燥产物然后进一步在空气中于600℃煅烧5小时以除去模板,并确保C含量小于0.1重量%。
从图5中的晶体形态SEM图像可见,所合成的材料(对比例1)不具有聚集的形态,这由SEM分析(二次电子成像)在5000x的倍数下确认。
经煅烧的产物然后可以与Cu进行离子交换以得到含有金属的催化剂。
在Na形式的CHA与铜离子之间的离子交换反应是通过将浆液在约60℃下搅拌约1小时进行的。所得的混合物然后进行过滤以提供滤饼,滤饼用去离子水按照三份洗涤直到滤液成为透明和无色的,经洗涤的样品进行干燥。
所得的CuCHA催化剂包含约3-3.5重量%的CuO,这通过ICP分析测定。制得的CuCHA浆液具有40%的目标固体。浆液进行研磨,并将乙酸锆在稀乙酸中的粘合剂(含有30%ZrO2)在搅拌下加入浆液中。
将浆液涂覆到l"D x 3"L多孔陶瓷芯上,其具有孔密度为400cpsi(孔数目/平方英寸)和壁厚度为6.5密耳。经涂覆的芯在110℃下干燥3小时和在约400℃下煅烧1小时。再一次重复进行此涂覆工艺以达到目标载体涂层负载量为2-3g/in3
实施例2
使用与对比例1相同的原料制备本发明的聚集的(雪球)CHA材料,不同的是加入额外的水。凝胶制备工序也是与对比例1相同的。将高压釜加热到160℃,并在保持搅拌的同时继续结晶30小时。将反应器冷却到<50℃,并在卸载之前排空到大气压。在水热结晶之后,所得的悬浮液具有2.0的pH。将悬浮液与去离子水混合,并用陶瓷吸滤器过滤。然后将湿产物在空气中加热到120℃的温度达到4小时。干燥产物然后进一步在空气中于600℃煅烧5小时以除去模板,并确保C含量小于0.1重量%。
从图6中的晶体形态SEM图像可见,所合成的雪球材料(实施例2)具有直径为1-2微米的球体的特征二次结构,这由SEM分析(二次电子成像)在5000x的倍数下确认。各个分子筛晶体具有约100-200nm的晶体尺寸。
实施例3–Cu助催化
在实施例2的Na形式CHA与铜离子之间的离子交换反应是通过将浆液在约60℃下搅拌约1小时进行的。所得的混合物然后进行过滤以提供滤饼,滤饼用去离子水按照三份洗涤直到滤液成为透明和无色的,经洗涤的样品进行干燥。
所得的CuCHA催化剂包含约1.5-4重量%的CuO,这通过ICP分析测定。制得的CuCHA浆液具有40%的目标固体。浆液进行研磨,并将乙酸锆在稀乙酸中的粘合剂(含有30%ZrO2)在搅拌下加入浆液中。
实施例4-制备载体涂层
将实施例3的浆液然后涂覆到基材上以达到载体涂层负载量为2.1g/in3。载体涂层在空气中于130℃干燥5分钟。在最终的涂覆之后,将基材于450℃煅烧1小时。
实施例5–CuO负载量的研究
新鲜催化剂芯的氮氧化物选择性催化还原(SCR)效率和选择性是通过将500ppm的NO、500ppm的NH3、10%O2、5%H2O和余量N2的进料气体混合物加入装有1"D x 3"L催化剂芯的稳态反应器中检测的。此反应在80,000h-1的空速下在150-460℃的温度范围内进行。
将样品在10%H2O的存在下于750℃进行水热老化5小时,然后按照与上文关于新鲜催化剂芯进行SCR评价所述相同的方法检测氮氧化物SCR效率和选择性。
图7是显示NOx转化率(%)相对于CuO负载量(重量%)的条形图。
图8是显示N2O量(ppm)相对于CuO负载量(重量%)的条形图。
实施例6-NOx转化率
新鲜催化剂芯的氮氧化物选择性催化还原(SCR)效率和选择性是通过将500ppm的NO、500ppm的NH3、10%O2、5%H2O和余量N2的进料气体混合物加入装有1"D x 3"L催化剂芯的稳态反应器中检测的。此反应在80,000h-1的空速下在150-460℃的温度范围内进行。
将样品在10%H2O的存在下于750℃进行水热老化5小时,然后按照与上文关于新鲜催化剂芯进行SCR评价所述相同的方法检测氮氧化物SCR效率和选择性。
图9是显示实施例1(对比)的催化剂和实施例3的具有3.2%CuO的本发明催化剂的NOx转化率(%)相对于温度(℃)的图。
图10是显示实施例1(对比)的催化剂和实施例3的具有3.2%CuO的本发明催化剂的N2O量(ppm)相对于温度(℃)的图。
图11是显示实施例1(对比)的催化剂和实施例3的具有3.2%CuO的本发明催化剂在20ppm NH3逃逸时的NOx转化率(%)的条形图。实施例3的催化剂显示明显更高的在20ppmNH3逃逸时的NOx转化率(约高出15%),这表示在发动机测试条件期间的改进的瞬时性能。
如图9-11所示,与不具有雪球形态的SCR催化剂材料相比,雪球形态使得SCR催化剂材料具有改进的NOx转化效率和较低的N2O量。
同晶取代的分子筛
实施例7
同晶取代的沸石材料(Na-[Ti]CHA)是从0.03Al2O3:SiO2:0.07TiO2:0.06Na2O:0.08ATMAOH:2.33H2O凝胶组合物通过在155℃下进行高压釜水热合成5天制备的。产物通过过滤回收,并且通过于600℃煅烧5小时以除去模板。最终结晶材料的X-射线粉末衍射图案显示>90%的CHA相,并通过XRF测得氧化硅/氧化铝比率(SAR)为25。
实施例8
同晶取代的沸石材料(H-[Ti]CHA)是通过于500℃煅烧(4小时)NH4-[Ti]CHA制备的,后者是通过用实施例7的材料(Na-[Ti]CHA)交换两次NH4NO3(2.4M)制备的。在NH4NO3交换过程中,Ti含量是未改变的,4.3%相对于4.5%。
实施例9–对比
根据实施例7(H-[Ti]CHA)的方法制备沸石材料H-CHA,但是没有向合成凝胶添加Ti。
实施例10
铜助催化的同晶取代沸石材料(Cu2.72-[Ti]CHA)是使用实施例8的材料(H-[Ti]CHA)和Cu(OAc)2(0.06M)于50℃进行离子交换(2小时)制备的,显示Cu含量为2.72%(ICP)。
实施例11
铜助催化的同晶取代沸石材料(Cu3.64-[Ti]CHA)是使用实施例9的材料(H-[Ti]CHA)和Cu(OAc)2(0.125M)于50℃进行离子交换(2小时)制备的,显示Cu含量为3.64%(ICP)。
实施例12–对比
标准的铜助催化沸石材料(Cu2.75-CHA)是根据U.S.8404203B2所述的方法制备的,其中使用与实施例9相当的Cu含量(2.75%)。提供此材料作为用于基准的参比材料。
实施例13-对比
标准的铜助催化沸石材料(Cu3.84-CHA)是根据U.S.8404203B2所述的方法制备的,其中使用与实施例10相当的Cu含量(3.84%)。提供此材料作为用于老化基准的参比材料。
实施例14
Ti在四面体位置中的引入是通过涉及Ti的骨架拉伸(Ti-O-Si)在940-980cm-1处的指纹确认的,如图12所示。
实施例15
除了源自涉及Ti的骨架拉伸的指纹振动之外,由于高价骨架Ti(IV)导致的骨架酸性的提高也从NO+强度的增加确认,NO+的形成要求强的路易斯酸性,如图13所示。
实施例16
在Cu被交换到用于提供实施例10和11化合物的同晶取代沸石材料[Ti]CHA的酸位点之后,NO+的形成未受到影响。如图14所示,与处于平衡态的未改进的对比例12(Cu2.75-CHA)相比,实施例10的材料(Cu2.72-[Ti]CHA)显示产生更多NO+的优异能力。给定NO+对于亲核物质例如NH3具有高反应性的性质,证明所观察到的实施例10(Cu-[Ti]CHA)在低温(例如200℃)时的显著反应性增长是由于改进的在催化剂上产生和保持NO+的作用。
实施例17
从图15中的SEM图像可见,所合成的[Ti]CHA(实施例8)具有直径为1-2微米的球体的特征二次结构,这由SEM分析(二次电子成像)在5000x的倍数下确认。
实施例18
将实施例10的材料(Cu-[Ti]CHA)作为载体涂层按照2.1g/in3的负载量涂覆到流通式陶瓷基材上。典型的SCR实验条件包括模拟的柴油废气(500ppm NO、500ppm NH3、10%O2、5%H2O和余量的N2),温度范围是200-600℃。NO和NH3在不同温度下的转化率是用FTIR监控的。如果需要评价长期水热耐久性,则采用的老化条件是于750℃暴露于10%H2O达到5小时。
如图18A和18B中的SEM图像可见,与标准的铜助催化的沸石材料Cu-CHA相比,所合成的Cu-[Ti]CHA产生非常多孔的载体涂层(图18B)。
实施例19
图19显示材料的孔隙率和粒径。如图19所示,通过Hg侵入量检测显示,与未改进的Cu-CHA(实施例12)相比,从Cu-[Ti]CHA(实施例10)形成的载体涂层具有更偏向较大孔的孔隙率分布。
除了增加的载体涂层孔隙率之外,所合成的Cu-[Ti]CHA的粒径显著大于标准的铜助催化沸石材料的粒径。
实施例20
将催化剂Cu-[Ti]CHA作为载体涂层按照2.1g/in3的负载量涂覆到流通式陶瓷基材上。典型的SCR实验条件包括模拟的柴油废气(500ppm NO,500ppm NH3,10%O2,5%H2O,和余量的N2),温度范围是200-600℃。NO和NH3在不同温度下的转化率是用FTIR监控的。如果需要评价长期水热耐久性,则采用的老化条件是于750℃暴露于10%H2O达到5小时。
如图16所示,与不含Ti的类似样品(实施例6)相比,在相当的Cu%下,在骨架Ti(实施例10)的帮助下,在200℃时的SCR性能得到显著改进,并且没有观察到高温(600℃)NOx转化效率的降低。
实施例21
如图17所示,高Cu含量(例如Cu%>2.5%@SAR=30)在高温水热老化之后导致形成CuO,这积极地消耗了NH3,导致在高温端的SCR性能降低。骨架Ti(实施例11)的存在帮助缓解了高Cu负载样品在高温区域时的NH3消耗。
实施例22
按照与实施例7的材料相似的方法制备同晶取代的沸石材料(Na-[Ti]AEI)。通过过滤回收产物,并且通过于600℃煅烧5小时除去模板。
实施例23
同晶取代的沸石材料(H-[Ti]AEI)是通过NH4-[Ti]AEI于500℃煅烧(4小时)制备的,NH4-[Ti]AEI是通过用实施例21的材料(Na-[Ti]AEI)交换两次NH4NO3(2.4M)得到的。
实施例24
铜助催化的同晶取代沸石材料(Cu-[Ti]AEI)是通过使用实施例22的材料(H-[Ti]AEI)和Cu(OAc)2(0.06M)于50℃进行离子交换(2小时)制备的。
实施例25
按照与实施例7的材料相似的方法制备同晶取代的沸石材料(Na-[Ti]AFX)。通过过滤回收产物,并且通过于600℃煅烧5小时除去模板。
实施例26
同晶取代的沸石材料(H-[Ti]AFX)是通过NH4-[Ti]AFX于500℃煅烧(4小时)制备的,NH4-[Ti]AFX是通过用实施例24的材料(Na-[Ti]AFX)交换两次NH4NO3(2.4M)得到的。
实施例27
铜助催化的同晶取代沸石材料(Cu-[Ti]AFX)是通过使用实施例25的材料(H-[Ti]AFX)和Cu(OAc)2(0.06M)于50℃进行离子交换(2小时)制备的。
实施例28
同晶取代的沸石材料(Na-[Ti]CHA)是从0.03Al2O3:SiO2:0.07TiO2:0.06Na2O:0.08ATMAOH:2.33H2O凝胶组合物通过在155℃下进行高压釜水热合成5天制备的。产物通过过滤回收,并且通过于600℃煅烧5小时除去模板。最终结晶材料的X-射线粉末衍射图案显示>90%的CHA相,并通过XRF测得SAR为25。也可以通过适当调节在初始凝胶中的Si/Al比率得到其它SAR,例如20。
实施例29
同晶取代的沸石材料(H-[Ti]CHA)是通过于500℃煅烧(4小时)NH4-[Ti]CHA制备的,NH4-[Ti]CHA是通过用实施例27的材料(Na-[Ti]CHA)交换两次NH4NO3(2.4M)制备的。在NH4NO3交换过程中,Ti含量是未改变的,4.3%相对于4.5%。
实施例30
根据实施例28和29的方法制备沸石材料H-CHA,但是没有向用于沸石水热结晶的初始合成溶胶中添加Ti。
实施例31
铜助催化的同晶取代沸石材料(Cu-[Ti]CHA(SAR20))是使用实施例29的材料(H-[Tf]CHA)和Cu(OAc)2于50℃进行离子交换(2小时)制备的。改变在交换过程中的Cu浓度,获得一系列的铜沸石,例如Cu2.46-[Ti]CHA(实施例31a),Cu3.03-[Ti]CHA(实施例31b),Cu3.64-[Ti]CHA(实施例31c),和Cu3.78-[Ti]CHA(实施例31d)(在Cu之后的数字表示Cu的百分比)。
实施例32
标准的铜助催化沸石材料(Cu2.75-CHA)是根据U.S.8404203B2所述的方法制备的,并且提供此材料作为用于基准的参比材料。
实施例33-对比
按照与Cu-CHA相似的方式合成Fe-CHA(Fe:2.5%),但是在溶液交换中使用Fe(NO3)3,并用作对比样品。
实施例34-对比
来自BASF的商购Fe-Beta用作对比样品。
实施例35-对比
来自Sud-Chemie的商购Fe-MFI(SCP-306)用作对比样品。
实施例36
如图20所示,在骨架Ti的存在下,不仅在高温区域的NH3吸附量从15.2cm3/g增加到19.1cm3/g,而且解吸温度也略微提高10℃(例如从470℃到480℃),这表明除酸性质子之外的较强路易斯酸位点起到NH3储存组分的作用(实施例29相对于实施例30)。
实施例37
如图21所示,在Cu交换之后,提高Cu的百分比仅仅能增加在中等温度区域中的NH3储存,例如250-400℃。对于Cu-CHA(实施例32)、Cu2.46-[Ti]CHA(实施例31a)、Cu3.03-[Ti]CHA(实施例31)、Cu3.64-[Ti]CHA(实施例31c),最高解吸峰的积分值分别是12.8、23.8、28.8和23.8cm3/g。含有Ti的Cu-[Ti]CHA样品一致地显示在高于400℃时的双倍NH3保留容量(实施例32相对于实施例31)。
实施例38
如图22所示,但是,其它低价过渡金属、例如Fe(III)的存在并不能有效地促进在高于400℃时的NH3储存。对于Fe-MFI、Fe-CHA、Fe-Beta,高温(>400℃)储存容量分别是13.6、12.8、7.9cm3/g,这处于与未改进的Cu-CHA相似的水平。
实施例39
将Cu-CHA(实施例32)和Cu3.64-[Ti]CHA(实施例31c)都按照相同的载体涂料负载量涂覆到蜂窝上,并且在各温度(200℃,300℃,400℃,450℃,和500℃)下检测在5%H2O存在下的NH3储存。如图23所示,与未改进的Cu-CHA相比,直到400℃,在骨架Ti的帮助下,在Cu-[Tf]CHA上一致地发现更多的化学吸附NH3
实施例40
具有TiO2、A12O3和SiO2的商购非沸石复合材料是由来自共沉淀方法的基于Ti、Si、Al的氧化物组成的,也证明它们具有高温NH3储存特征。如图24所示,虽然与Cu-CHA(实施例32)相比,此商购材料的储存容量是较低的,但是解吸温度进一步增加。
实施例41
按照与实施例27所述材料相似的方式制备同晶取代的沸石材料(Na-[Ti]AEI)。通过过滤回收产物,并且通过于600℃煅烧5小时除去模板。
实施例42
同晶取代的沸石材料(H-[Ti]AEI)是通过NH4-[Ti]AEI于600℃煅烧(4小时)制备的,NH4-[Ti]AEI是通过用实施例41的材料(Na-[Ti]AEI)交换两次NH4NO3(2.4M)制备的。
实施例43
铜助催化的同晶取代的沸石材料(Cu-[Ti]AEI)是通过使用实施例42的材料(H-[Ti]AEI)和Cu(OAc)2(0.06M)于50℃进行离子交换(2小时)制备的。
实施例44
按照与实施例27所述材料相似的方式制备同晶取代的沸石材料(Na-[Ti]AFX)。通过过滤回收产物,并且通过于600℃煅烧5小时除去模板。
实施例45
同晶取代的沸石材料(H-[Ti]AFX)是通过NH4-[Ti]AFX于500℃煅烧(4小时)制备的,NH4-[Ti]AFX是通过用实施例44的材料(Na-[Ti]AFX)交换两次NH4NO3(2.4M)制备的。
实施例46
铜助催化的同晶取代的沸石材料(Cu-[Ti]AFX)是通过使用实施例45的材料(H-[Ti]AFX)和Cu(OAc)2(0.06M)于50℃进行离子交换(2小时)制备的。
除非另有说明,在本文中用于描述材料和方法时所用的术语“一种”和“一个”和“所述”(尤其在以下权利要求中)应当理解为同时包括单数和复数形式。除非另有说明,在本文中的数值范围仅仅是用于简化表示在此范围内的各个单独数值的方式,并且如果这里提到单独数值的话,每个单独数值也在说明书的范围中。在本文中描述的所有方法可以按照任何合适的顺序进行,除非另有说明或者明显与所述内容有矛盾。除非另有说明,这里提到的任何和所有实例或示例性语言(例如“例如”)仅仅用于更好地说明材料和方法,并不限制本发明的范围。在说明书中的语言都不应当理解为表示任何未提到的因素作为实施所公开的材料和方法的必要因素。
在本说明书中提到的“一个实施方案”、“特定实施方案”、“一个或多个实施方案”或“一种实施方案”表示在至少一个本发明实施方案中包括与此实施方案相关描述的具体的特征、结构、材料或特性。因此,在说明书中各处出现的用语例如“在一个或多个实施方案中”、“在特定实施方案中”、“在一个实施方案中”或“在一种实施方案中”不是必须指代相同的本发明实施方案。另外,具体的特征、结构、材料或特性可以在一个或多个实施方案中按照任何合适的方式组合。
虽然本文中已经参照具体实施方案描述本发明,但是应理解的是,这些实施方案仅仅说明本发明的原理和应用。对于本领域技术人员显而易见的是,可在不偏离本发明精神和范围的情况下,对本发明的方法和设备进行各种修改和变化。因此,本发明应当包括属于随附权利要求范围及其等同形式的范围内的修改和变化。

Claims (30)

1.一种选择性催化还原(SCR)材料,其包含球形粒子,球形粒子包括分子筛晶体的聚集体,其中球形粒子具有在约0.5-5微米范围内的中值粒径。
2.权利要求1的SCR催化剂材料,其中分子筛包含d6r单元。
3.权利要求2的SCR催化剂材料,其中分子筛具有选自以下的结构类型:AEI,AFT,AFX,CHA,EAB,EMT,ERI,FAU,GME,JSR,KFI,LEV,LTL,LTN,MOZ,MSO,MWW,OFF,SAS,SAT,SAV,SBS,SBT,SFW,SSF,SZR,TSC,WEN,和它们的组合。
4.权利要求3的SCR催化剂材料,其中分子筛具有选自以下的结构类型:AEI,AFT,AFX,CHA,EAB,ERI,KFI,LEV,SAS,SAT,和SAV。
5.权利要求4的SCR催化剂材料,其中分子筛具有选自以下的结构类型:AEI,CHA,和AFX。
6.权利要求5的SCR催化剂材料,其中分子筛具有CHA结构类型。
7.权利要求6的SCR催化剂材料,其中具有CHA结构类型的分子筛是选自硅铝酸盐沸石,硼硅酸盐,镓硅酸盐,SAPO,A1PO,MeAPSO,和MeAPO。
8.权利要求6的SCR催化剂材料,其中具有CHA结构类型的分子筛是选自SSZ-13,SSZ-62,天然菱沸石,沸石K-G,Linde D,Linde R,LZ-218,LZ-235,LZ-236,ZK-14,SAPO-34,SAPO-44,SAPO-47,和ZYT-6。
9.权利要求8的SCR催化剂材料,其中分子筛是选自SSZ-13和SSZ-62。
10.权利要求1的SCR催化剂材料,其中分子筛是用选自以下的金属助催化的:Cu,Fe,Co,Ni,La,Ce,Mn,V,Ag,和它们的组合。
11.权利要求10的SCR催化剂材料,其中分子筛是用选自以下的金属助催化的:Cu,Fe,和它们的组合。
12.权利要求1的SCR催化剂材料,其中SCR催化剂材料能催化氮氧化物在还原剂的存在下在200-600℃温度下的选择性催化还原反应。
13.权利要求6的SCR催化剂材料,其中具有CHA结构类型的分子筛具有在10-100范围内的氧化硅与氧化铝之间的比率。
14.权利要求10的SCR催化剂材料,其中金属的存在量是基于氧化物计的约0.1-10重量%。
15.权利要求1的SCR催化剂材料,其中球形粒子的中值粒径是在约1.2-3.5微米的范围内。
16.权利要求1的SCR催化剂材料,其中晶体具有在约1-250nm范围内的晶体尺寸。
17.权利要求16的SCR催化剂材料,其中晶体具有在约100-250nm范围内的晶体尺寸。
18.权利要求1的SCR催化剂材料,其中SCR催化剂材料是载体涂层的形式。
19.权利要求18的SCR催化剂材料,其中载体涂层是沉积在基材上的层。
20.权利要求19的SCR催化剂材料,其中基材包含过滤器。
21.权利要求20的SCR催化剂材料,其中过滤器是壁流式过滤器。
22.权利要求20的SCR催化剂材料,其中过滤器是流通式过滤器。
23.权利要求1的SCR催化剂材料,其中至少80%的球形粒子具有在0.5-2.5微米范围内的中值粒径。
24.权利要求1的SCR催化剂材料,其中分子筛包含硅和铝原子的沸石骨架材料,其中一定比例的硅原子是被四价金属同晶取代的。
25.权利要求24的SCR催化剂材料,其中分子筛是用选自以下的金属助催化的:Cu,Fe,Co,Ni,La,Ce,Mn,V,Ag,和它们的组合。
26.权利要求24的SCR催化剂材料,其中四价金属包含四价过渡金属。
27.权利要求26的SCR催化剂材料,其中四价过渡金属是选自Ti,Zr,Hf,Ge,和它们的组合。
28.权利要求26的SCR催化剂材料,其中四价过渡金属包含Ti。
29.一种选择性还原氮氧化物(NOx)的方法,此方法包括使含有NOx的废气料流与选择性催化还原材料接触,所述选择性催化还原材料包含球形粒子,球形粒子包括分子筛晶体的聚集体,其中球形粒子具有在约0.5-5微米的范围内的中值粒径。
30.一种用于处理来自稀燃发动机的含有NOx的废气的体系,此体系包含权利要求1的SCR催化剂材料和至少一种其它废气处理组分。
CN201580044158.1A 2014-06-18 2015-06-17 分子筛催化剂组合物、催化剂复合材料、体系和方法 Active CN106660022B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201462013847P 2014-06-18 2014-06-18
US62/013,847 2014-06-18
US201462081243P 2014-11-18 2014-11-18
US62/081,243 2014-11-18
US14/687,097 US9889437B2 (en) 2015-04-15 2015-04-15 Isomorphously substituted catalyst
US14/687,097 2015-04-15
PCT/US2015/036243 WO2015195809A1 (en) 2014-06-18 2015-06-17 Molecular sieve catalyst compositions, catalyst composites, systems, and methods

Publications (2)

Publication Number Publication Date
CN106660022A true CN106660022A (zh) 2017-05-10
CN106660022B CN106660022B (zh) 2020-09-22

Family

ID=54936079

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201580044158.1A Active CN106660022B (zh) 2014-06-18 2015-06-17 分子筛催化剂组合物、催化剂复合材料、体系和方法
CN201580043934.6A Active CN106660021B (zh) 2014-06-18 2015-06-17 分子筛催化剂组合物、催化复合材料、系统和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201580043934.6A Active CN106660021B (zh) 2014-06-18 2015-06-17 分子筛催化剂组合物、催化复合材料、系统和方法

Country Status (9)

Country Link
EP (2) EP3157672A4 (zh)
JP (2) JP6615794B2 (zh)
KR (1) KR102436905B1 (zh)
CN (2) CN106660022B (zh)
BR (1) BR112016029733B8 (zh)
CA (1) CA2952437C (zh)
MX (2) MX2016016920A (zh)
RU (1) RU2727801C2 (zh)
WO (1) WO2015195819A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947415A (zh) * 2019-12-10 2020-04-03 惠州市瑞合环保科技有限公司 选择性还原催化剂及其制备方法
CN110961144A (zh) * 2019-12-14 2020-04-07 中触媒新材料股份有限公司 一种具有cha/lev拓扑结构共生复合分子筛及其制备方法和scr应用
CN115304077A (zh) * 2022-08-10 2022-11-08 浙江浙能技术研究院有限公司 用于选择性催化还原氮氧化物的分子筛及其制法与应用
CN115301281A (zh) * 2022-08-17 2022-11-08 四川大学 抗硫抗水的催化剂及其制备方法和应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102436905B1 (ko) * 2014-06-18 2022-08-29 바스프 코포레이션 분자체 촉매 조성물, 촉매 복합체, 시스템, 및 방법
JP6702759B2 (ja) * 2015-03-05 2020-06-03 国立大学法人広島大学 チタンを含有するaei型ゼオライト及びその製造方法
WO2017210812A1 (en) * 2016-06-06 2017-12-14 Rhodia Operations Rare earth zeolite and the method of preparation thereof
WO2017211237A1 (en) 2016-06-08 2017-12-14 Basf Corporation Copper-promoted gmelinite and use thereof in the selective catalytic reduction of nox
KR102643225B1 (ko) * 2017-09-07 2024-03-12 바스프 코포레이션 감소된 골격-외 알루미늄을 가진 제올라이트
ES2901685T3 (es) * 2017-10-27 2022-03-23 Chevron Usa Inc Tamiz molecular SSZ-112, su síntesis y uso
FR3081340B1 (fr) * 2018-05-24 2020-06-26 IFP Energies Nouvelles Catalyseur comprenant un melange d'une zeolithe de type structural afx et d'une zeolithe de type structural bea et au moins un metal de transition pour la reduction selective de nox
US11219886B2 (en) * 2018-05-25 2022-01-11 Basf Se Rare earth element containing aluminum-rich zeolitic material
CN108722477B (zh) * 2018-06-06 2021-01-15 中国科学院过程工程研究所 一种抗碱中毒高效脱硝催化剂及其制备方法和应用
KR20210068515A (ko) * 2018-10-31 2021-06-09 바스프 코포레이션 NOx 저감을 위한 알루미나가 첨가된 촉매 워시코트
KR20210091205A (ko) * 2018-12-06 2021-07-21 바스프 에스이 제올라이트 물질 및 지르코늄 킬레이트 착물을 포함하는 수성 현탁액
EP3962644A2 (en) * 2019-04-27 2022-03-09 Sud Chemie India Pvt. Ltd. Methods of preparation of metal exchanged zeolites
KR20220070204A (ko) * 2019-09-25 2022-05-30 바스프 코포레이션 특정 격자 변형률 및 도메인 크기 특성을 갖는 Cu-CHA SCR 촉매

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1156972A (zh) * 1995-03-17 1997-08-13 大阪瓦斯株式会社 氮氧化物还原催化剂和使废气中氮氧化物还原的方法
CN102099293A (zh) * 2008-05-21 2011-06-15 巴斯夫欧洲公司 直接合成具有CHA结构的含Cu沸石的方法
DE102010055680A1 (de) * 2010-12-22 2012-06-28 Süd-Chemie AG Verfahren zur Umsetzung stickstoffhaltiger Verbindungen
CN102844096A (zh) * 2009-12-17 2012-12-26 Pq公司 用于选择性催化还原的高二氧化硅的菱沸石,其制备方法和用途

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998423B2 (en) * 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
EP2161070B1 (en) * 2008-09-04 2013-11-27 Haldor Topsoe A/S Process and catalyst system for NOx reduction
KR101952557B1 (ko) * 2010-12-02 2019-02-26 존슨 맛쎄이 퍼블릭 리미티드 컴파니 금속을 함유하는 제올라이트 촉매
DE102010055679A1 (de) * 2010-12-22 2012-06-28 Süd-Chemie AG Titano-Silico-Alumo-Phosphat
US9174849B2 (en) * 2011-08-25 2015-11-03 Basf Corporation Molecular sieve precursors and synthesis of molecular sieves
US20120258032A1 (en) * 2011-11-02 2012-10-11 Johnson Matthey Public Limited Company Catalyzed filter for treating exhaust gas
RU2017146613A (ru) * 2012-01-31 2018-10-17 Джонсон Мэтти Паблик Лимитед Компани Каталитические смеси
US9636667B2 (en) * 2012-06-04 2017-05-02 Basf Se CHA-type zeolite materials and methods for their preparation using cycloalkyammonium compounds
EP2908946B1 (en) * 2012-10-19 2020-09-09 BASF Corporation 8-ring small pore molecular sieve as high temperature scr catalyst
KR102436905B1 (ko) * 2014-06-18 2022-08-29 바스프 코포레이션 분자체 촉매 조성물, 촉매 복합체, 시스템, 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1156972A (zh) * 1995-03-17 1997-08-13 大阪瓦斯株式会社 氮氧化物还原催化剂和使废气中氮氧化物还原的方法
CN102099293A (zh) * 2008-05-21 2011-06-15 巴斯夫欧洲公司 直接合成具有CHA结构的含Cu沸石的方法
CN102844096A (zh) * 2009-12-17 2012-12-26 Pq公司 用于选择性催化还原的高二氧化硅的菱沸石,其制备方法和用途
DE102010055680A1 (de) * 2010-12-22 2012-06-28 Süd-Chemie AG Verfahren zur Umsetzung stickstoffhaltiger Verbindungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐如人 等: "《无机合成与制备化学》", 30 June 2001, 高等教育出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947415A (zh) * 2019-12-10 2020-04-03 惠州市瑞合环保科技有限公司 选择性还原催化剂及其制备方法
CN110961144A (zh) * 2019-12-14 2020-04-07 中触媒新材料股份有限公司 一种具有cha/lev拓扑结构共生复合分子筛及其制备方法和scr应用
CN115304077A (zh) * 2022-08-10 2022-11-08 浙江浙能技术研究院有限公司 用于选择性催化还原氮氧化物的分子筛及其制法与应用
CN115301281A (zh) * 2022-08-17 2022-11-08 四川大学 抗硫抗水的催化剂及其制备方法和应用
CN115301281B (zh) * 2022-08-17 2023-05-26 四川大学 抗硫抗水的催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CA2952437C (en) 2023-08-29
CN106660021B (zh) 2020-09-11
JP2020037108A (ja) 2020-03-12
EP3157671A4 (en) 2018-02-14
EP3157672A1 (en) 2017-04-26
CN106660022B (zh) 2020-09-22
CA2952437A1 (en) 2015-12-23
JP6615794B2 (ja) 2019-12-04
BR112016029733A8 (pt) 2020-10-20
BR112016029733B1 (pt) 2022-09-06
RU2017101429A3 (zh) 2018-11-09
KR102436905B1 (ko) 2022-08-29
EP3157671A1 (en) 2017-04-26
CN106660021A (zh) 2017-05-10
RU2727801C2 (ru) 2020-07-24
JP6882427B2 (ja) 2021-06-02
BR112016029733B8 (pt) 2022-09-27
EP3157672A4 (en) 2018-04-04
RU2017101429A (ru) 2018-07-18
JP2017521241A (ja) 2017-08-03
MX2016016920A (es) 2017-10-31
KR20170021835A (ko) 2017-02-28
MX2023001935A (es) 2023-03-16
WO2015195819A1 (en) 2015-12-23
BR112016029733A2 (pt) 2017-08-22

Similar Documents

Publication Publication Date Title
CN106660022A (zh) 分子筛催化剂组合物、催化剂复合材料、体系和方法
JP6726271B2 (ja) 排気ガス処理触媒
US10786808B2 (en) Molecular sieve catalyst compositions, catalyst composites, systems, and methods
JP6615795B2 (ja) モレキュラーシーブ触媒組成物、触媒複合体、システム、及び方法
CN108472638A (zh) 排气处理催化剂
KR20190127949A (ko) 차량 내장식 암모니아 및 수소 생성
CN109414684A (zh) 表现出降低的n2o排放的离子交换分子筛催化剂
US11331653B2 (en) Combined NOx absorber and SCR catalyst
US10450918B2 (en) Exhaust gas treatment system
EP3307997B1 (en) Exhaust gas treatment system
CN111315970B (zh) 氨氧化减少的催化烟灰过滤器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant