CN106588023A - 一种10B富集的ZrB2溅射靶材的制备方法及应用 - Google Patents

一种10B富集的ZrB2溅射靶材的制备方法及应用 Download PDF

Info

Publication number
CN106588023A
CN106588023A CN201611227415.8A CN201611227415A CN106588023A CN 106588023 A CN106588023 A CN 106588023A CN 201611227415 A CN201611227415 A CN 201611227415A CN 106588023 A CN106588023 A CN 106588023A
Authority
CN
China
Prior art keywords
zrb
enrichments
target material
preparation
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611227415.8A
Other languages
English (en)
Other versions
CN106588023B (zh
Inventor
王星明
刘宇阳
杨磊
彭程
白雪
桂涛
储茂友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRINM Resources and Environment Technology Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN201611227415.8A priority Critical patent/CN106588023B/zh
Publication of CN106588023A publication Critical patent/CN106588023A/zh
Application granted granted Critical
Publication of CN106588023B publication Critical patent/CN106588023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种10B富集的ZrB2溅射靶材的制备方法及应用,属于溅射靶材制备及应用领域。该方法包括以下步骤:采用碳热还原反应制备10B富集的ZrB2粉体,将该ZrB2粉体装入高强石墨模具中,再惰性气氛保护下热压烧结,得到ZrB2靶材,该靶材用于直流磁控溅射制备10B富集的ZrB2薄膜。本发明提供的制备方法工艺过程简单,成本低,易于实现产业化生产,热压烧结过程无须添加烧结助剂,得到的ZrB2溅射靶材纯度高、相结构单一、致密度高、导电性好,适于直流磁控溅射制备ZrB2薄膜。

Description

一种10B富集的ZrB2溅射靶材的制备方法及应用
技术领域
本发明属于溅射靶材制备及应用领域,具体涉及一种10B富集的ZrB2溅射靶材的制备方法及应用。
背景技术
ZrB2材料由于具有高熔点、高硬度、良好的导电性、耐高温氧化等特点在高温结构陶瓷上有广泛的应用,其薄膜在航空航天、太阳能、核能等领域也有突出的应用,当ZrB2中的B以10B富集的形式存在时,具有优异的中子吸收性能,使得ZrB2薄膜在核反应堆中得到应用。
ZrB2的薄膜一般都利用直流磁控溅射来制备的,直流磁控溅射是将ZrB2靶材作为阴极、基体作为阳极,通过离子束轰击靶材表面,使得靶材表面以原子团、簇的形式沉积到基体的表面,形成ZrB2薄膜。
ZrB2靶材的制备主要包括原料制备和靶材烧结成型,原料制备的方法有多种,包括直接合成法、碳热还原法、金属热还原法、高温自蔓延合成法、电化学合成法、溶胶-凝胶法(Sol-Gel)、PVD、CVD等。在各种ZrB2粉体的制备方法中,碳热还原法和高温自蔓延合成法是最常用的两种方法,也是操作简单易行的两种方法。但高温自蔓延法采用单质Zr和B为原料,原料成本高,特别是10B富集的B粉原料难以获得,且制备的ZrB2粉体纯度低,在要求ZrB2高纯化的应用领域制约了应用。靶材烧结成型方法主要有无压烧结、热压烧结和热等静压烧结等,无压烧结需要添加烧结助剂,易在最终产品中引入杂质,降低了靶材的化学纯度;热等静压烧结由于设备昂贵,操作成本高;而热压烧结工艺灵活,操作简单而易于实现。
发明内容
本发明针对现有ZrB2靶材制备技术的不足,提供了一种10B富集的ZrB2靶材的制备方法及应用,其特征在于,该方法包括以下步骤:
(1)制备10B富集的ZrB2粉体;
(2)将10B富集的ZrB2粉体装入高强石墨模具中;
(3)在惰性气氛保护下高温热压烧结;
(4)热压烧结的ZrB2陶瓷坯体进行加工后处理,得到10B富集的ZrB2溅射靶材。
所述步骤(1)采用碳热还原反应制备10B富集的ZrB2粉体,利用纯度均大于99.9%的ZrO210B富集的H3BO3、C及B为合成原料,且ZrO2:H3BO3:C:B的质量比为100:(100~180):40~70:(0~5),其中,10B富集的H3BO310B的富集度为40~99%;将原料脱水、球磨后,于真空碳管炉中碳热还原反应得到10B富集的ZrB2粉体,其中,反应真空度小于10-1Pa,反应温度为1500~2000℃,反应时间为1~6h。
步骤(2)中所述高强石墨模具的抗压强度大于80MPa,优选大于120MPa,抗折强度大于20MPa,优选大于40MPa。
步骤(2)中将粉体装入石墨模具后,预压后测定料层高度,计算靶材热压烧结到设计密度值时压头所需的行程。
步骤(3)中所述惰性气氛是高纯氩气,纯度>99.999%。
步骤(3)中所述高温热压烧结的温度为1800~2100℃;加热方式为中频感应加热,加热功率大于350KW。
步骤(3)中所述高温热压烧结的压力为30~100MPa,优选为50~70MPa,通过双向加压的方式实现,当上下压头总行程达到计算值时热压烧结结束。
步骤(4)中所述加工后处理是利用树脂基金刚石砂轮进行平面磨削,电火花进行切割,超声洗涤脱除磨削污染,真空干燥进行烘干。
一种10B富集的ZrB2溅射靶材用于直流磁控溅射制备10B富集的ZrB2薄膜。
10B富集的ZrB2靶材的制备原理为:通过结合利用硼热和碳热还原反应工艺制备10B富集的ZrB2粉体原料,该原料粉体具有良好的致密化性能,通过高温热压实现靶材的深度致密化,通过切割、洗涤、烘干得到靶材。
本发明的优点有:
(1)采用硼热和碳热还原反应工艺的结合制备10B富集的ZrB2粉体,克服了单一碳热还原法制备的粉体烧结性能差的缺点,且粉体制备工艺过程简单,与自蔓延法相比具有明显的高纯度、低成本优势;
(2)采用真空热压烧结进行靶材压制成型,不需要添加烧结助剂即可得到相对密度大于90%的高密度10B富集的ZrB2靶材,该靶材的导电性好,电阻率小于0.01Ω·cm,适于直流磁控溅射镀膜。
附图说明
图1为10B富集的ZrB2靶材制备流程;
图2为10B富集的ZrB2薄膜的断面形貌。
具体实施方式
本发明提供了一种10B富集的ZrB2溅射靶材的制备方法及应用,下面结合实施例对本发明作进一步说明,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
按照图1所示的工艺流程,取ZrO2粉体230g、10B富集的H3BO3粉体250g、C粉100g,B粉6.5g,混合均匀后,在碳管炉中高温反应合成,合成温度为1700℃,反应时间为2小时;将制备的粉体210g装入直径为80mm的高强石墨模具中,石墨模具的抗压强度110MPa,预压后测得料层高度35mm,按照95%的密度计算,压头行程约为28mm,将模具装入热压烧结炉中,抽真空,当真空度达到10-2Pa后开始升温,当温度达到1000℃时,关闭真空系统,打开充气阀,充入高纯氩气直至炉内压力升到与外界压力平衡,关闭充气阀,当温度达到1800℃时开始双向加压,按照3吨/5min的速度施加压力,直到压力达到30吨、温度达到1900℃时开始保温保压,当上下压头行程总和达到28mm后开始卸载压力,冷却后取出靶材,采用金刚石砂轮平面磨削后测得制备的靶材相对密度为92%。
实施例2
按照图1所示的工艺流程,取ZrO2粉体230g、10B富集的H3BO3粉体250g、C粉100g,B粉5g,混合均匀后,在碳管炉中高温反应合成,合成温度为1800℃,反应时间为2小时;将制备的粉体210g装入直径为80mm的高强石墨模具中,石墨模具的抗压强度120MPa,预压后测得料层高度37mm,按照95%的密度计算,压头行程约为30mm,将模具装入热压烧结炉中,抽真空,当真空度达到10-2Pa后开始升温,当温度达到1000℃时,关闭真空系统,打开充气阀,充入高纯氩气直至炉内压力升到与外界压力平衡,关闭充气阀,当温度达到1800℃时开始双向加压,按照3吨/5min的速度施加压力,直到压力达到35吨、温度达到1900℃时开始保温保压,当上下压头行程总和达到30mm后开始卸载压力,冷却后取出靶材,采用金刚石砂轮平面磨削后测得制备的靶材相对密度为94%。
实施例3
取ZrO2粉体1500g、H3BO3粉体2000g、C粉1000g,B粉60g,混合均匀后,在碳管炉中高温反应合成,合成温度为1900℃,反应时间为4小时;将制备的粉体1100g装入尺寸为193(长)×75(宽)mm的长方形高强石墨模具中,石墨模具的抗压强度120MPa,预压后测得料层高度46mm,按照95%的密度计算,压头行程约为33mm,将模具装入热压烧结炉中,抽真空,当真空度达到10-2Pa后开始升温,当温度达到1000℃时,关闭真空系统,打开充气阀,充入高纯氩气直至炉内压力升到与外界压力平衡,关闭充气阀,当温度达到1800℃时开始双向加压,按照3吨/5min的速度施加压力,直到压力达到100吨、温度达到1900℃时开始保温保压,当上下压头行程总和达到33mm后开始卸载压力,冷却后取出靶材,采用金刚石砂轮平面磨削后测得制备的靶材相对密度为95%。
实施例4
采用电火花切割,将实施例2制备的靶材切割成直径为60mm的靶材,将切割剩余料取样进行ICP-MS分析,结果如表1所示。采用直流磁控溅射镀膜机进行镀膜验证实验,镀膜机典型工艺参数如下:
背底真空:5×10-3Pa
工作气压:0.3Pa
靶基距:55mm
溅射功率:170W
基片:单晶硅,直径
采用以上工艺参数,在单晶硅衬底上沉积10B富集的ZrB2薄膜,连续溅射3hr后,采用扫描电镜进行薄膜的断面分析,如图2所示,可见薄膜沉积均匀,厚度约9μm。
通过研究发现,本发明提供的ZrB2粉体制备新工艺以及采用该粉体制备的溅射靶材方法中,ZrO2、H3BO3、C及B的比例,合成温度,保温时间,成型压力,保压时间等对得到的ZrB2粉体物相及靶材密度等均有一定的影响。在优选工艺条件下,得到的ZrB2粉体及靶材质量较好。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺流程,但本发明并不局限于上述详细工艺流程,即不意味着本发明必须依赖上述详细工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
表1 10B富集的ZrB2溅射靶材的纯度分析
杂质元素 含量ppm 杂质元素 含量ppm 杂质元素 含量ppm
Mg 3 Al 45 Si 46
Ca 70 V <10 Cr 10
Mn <5 Fe 76 Ni <5
Co <5 Cu <3 Zn <5
As <1 Mo 20 Cd <3
Sn <1 Sb <10 Pb <5

Claims (8)

1.一种10B富集的ZrB2溅射靶材的制备方法,其特征在于,该方法步骤如下:
(1)制备10B富集的ZrB2粉体;
(2)将10B富集的ZrB2粉体装入高强石墨模具中;
(3)在惰性气氛保护下热压烧结;
(4)热压烧结的ZrB2陶瓷坯体进行加工后处理,得到10B富集的ZrB2溅射靶材。
2.根据权利要求1所述的一种10B富集的ZrB2溅射靶材的制备方法,其特征在于,所述步骤(1)采用碳热还原反应制备10B富集的ZrB2粉体,利用纯度均大于99.9%的ZrO210B富集的H3BO3、C及B为合成原料,且ZrO2:H3BO3:C:B的质量比为100:(100~180):(40~70):(0~5),其中,10B富集的H3BO310B的富集度为40~99%;将原料脱水、球磨后,于真空碳管炉中碳热还原反应得到10B富集的ZrB2粉体,其中,反应真空度小于10-1Pa,反应温度为1500~2000℃,反应时间为1~6h。
3.根据权利要求1所述的一种10B富集的ZrB2溅射靶材的制备方法,其特征在于,步骤(2)中所述高强石墨模具的抗压强度大于80MPa,抗折强度大于20MPa。
4.根据权利要求1所述的一种10B富集的ZrB2溅射靶材的制备方法,其特征在于,步骤(3)中所述惰性气氛是高纯氩气,纯度>99.999%。
5.根据权利要求1所述的一种10B富集的ZrB2溅射靶材的制备方法,其特征在于,步骤(3)中所述热压烧结的温度为1800~2100℃;加热方式为中频感应加热,加热功率大于350KW。
6.根据权利要求1所述的一种10B富集的ZrB2溅射靶材的制备方法,其特征在于,步骤(3)中所述热压烧结的压力为30~100MPa,通过双向加压实现。
7.根据权利要求1所述的一种10B富集的ZrB2溅射靶材的制备方法,其特征在于,步骤(4)中所述加工后处理是利用树脂基金刚石砂轮进行平面磨削,电火花进行切割,超声洗涤脱除磨削污染,真空干燥进行烘干。
8.一种权利要求1制备的10B富集的ZrB2溅射靶材的应用,其特征在于,该靶材用于直流磁控溅射制备10B富集的ZrB2薄膜。
CN201611227415.8A 2016-12-27 2016-12-27 一种10B富集的ZrB2溅射靶材的制备方法及应用 Active CN106588023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611227415.8A CN106588023B (zh) 2016-12-27 2016-12-27 一种10B富集的ZrB2溅射靶材的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611227415.8A CN106588023B (zh) 2016-12-27 2016-12-27 一种10B富集的ZrB2溅射靶材的制备方法及应用

Publications (2)

Publication Number Publication Date
CN106588023A true CN106588023A (zh) 2017-04-26
CN106588023B CN106588023B (zh) 2019-10-01

Family

ID=58604305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611227415.8A Active CN106588023B (zh) 2016-12-27 2016-12-27 一种10B富集的ZrB2溅射靶材的制备方法及应用

Country Status (1)

Country Link
CN (1) CN106588023B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115331A (zh) * 2011-03-14 2011-07-06 大连博恩坦科技有限公司 一种10b二硼化锆及其制备方法
CN103936422A (zh) * 2014-03-31 2014-07-23 大连博恩坦科技有限公司 一种富集10b的碳化硼中子吸收屏蔽材料的制备方法
CN104961138A (zh) * 2015-06-30 2015-10-07 莱芜亚赛陶瓷技术有限公司 一种富10b二硼化锆粉末的制备方法
CN105110347A (zh) * 2015-08-11 2015-12-02 中国核动力研究设计院 一种核级浓缩10b二硼化锆粉体以及靶件的制备方法
CN105693252A (zh) * 2016-01-22 2016-06-22 基迈克材料科技(苏州)有限公司 热压工艺制备硼化物溅射靶材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115331A (zh) * 2011-03-14 2011-07-06 大连博恩坦科技有限公司 一种10b二硼化锆及其制备方法
CN103936422A (zh) * 2014-03-31 2014-07-23 大连博恩坦科技有限公司 一种富集10b的碳化硼中子吸收屏蔽材料的制备方法
CN104961138A (zh) * 2015-06-30 2015-10-07 莱芜亚赛陶瓷技术有限公司 一种富10b二硼化锆粉末的制备方法
CN105110347A (zh) * 2015-08-11 2015-12-02 中国核动力研究设计院 一种核级浓缩10b二硼化锆粉体以及靶件的制备方法
CN105693252A (zh) * 2016-01-22 2016-06-22 基迈克材料科技(苏州)有限公司 热压工艺制备硼化物溅射靶材

Also Published As

Publication number Publication date
CN106588023B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
CN100491554C (zh) 一种细晶择优取向Bi2Te3热电材料的制备方法
TWI487176B (zh) LiCoO2燒結體的製造方法及濺鍍靶
EP3726549B1 (en) Preparation method for a rare earth permanent magnet material
CN105695774A (zh) Mg3Sb2基热电材料的制备方法
CN104894641B (zh) 一种高致密(LaxCa1‑x)B6多晶阴极材料及其制备方法
US20090191112A1 (en) Method and apparatus for fabricating high purity silicon compacts using silicon powders, and binder-free silicon compact fabricated by the same
CN114525438B (zh) 钨铜复合材料及其制备方法
CN103219089A (zh) 多孔石墨烯或石墨烯/多孔复合陶瓷导电材料及其制备方法
CN104843727B (zh) 多元稀土硼化物(LaxCe1‑x)B6固溶体多晶阴极材料及其制备方法
CN102605332A (zh) 一种高纯Ru溅射靶及制备方法
CN101358313B (zh) 一种提高Bi-S二元体系热电材料性能的方法
CN106672988A (zh) 一种高纯稀土硼化物的制备方法
CN109399580B (zh) 一种快速制备CuFeSe2的方法
CN101269800A (zh) 一种非均质Bi2Te2热电材料及制备方法
CN104232961B (zh) 一种高强高硬Cu-Cr复合材料及其制备方法和应用
CN108300881A (zh) 一种在MnCoGe基合金中实现宽温区巨负热膨胀的方法
CN105525122A (zh) 纳米SiC复合Mg-Si-Sn基热电材料的制备方法
CN111139453B (zh) 一种高导电铜/石墨烯复合材料的制备方法
CN106588023B (zh) 一种10B富集的ZrB2溅射靶材的制备方法及应用
CN101921114A (zh) 具有面心立方结构的高纯度TiB陶瓷粉末及其制备方法
CN104831352B (zh) 一种高纯高致密(LaxSm1‑x)B6多晶阴极材料及其制备方法
CN109722584B (zh) 一种制备钼钨钽钛锆高熵合金的方法
CN104388817A (zh) 一种高强韧烧结铁镍合金及其制备方法
CN108570570B (zh) 一种纳米碳化锆陶瓷增强铜基电极材料及其制备方法
CN203644876U (zh) 一种熔盐电解制备纳米硅碳复合负极材料的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191030

Address after: 101407 Beijing city Huairou District Yanqi Economic Development Zone Branch Hing Street No. 11

Patentee after: Research Institute of engineering and Technology Co., Ltd.

Address before: 100088 Beijing city Xicheng District Xinjiekou Avenue No. 2

Patentee before: General Research Institute for Nonferrous Metals

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210415

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Youyan resources and Environment Technology Research Institute (Beijing) Co.,Ltd.

Address before: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee before: YOUYAN ENGINEERING TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd.