CN106588867A - 用于修饰钙钛矿太阳能电池中钙钛矿层的含有氰基的功能材料的化学合成及其应用研究 - Google Patents

用于修饰钙钛矿太阳能电池中钙钛矿层的含有氰基的功能材料的化学合成及其应用研究 Download PDF

Info

Publication number
CN106588867A
CN106588867A CN201611135926.7A CN201611135926A CN106588867A CN 106588867 A CN106588867 A CN 106588867A CN 201611135926 A CN201611135926 A CN 201611135926A CN 106588867 A CN106588867 A CN 106588867A
Authority
CN
China
Prior art keywords
perovskite
solar cell
cyano
layer
perovskite solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611135926.7A
Other languages
English (en)
Other versions
CN106588867B (zh
Inventor
高德青
刘明伦
李波波
童彤
潘振欢
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201611135926.7A priority Critical patent/CN106588867B/zh
Publication of CN106588867A publication Critical patent/CN106588867A/zh
Application granted granted Critical
Publication of CN106588867B publication Critical patent/CN106588867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明旨在设计与合成一类氰基化合物,并对钙钛矿太阳能电池结构中的钙钛矿层进行修饰。实施方法为在钙钛矿表面旋涂一层修饰材料,通过材料分子中的氰基与钙钛矿结构中的I相互作用,分散其表面电荷,同时减少I的迁移,从而提高钙钛矿层的稳定性;分子结构中的苯环及烷基链组分能起到改善界面相容性、减少其表面缺陷的作用,最终实现提高钙钛矿太阳能电池性能的目的。(1)中Ar为以下芳香化合物:(2)中Ar为以下芳香化合物: 式中R1为‑CN或R2为1~16烷基链。

Description

用于修饰钙钛矿太阳能电池中钙钛矿层的含有氰基的功能材 料的化学合成及其应用研究
技术领域
本发明涉及氰基功能材料的结构设计、化学合成及作为钙钛矿太阳能电池中钙钛矿层修饰材料的应用研究。
背景技术
太阳能是一种利用太阳辐射连续输入、可以在任意地点取用的可再生资源,因此利用半导体材料光生伏特效应把光转换成电的太阳能电池,能够为人类社会的发展提供源源不断的洁净能源,是人类社会应对能源枯竭危机、解决环境污染问题的重要途径。随着光伏产业的迅猛发展,成本不断降低,使得其前景更为光明和深远,其中将太阳能转换为电能的一种有效的方法是制备基于光生伏特效应的太阳能电池。
太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。作为第一代太阳能技术,硅基太阳能电池是发展最为完善、应用最为广泛的成熟技术之一,但由于其必须使用昂贵的高纯硅,因而面临着造价高、耗能高等难题,严重制约了硅基太阳能电池更为广泛的产业应用。第二代薄膜太阳能电池(GaAs,CdTe,CuIn,GaSe等)技术由于比硅基电池更能容忍较高的缺陷密度而得到了迅猛的发展,但其大规模应用也受制于环境污染严重、稀缺元素不可持续发展等问题。有机金属卤化物钙钛矿结构太阳能电池是一种以全固态钙钛矿结构作为吸光材料的太阳能电池,其能隙约为1.5eV,消光系数高,几百纳米厚的薄膜即可充分吸收800nm以下的太阳光,在光电转换领域具有重要的应用前景。这种新型的太阳能电池最早在2009年由日本桐荫横滨大学的Miyasaka研究组提出,当时效率仅有3.8%(Akihiro Kojima,Kenjiro Teshima,Yasuo Shirai and TsutomuMiyasaka.J.Am.Chem.Soc.2009,131,6050-6051),到目前最高效率值已达到22.1%。
虽然钙钛矿太阳能电池发展现状良好,但仍有若干关键因素制约钙钛矿太阳能电池的发展:1)如何兼顾提高稳定性和转换效率是目前的一个难点;2)吸收层中含有可溶性重金属Pb,易对环境造成污染;3)如何实现钙钛矿太阳能电池的大面积连续制备(Bobo Li,Yafang Li,Chaoyue Zheng,Deqing Gao*and Wei Huang*RSC Adv.2016,6,38079-38091)。
界面修饰是提高钙钛矿太阳能电池的稳定性、光电转化效率的重要途径,通过修饰载流子传输层、电极、或钙钛矿层,不仅能够增强电荷的传输和收集,同时改善界面接触。本发明制备的界面材料分子中的氰基,是与钙钛矿中的I-相互作用,分散其表面电荷,同时减少I-的迁移,从而提高钙钛矿层的稳定性;利用分子结构中的苯环及烷基链组分改善界面相容性,减少表面缺陷,最终实现提高钙钛矿太阳能电池性能的目的。
发明内容
1.本发明的特征是提供一类氰基化合物,其结构通式如下所示:
(1)中Ar为以下芳香化合物:
(2)中Ar为以下芳香化合物:
式中R1为-CN或R2为1~16烷基链。
2.本发明的另一特征用于提供上述氰基类化合物的合成方法。
3.本发明的另一特征是基于氰基化合物作为钙钛矿太阳能电池中钙钛矿层修饰材料的应用研究。
附图说明
结合如下附图及详细描述将会更清楚地理解本发明的上述和其他特征及优点,其中:
图1 钙钛矿太阳能电池器件结构示意图;
图2 化合物(7)的核磁氢谱;
图3 用氰基化合物修饰与未修饰的钙钛矿太阳能电池的Jsc(mA/cm2)-Voc(V)曲线图(PCE为光电转换效率,Voc为开路电压,Jsc为短路电流密度,FF为填充因子)。
具体实施方案
实施案例1:
修饰材料的合成:
本发明中提供化合物(7)(R2为十二个碳的烷基链)的合成路线与步骤。
化合物(1)的合成
在N2气氛下,向盛有镁屑(3.28g,0.135mol)、无水THF(30mL)和少量碘混合物的250mL三颈烧瓶中缓慢加入含1-溴十二烷(28.75g,26.9mL,0.13mol)的无水THF(45mL)溶液。混合物在70℃回流2小时后,将体系用冰水冷却至室温,先把Ni(dppp)Cl2(0.54g,1.00mmol)加入,再缓慢加入含3-溴噻吩(16.31g,0.10mol)的无水THF(40mL)溶液。在室温下将混合溶液搅拌过夜,加入冷的HCl(1.50mol/L)水溶液淬灭反应。将粗产物用二氯甲烷萃取,用无水硫酸镁干燥,通过层析柱分离提纯法(正己烷作为洗脱液)进一步纯化,使得到澄清液体(22.18g,88%)。1H NMR(300MHz,CDCl3):δ7.22(m,1H),6.95(m,2H),2.63(t,2H),1.65(m,2H),1.32(m,18H),0.89(t,3H)。
化合物(2)的合成
在0℃下,向化合物(1)(5.00g,19.8mmol)的CHCl3/HOAc(1∶1)(Vt=20.0mL)溶液中分批加入NBS(3.52g,19.80mmol)。将上述溶液在0℃下搅拌1小时,并在该温度下搅拌过夜。然后将反应混合物倒入水(50.0mL)中,并用氯仿(3×50.0mL)萃取,合并的有机相用NaOH溶液洗涤(50.0mL),并用MgSO4干燥。通过层析柱分离提纯(正己烷作为洗脱液),得到无色油状的产物(6.05g,90%产率)。1H NMR(300MHz,CDCl3):δ7.18(d,1H),6.79(d,1H),2.56(t,2H),1.60(m,2H),1.28(m,18H),0.89(t,3H)。
化合物(3)合成
将100mL的三颈圆底烧瓶用氮气冲洗,然后抽真空。向该瓶加入镁屑(1.65g,67.8mmol)和少量碘的混合物。开启搅拌并加入10mL无水THF,然后缓慢加入含化合物(2)(10.0g,56.5mmol)的20mL无水THF溶液。用加热枪加热上述混合溶液以引发,然后缓慢加入所有剩余的化合物(2),并将反应在室温下搅拌2小时。将所得反应混合物转移到另一个100mL的烧瓶中并冷却至-78℃,然后加入异丙醇频哪醇硼酸酯(17.3mL,169.5mmol)。将所得溶液在室温下搅拌18小时后,向反应混合物中加入15mL水,再用CH2Cl2(3×60mL)萃取,合并有机相,用无水MgSO4干燥并蒸发至干。粗产物通过层析柱分离提纯(正己烷/二氯甲烷,4/1)法纯化,在真空中干燥后得到10.1g(产率:80%)产物,为无色液体。1H NMR(CDCl3,300MHz):δ7.49(d,1H),7.03(d,1H),2.90(t,2H),1.60(t,2H),1.31(m,30H),0.90(t,3H)。
化合物(4)的合成
将液溴(20.0mL,88mmol)的氯仿(800mL)溶液缓慢加入到芘(37.67g,185.7mmol)的氯仿(500mL)溶液中,滴加过程历时8小时。约4小时后(约75%溴加入),开始形成白色沉淀,将悬浮液静置过夜。将白色沉淀用布氏漏斗抽滤,并溶于热甲苯(1.4L)中。将溶液用NaHCO3(5%,2×600mL)和H2O(1×600mL)洗涤,然后将溶液加热至100℃,热过滤除去棕色固体,用甲苯重结晶得到1,6-二溴芘(产率20%)。1H NMR(300MHz,CDCl3):δ8.47(d,2H),8.28(d,2H),8.13(d,2H),8.07(d,2H)。
化合物(5)的合成
将化合物(4)(1.00g,1.42mmol)和化合物(3)(1.07g,2.84mmol)加入到盛有25mL甲苯溶液的Schlenk瓶中,向上述溶液中加入5mL碳酸钠溶液(1.08g,2.00mol/L)和相转移催化剂。向该混合物溶液鼓入氮气(约15min),然后将四(三苯基膦)钯催化剂迅速加入到溶液中。将上述溶液在氮气保护下加热至90℃,持续18小时。结束后,将粗产物冷却到室温,加入HCl(5%,1mol/L)中和后用二氯甲烷萃取,再用无水硫酸镁干燥。用石油醚作为洗脱剂进行柱分离得到产物(产率63%)。1H NMR(300MHz,CDCl3):δ8.19(d,2H),8.07(m,4H),8.01(d,2H),7.44(d,2H),7.14(d,2H),2.42(t,4H),1.49(m,4H),1.13(m,36H),0.87(t,6H)。
化合物(6)的合成
在0℃下向1,2-二氯乙烷(5mL)和DMF(2.33mL,28.9mmol)混合溶液中加入三氯氧磷(2.66mL,28.9mmol)。将上述溶液在室温下搅拌2小时,再加入化合物(5)的1,2-二氯乙烷溶液(5ml)。将此反应在氮气保护下加热回流24h,结束后在冰浴中向该溶液加入饱和的NaHCO3溶液中和。用氯仿萃取三次,再用无水硫酸镁干燥,减压蒸馏除去溶剂。粗产物用层析柱分离提纯(二氯甲烷∶石油醚,1/1)得到产物(黄色固体)(产率65%)。1H NMR(300MHz,CDCl3):δ10.00(s,2H),8.26(d,2H),8.13(d,2H),8.01(d,2H),7.99(d,2H),7.83(s,2H),2.44(t,4H),1.51(m,4H),1.14(m,36H),0.86(t,6H)。
化合物(7)的合成
向1,2-二氯乙烷(120mL)和乙醇(120mL)的混合溶剂中加入丙二腈、β-丙氨酸和化合物(6),在氮气保护下将上述溶液加热至60℃,反应三天。结束后将反应物冷却至室温,用二氯甲烷萃取三次,用无水硫酸镁干燥,用层析柱分离(二氯甲烷∶石油醚,1/1)得到产物(黄色固体)0.5g(产率60%)。1H NMR(300MHz,CDCl3):δ8.28(d,2H),8.15(d,2H),8.02(d,2H),7.96(d,2H),7.88(s,2H),7.82(s,2H),2.45(t,4H),1.48(m,4H),1.11(m,36H),0.86(t,6H)。
实施案例2:
太阳能电池的制备与表征:
(1)用锌粉和的稀盐酸混合溶液对裁成1.5cm x 1.5cm的ITO基片进行刻蚀,刻蚀后用棉球擦,再用水冲洗干净,去离子水超声15分钟,用丙酮清洗表面,用氮气吹干,UV-臭氧照射25分钟。
(2)加修饰层器件ITO/PEDOT:PSS/Perovskite/修饰材料/PCBM/C60/BCP/Al的制备:
先将PEDOT:PSS旋涂到处理过的ITO基片上,在120℃的条件下退火30分钟;然后将1M的碘化铅(PbI2)溶液旋涂到ITO/PEDOT:PSS上,随即立刻旋涂一层甲基碘化铵,紧接着在100℃的条件下退火5分钟左右;接下来旋涂修饰材料,70℃的条件下退火5分钟左右;然后将配好的PCBM的二氯苯溶液旋涂到上面,并在常温下放置10分钟以上;最后将C60、BCP缓冲层以及Al电极蒸镀上去。
(3)标准器件ITO/PEDOT:PSS/Perovskite/PCBM/C60/BCP/Al的制备:
其制备方法与(1)、(2)相仿,不同之处在于没有修饰层。
(4)电池性能测试:
使用Keithley2400对器件进行性能测试:在模拟的AM 1.5G的太阳光照射条件下(光强度为100mW/cm2)可获得光电流-电压曲线,扫描电压范围是反向扫描1.2V→-1.2V,正向扫描-1.2V→1.2V,扫描速率50mV/S。
在钙钛矿层上旋涂一层修饰材料,材料中的氰基与钙钛矿层中的无机I-相互作用,芘分子中的苯环及烷基链与电池中的有机结构有很好的相容性,调控钙钛矿/空穴传输层界面能级匹配程度,提高电流密度和填充因子,器件效率从7.63%提高到9.83%。

Claims (3)

1.用于修饰钙钛矿太阳能电池中钙钛矿层的含有氰基的修饰材料,其结构如下所示:
(1)中Ar为以下芳香化合物:
(2)中Ar为以下芳香化合物:
式中R1为-CN或R2为1~16烷基链。
2.根据权利要求1所述氰基化合物的合成方法。
3.根据权利要求1所述氰基化合物作为修饰材料在钙钛矿太阳能电池中的应用。
CN201611135926.7A 2016-12-05 2016-12-05 用于修饰钙钛矿太阳能电池中钙钛矿层的含有氰基的功能材料的化学合成及其应用研究 Active CN106588867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611135926.7A CN106588867B (zh) 2016-12-05 2016-12-05 用于修饰钙钛矿太阳能电池中钙钛矿层的含有氰基的功能材料的化学合成及其应用研究

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611135926.7A CN106588867B (zh) 2016-12-05 2016-12-05 用于修饰钙钛矿太阳能电池中钙钛矿层的含有氰基的功能材料的化学合成及其应用研究

Publications (2)

Publication Number Publication Date
CN106588867A true CN106588867A (zh) 2017-04-26
CN106588867B CN106588867B (zh) 2020-11-20

Family

ID=58598269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611135926.7A Active CN106588867B (zh) 2016-12-05 2016-12-05 用于修饰钙钛矿太阳能电池中钙钛矿层的含有氰基的功能材料的化学合成及其应用研究

Country Status (1)

Country Link
CN (1) CN106588867B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493343A (zh) * 2018-04-04 2018-09-04 清华大学 一种钙钛矿薄膜及其制备方法以及该薄膜在光电器件中的应用
CN112876874A (zh) * 2021-01-21 2021-06-01 华中科技大学 一类以三苯胺为给体的部花青染料、其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103319378A (zh) * 2013-06-27 2013-09-25 中国科学院宁波材料技术与工程研究所 两性离子有机小分子太阳能电池阴极界面材料及其制法和用途
CN103524481A (zh) * 2012-06-29 2014-01-22 纳米与先进材料研发有限公司 用于太阳能电池应用的低带隙的二氰基乙烯基和三氰基乙烯基低聚噻吩
CN103554100A (zh) * 2013-10-21 2014-02-05 南京邮电大学 一种有机太阳能电池材料的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524481A (zh) * 2012-06-29 2014-01-22 纳米与先进材料研发有限公司 用于太阳能电池应用的低带隙的二氰基乙烯基和三氰基乙烯基低聚噻吩
CN103319378A (zh) * 2013-06-27 2013-09-25 中国科学院宁波材料技术与工程研究所 两性离子有机小分子太阳能电池阴极界面材料及其制法和用途
CN103554100A (zh) * 2013-10-21 2014-02-05 南京邮电大学 一种有机太阳能电池材料的制备方法及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493343A (zh) * 2018-04-04 2018-09-04 清华大学 一种钙钛矿薄膜及其制备方法以及该薄膜在光电器件中的应用
CN112876874A (zh) * 2021-01-21 2021-06-01 华中科技大学 一类以三苯胺为给体的部花青染料、其制备方法和应用

Also Published As

Publication number Publication date
CN106588867B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
CN107011361A (zh) 有机光电受体材料及其制备方法和应用
JP5425338B2 (ja) アントラセンとピアセレノール類とを含有する共重合体、その製造方法及びその応用
Song et al. Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells
CN101376686A (zh) 本体异质结太阳电池聚合物给体材料及合成和应用方法
CN102686636B (zh) 含芴共轭聚合物、其制备方法和太阳能电池器件
CN101665563A (zh) 一种给受体共轭聚合物及其在太阳能电池中的应用
CN109354591B (zh) 一种有机太阳能电池的活性层材料及其制备方法和应用
CN101787020A (zh) 一种可溶液加工的有机共轭分子及在太阳能电池中的应用
CN107634142A (zh) 一种新型的a‑d‑a共轭小分子及其在光电器件中的应用
Feng et al. A series of porphyrins as interfacial materials for inverted perovskite solar cells
CN113929880B (zh) 一类酯基噻唑类宽带隙聚合物及其在光电器件中的应用
CN106588867A (zh) 用于修饰钙钛矿太阳能电池中钙钛矿层的含有氰基的功能材料的化学合成及其应用研究
CN112521403B (zh) 七元稠环化合物与有机光伏电池
CN107180914B (zh) 一种钙钛矿薄膜电池的制备方法
CN112708112A (zh) 共轭聚合物及有机光伏元件
CN114479019B (zh) 一种三嗪类聚合物材料及其制备方法和在光电器件中的应用
CN102443143B (zh) 含噻吩吡咯二酮单元有机半导体材料及其制备方法和应用
CN111171046B (zh) 一种基于四噻吩并吡咯的免掺杂空穴传输材料及其合成方法和应用
JP5600365B2 (ja) キノイドシラフルオレン類の有機半導体材料、該有機半導体材料の製造方法及びその使用
CN102453231B (zh) 含噻吩吡咯二酮单元有机半导体材料及其制备方法和应用
CN102850522B (zh) 含苯并三唑基共聚物及其制备方法和应用
CN112778355B (zh) 一种基于噻咯稠杂环的空穴传输材料及其制备方法和应用
TWI734227B (zh) 共軛聚合物及有機光伏元件
CN115322164B (zh) 一种新型d1-d2-a化合物及其应用
CN113861219B (zh) 九元稠环化合物与有机光伏电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant