CN106602052B - 一种锂离子电池负极材料及其制备方法 - Google Patents
一种锂离子电池负极材料及其制备方法 Download PDFInfo
- Publication number
- CN106602052B CN106602052B CN201611236059.6A CN201611236059A CN106602052B CN 106602052 B CN106602052 B CN 106602052B CN 201611236059 A CN201611236059 A CN 201611236059A CN 106602052 B CN106602052 B CN 106602052B
- Authority
- CN
- China
- Prior art keywords
- lithium
- ion battery
- salt
- lithium ion
- battery negative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种锂离子电池负极材料及其制备方法,本发明将钠盐、钡盐、锶盐、锂盐、钛盐按一定比例混合,经球磨、烘干、研磨、烧结合成制备新的锂离子电池负极材料,其化学式Na0.5Ba0.25Sr0.5Li2Ti6O14,并研究了其电化学性能和储锂性能。电化学实验证明本方法制备的复合材料具有优异的物理化学性能,作为锂离子电池负极材料具有广阔的应用前景。在整个制备过程中,合成方法简单,易于操作,材料制备成本低,设备投资少,适合批量生产。
Description
技术领域
本发明属于材料化学领域,具体涉及一种新型锂离子电池负极材料及其制备方法,特别是涉及对钛酸钠锂电池负极材料进行钡、锶离子的掺杂及其制备方法。
背景技术
锂离子电池由于其具有工作电压高,质量轻,比能量大,自放电小,循环寿命长,无记忆效应,无环境污染等突出优点,成为电子装置小型轻量化的理想电源,也是未来汽车高能动力电池的首选电源。负极材料是锂离子电池中的主要组成部分之一,负极性能的好坏直接影响到锂离子电池的性能。Na2Li2Ti6O14作为一种潜在的锂离子电池负极材料具有较低的放电电压平台、较好的离子电导率、较高的理论容量、充放电时不会形成SEI膜等优点,因此该材料与正极材料组装成电池可以获得高输出电压、安全、循环寿命长的锂离子电池,且有望满足电动汽车动力需求。但是Na2Li2Ti6O14负极材料的大倍率性能较差。
为使得电化学性能得以提高,研究者们提出了许多改进的措施,其中最普遍的做法是纳米化、可导电层包覆和离子掺杂。离子掺杂因其合成原料丰富、合成过程简便、无需进行后续处理等优点,成为众多研究者选择的改性措施。掺杂是目前提高负极材料导电性、减小极化程度,改善其倍率放电性能行之有效的方法之一。为解决Na2Li2Ti6O14负极材料倍率低的问题,本发明采用对Na2Li2Ti6O14进行钡、锶离子掺杂,通过掺杂合成新的物质Na0.5Ba0.25Sr0.5Li2Ti6O14去改善钛酸钠锂电池负极材料的电化学性能。
钛酸锂材料的合成方法主要有固相法,溶液化学法、均相沉淀法、溶胶-凝胶法和气相法等。固相反应法是制备钛酸锂盐的传统方法之一,并且固相法原理和工艺简单,易于实现工业化生产。本发明是将原料混合后经过球磨处理后再焙烧的方法制备。原料经过球磨处理后焙烧制备的样品为纯相的钛酸锂盐,表明球磨可以提高原料混合的均匀度,产物的粒径分布也更加均匀。
发明内容
本发明所要解决的技术问题是通过对钛酸钠锂电池负极材料Na2Li2Ti6O14进行钡、锶掺杂制备新的电池材料Na0.5Ba0.25Sr0.5Li2Ti6O14。
本发明为解决上述技术问题所采取的技术方案为:一种锂离子电池负极材料,该锂离子电池负极材料的化学式为Na0.5Ba0.25Sr0.5Li2Ti6O14。
在本发明中,该锂离子电池负极材料的首次放电比容量为160mAh g-1,嵌锂电位为1.390~1.420V。
进一步的,本发明还提供了所述的锂离子电池负极材料Na0.5Ba0.25Sr0.5Li2Ti6O14的制备方法,包括以下步骤:
(1)将钠盐、钡盐、锶盐、锂盐和钛盐按钠、钡、锶、锂、钛摩尔比Na:Ba:Sr:Li:Ti=2:1:2:8:24用溶剂均匀混合,形成混合物A;
(2)将混合物A放入玛瑙罐中进行球磨混合5~15h,形成混合物B;
(3)将混合物B放在70~100℃的烘箱里烘干10~20h,形成物质C;
(4)将物质C放在玛瑙研钵将其研细,将研细后的材料放在马弗炉,以1~10℃/min的升温速度升温至500℃~800℃,恒温1~6h,经过充分反应后再以1℃~10℃/min的升温速度升温至800℃~1000℃,保温反应3~5h后冷却至室温,得到纯相得Na0.5Ba0.25Sr0.5Li2Ti6O14。
优选地,所述的溶剂为丙醇、乙醇、甲醇中的一种或者任意组合。
优选地,所述的钠盐为氯化钠、碳酸钠、三水醋酸钠中的一种或者任意组合。
优选地,所述的钡盐为氯化钡、碳酸钡、硝酸钡中的一种或者任意组合。
优选地,所述的锶盐为氯化锶、硝酸锶中的一种或者任意组合。
优选地,所述的锂盐为硝酸锂、碳酸锂、氯化锂中的一种或者任意组合。
优选地,所述的钛盐为锐钛矿、金红石、无定形钛矿的一种或者任意组合。
本发明通过对Na2Li2Ti6O14进行钡、锶离子掺杂的方法获得新的复合材料Na0.5Ba0.25Sr0.5Li2Ti6O14作为锂离子电池的负极材料并测其化学性能,充放电测试表明,此复合材料有比Na2Li2Ti6O14有更高首次放电比容量和较好的容量保持率,首次放电比容量为160mAh g-1,100次循环后,容量保持率不低于80%。
附图说明
图1是实施例1所制得的Na0.5Ba0.25Sr0.5Li2Ti6O14材料的XRD图;
图2是实施例1所制得的Na0.5Ba0.25Sr0.5Li2Ti6O14材料的SEM图;
图3是实施例1所制得的Na0.5Ba0.25Sr0.5Li2Ti6O14材料作为电极材料组装的锂离子电池的效率充放电比容量图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
实施例1
称取氯化钠(1.4040g,0.024mol),氯化钡(2.4987g,0.012mol),氯化锶(3.8041g,0.024mol),硝酸锂(6.6192g,0.096mol),无定形二氧化钛(23.0014g,0.288mol)放在玛瑙球磨罐中,用甲醇做溶剂,球磨5h,将磨好的混合物放入70℃的烘箱里干燥20h,将干燥好的物质放在玛瑙研钵里充分研细,放在马弗炉以1℃/min的升温速度升温至500℃,保温反应6h后再以4℃/min的升温速度升温至1000℃,保温反应3h,反应结束后自然冷却至室温,得到复合材料;通过测定粉末衍射(XRD)确定其纯度,如图1所示;用扫描电镜(SEM)观察所述复合材料的形貌,如图2所示;在充满氩气的手套箱中组装模拟电池,测其电化学性能,如图3所示。
实施例2
称取三水醋酸钠(0.8165g,0.006mol),硝酸钡(0.7507g,0.003mol),硝酸锶(1.2698g,0.006mol),碳酸锂(1.7734g,0.024mol),锐钛矿型二氧化钛(1.4040g,0.072mol)放在玛瑙球磨罐中,用乙醇做溶剂,球磨10h,将磨好的混合物放入80℃的烘箱里干燥15h,将干燥好的物质放在玛瑙研钵里充分研细,放在马弗炉以5℃/min的升温速度升温至600℃,保温反应4h后再以10℃/min的升温速度升温至800℃,保温反应5h,反应结束后自然冷却至室温,得到所述复合材料;通过测定粉末衍射(XRD)确定其纯度;用扫描电镜(SEM)观察所述复合材料的形貌;在充满氩气的手套箱中组装模拟电池,测其电化学性能。
实施例3
称取碳酸钠(1.2720g,0.012mol),碳酸钡(1.1820g,0.006mol),硝酸锶(1.26982.5396g,0.012mol),氯化锂(2.0754g,0.048mol),金红石二氧化钛(11.5012g,0.144mol)放在玛瑙球磨罐中,用丙醇做溶剂,球磨15h,将磨好的混合物放入90℃的烘箱里干燥10h,将干燥好的物质放在玛瑙研钵里充分研细,放在马弗炉以10℃/min的升温速度升温至800℃,保温反应1h后再以1℃/min的升温速度升温至900℃,保温反应4h,反应结束后自然冷却至室温,得到所述复合材料;通过测定粉末衍射(XRD)确定其纯度;用扫描电镜(SEM)观察所述复合材料的形貌;在充满氩气的手套箱中组装模拟电池,测其电化学性能。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改和改进等,均应包含在本发明的保护范围之内。
Claims (3)
1.一种锂离子电池负极材料,其特征在于,该锂离子电池负极材料的化学式为Na0.5Ba0.25Sr0.5Li2Ti6O14。
2.根据权利要求1所述的锂离子电池负极材料,其特征在于,该锂离子电池负极材料的首次放电比容量为160mAh g-1,嵌锂电位为1.390~1.420V。
3.一种如权利要求1或2所述的锂离子电池负极材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将钠盐、钡盐、锶盐、锂盐和钛盐按钠、钡、锶、锂、钛摩尔比Na:Ba:Sr:Li:Ti=2:1:2:8:24用溶剂均匀混合,形成混合物A;
(2)将混合物A放入玛瑙罐中进行球磨混合5~15h,形成混合物B;
(3)将混合物B放在70~100℃的烘箱里烘干10~20h,形成物质C;
(4)将物质C放在玛瑙研钵将其研细,将研细后的材料放在马弗炉,以1~10℃/min的升温速度升温至500℃~800℃,恒温1~6h,经过充分反应后再以1℃~10℃/min的升温速度升温至800℃~1000℃,保温反应3~5h后冷却至室温,得到纯相得Na0.5Ba0.25Sr0.5Li2Ti6O14;
所述的溶剂为丙醇、乙醇、甲醇中的一种或者任意组合;所述的钠盐为氯化钠、碳酸钠、三水醋酸钠中的一种或者任意组合;所述的钡盐为氯化钡、碳酸钡、硝酸钡中的一种或者任意组合;所述的锶盐为氯化锶、硝酸锶中的一种或者任意组合;所述的锂盐为硝酸锂、碳酸锂、氯化锂中的一种或者任意组合;所述的钛盐为锐钛矿、金红石、无定形钛矿的一种或者任意组合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611236059.6A CN106602052B (zh) | 2016-12-28 | 2016-12-28 | 一种锂离子电池负极材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611236059.6A CN106602052B (zh) | 2016-12-28 | 2016-12-28 | 一种锂离子电池负极材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106602052A CN106602052A (zh) | 2017-04-26 |
CN106602052B true CN106602052B (zh) | 2019-01-29 |
Family
ID=58604729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611236059.6A Active CN106602052B (zh) | 2016-12-28 | 2016-12-28 | 一种锂离子电池负极材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106602052B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6523501B2 (ja) * | 2017-04-18 | 2019-06-05 | 太平洋セメント株式会社 | リチウムイオン二次電池用負極活物質の製造方法 |
CN107221659B (zh) * | 2017-06-14 | 2019-08-23 | 安徽工业大学 | 一种锂离子电池复合负极材料的制备方法 |
CN115472800B (zh) * | 2022-10-08 | 2024-08-13 | 青岛大学 | 一种钾掺杂钛酸钠电极材料及其制备方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102211019A (zh) * | 2011-03-24 | 2011-10-12 | 桂林理工大学 | 可见光响应的复合氧化物光催化剂Ba1-xSrxLi2Ti6O14及制备方法 |
CN102842742A (zh) * | 2011-06-23 | 2012-12-26 | 株式会社东芝 | 非水电解质电池和电池组 |
-
2016
- 2016-12-28 CN CN201611236059.6A patent/CN106602052B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102211019A (zh) * | 2011-03-24 | 2011-10-12 | 桂林理工大学 | 可见光响应的复合氧化物光催化剂Ba1-xSrxLi2Ti6O14及制备方法 |
CN102842742A (zh) * | 2011-06-23 | 2012-12-26 | 株式会社东芝 | 非水电解质电池和电池组 |
Also Published As
Publication number | Publication date |
---|---|
CN106602052A (zh) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102259911B (zh) | 一种锂离子电池用纳米钛酸锂负极材料的制备方法 | |
CN102201573A (zh) | 一种核壳结构锂离子电池富锂正极材料及其制备方法 | |
CN102328952B (zh) | 球形钛酸锂材料的制备方法 | |
CN104037412B (zh) | 高性能锂离子二次电池负极材料多级结构纳米空心球的制备方法 | |
CN111924885B (zh) | 一种钴酸锂正极材料及其改性方法 | |
CN106602052B (zh) | 一种锂离子电池负极材料及其制备方法 | |
CN105895866A (zh) | 一种轻金属掺杂锂离子电池锰酸锂正极材料及其制备方法 | |
CN110326136A (zh) | 一种新型高电位多层碳包覆聚阴离子型钠离子电池正极材料及其制备方法 | |
CN102956880A (zh) | 一种用于制备Li4Ti5O12-TiO2纳米复合材料的方法及其产品 | |
CN103151507A (zh) | 高性能锂离子电池负极材料Li4Ti5O12的制备方法 | |
CN110128140A (zh) | 一种镱铝共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法 | |
CN103050678B (zh) | 一种锂离子电池用电极材料镧掺杂钛酸锂的制备方法 | |
Liu et al. | The effects of Li 2 CO 3 particle size on the properties of lithium titanate as anode material for lithium-ion batteries | |
CN102502800A (zh) | 一种锂离子电池负极材料钛酸锂的制备方法 | |
CN102010009A (zh) | 锂离子电池正极材料层状锰酸锂的制备方法 | |
CN105098155B (zh) | 一种二氧化硅包覆的氟化磷酸钴锂及其制备方法 | |
CN103579603A (zh) | 一种改性锂离子电池负极材料钛酸锂的制备方法 | |
CN103606670A (zh) | 一种动力锂离子电池锰酸锂正极材料及其制备方法 | |
JP2021516208A (ja) | アルミニウムでコーティングされた一次粒子を含むリチウムチタン複合酸化物及びその製造方法 | |
CN103928670A (zh) | 一种锂二次电池正极材料LiMnO2的制备方法 | |
CN106299301B (zh) | 一种具有优异储锂性能的Li3VO4纳米线的形貌和物相调控方法 | |
CN102009998A (zh) | 一种锂离子电池负极材料钛酸锂的制备方法 | |
CN107204427A (zh) | 一种含钠的锂离子电池复合负极材料的制备方法 | |
CN109473669B (zh) | 一种Na2Ti6O13钠离子电池负极材料的制备方法 | |
CN103594704A (zh) | 掺杂四价钛离子的尖晶石富锂锰酸锂正极材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |