CN106582782A - 高抗氮加氢裂化催化剂及其制备方法 - Google Patents

高抗氮加氢裂化催化剂及其制备方法 Download PDF

Info

Publication number
CN106582782A
CN106582782A CN201510671000.9A CN201510671000A CN106582782A CN 106582782 A CN106582782 A CN 106582782A CN 201510671000 A CN201510671000 A CN 201510671000A CN 106582782 A CN106582782 A CN 106582782A
Authority
CN
China
Prior art keywords
nitrogen
phosphide
catalyst
high anti
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510671000.9A
Other languages
English (en)
Inventor
孔德金
李旭光
郑均林
陈燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201510671000.9A priority Critical patent/CN106582782A/zh
Publication of CN106582782A publication Critical patent/CN106582782A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种高抗氮加氢裂化催化剂及其制备方法。主要解决传统加氢裂化催化剂抗氮性能差的问题。本发明通过采用催化剂,按重量百分比计包括:35~48%选自FAU、BEA、MOR、MFI型沸石或无定形硅铝中的至少一种,10~30%的拟薄水铝石,8~18%的硫化钨和4~11%选自磷化镍、磷化钴、磷化钼或磷化钨中的至少一种为活性组分的技术方案较好地解决了上述问题。本发明方法制备的催化剂裂化活性高,适用于氮含量不高于110μg/g的馏分油加氢裂化领域。

Description

高抗氮加氢裂化催化剂及其制备方法
技术领域
本发明涉及一种高抗氮加氢裂化催化剂及其制备方法。
背景技术
加氢裂化技术具有原料适应性强、产品方案灵活性大、目的产品选择性高、产品质量好、附加值高等特点,可将各种重质、劣质原料直接转化清洁燃油和优质的化工原料,已成为现代炼油和石油化学工业最重要的重油深度加工工艺之一,在国内外获得日益广泛的应用。加氢裂化催化剂一般为双功能催化剂,抗氮能力都不高,对原料中的氮含量有严格要求,若超出规定值运行一段时间,裂化催化剂活性会明显降低,所以对于含分子筛加氢裂化催化剂而言,通常要求原料中氮含量小于10μg/g,以防止酸中心中毒。但受裂化段之前的精制段催化剂开发的制约,使得精制段产物中所含杂质较高,特别是其中的碱性氮化物脱除困难,这将给后序的裂化催化剂的稳定运行带来难度。因此,长期以来,加氢裂化催化剂的抗氮能力成为开发此类催化剂的重点。
CN98114489.6公开了一种加氢裂化催化剂,采用共沉法制备。其中无定形硅铝占催化剂的10~60wt%,改性Y型分子筛1~40wt%,VIB族金属氧化物占10~40wt%,VIII族金属氧化物占1~10wt%,IVB族金属氧化物占1~10wt%,用于一段串联加氢裂化生产中间馏分油,裂化段进料的N含量可达100ug·g-1。该催化剂具有较好的催化活性,催化剂也具有很高的抗氮性,但其制备方法较复杂,制备成本也较高,石脑油产品收率较低。
CN102463147A公开一种中油型加氢裂化催化剂,以最终催化剂重量计,催化剂载体组分包括分子筛0%~20%、无定形硅铝20%~50%,和氧化铝5%~30%,以氧化物重量计,催化剂中含有20%~50%的加氢金属组分。无定形硅铝为无定形硅铝干胶粉经过水热处理后与其它载体材料制成催化剂载体,然后采用浸渍法负载加氢金属组分制得最终催化剂。与现有加氢裂化催化剂相比,本发明催化剂具有更大的孔容和比表面积,酸量适宜,具有良好的抗氮能力,由本发明所制备的催化剂适于处理更重质、更劣质减压馏分油而多产中间馏分油的加氢处理过程。
CN103102966A公开了一种高氮原料加氢裂化方法,以高氮重质馏分油为原料,采用两段工艺流程,在加氢精制条件下,重质馏分油原料和氢气混合进入第一段反应区,第一段反应区使用加氢精制催化剂,脱氮率为60%~95%,第一段反应区流出物气液分离后的气相经脱杂质后循环使用,液相分馏得到轻质油品和尾油;尾油与氢气混合进入第二段反应区,第二段反应区使用加氢精制催化剂和加氢裂化催化剂,第二段反应区反应流出物进入分离系统。同现有两段加氢裂化技术相比,本发明工艺流程更加灵活,可加工更加劣质的原料;同现有一段串联加氢裂化技术相比,可大大提高装置的加工能力。同时本发明方法可以在相对缓和的条件下操作,有利于提高加氢装置的运转周期。
发明内容
本发明所要解决的技术问题之一是为了克服传统加氢裂化催化剂抗氮性能差的问题,提供一种新的用于加氢裂化的催化剂。该催化剂具有抗氮能力强、裂化活性高的优点。
本发明所要解决的技术问题之二是提供一种与解决技术问题之一相对应的高抗氮加氢裂化催化剂的制备方法。
本发明所要解决的技术问题之三是提供一种与解决技术问题之一相对应的高抗氮加氢裂化催化剂的操作方法。
为解决上述技术问题之一,本发明采用的技术方案如下:一种高抗氮加氢裂化催化剂,按催化剂重量百分比计包括:
(a)35~48%选自FAU、BEA、MOR、MFI型沸石或无定形硅铝中的至少一种;
(b)10~30%的拟薄水铝石;
(c)8~18%的硫化钨为活性组分;
(d)4~11%选自磷化镍、磷化钴、磷化钼或磷化钨中的至少一种为活性组分。
上述技术方案中,所述的(a)部分FAU沸石选自USY、HY、NTY或SSY分子筛中的至少一种;BEA沸石选自氢型或铵型Beta分子筛;MOR沸石选自氢型或铵型的丝光沸石;MFI沸石选自氢型或铵型ZSM-5分子筛。
上述技术方案中优选的技术方案为(d)部分选自磷化钴和磷化钨。
为解决上述技术问题之二,本发明采用的技术方案如下:一种高抗氮加氢裂化催化剂的制备方法,包括以下步骤:
①将选自FAU、BEA、MOR、MFI型沸石或无定形硅铝中的至少一种与拟薄水铝石经混捏、成型、挤条、干燥后,于450~650℃焙烧0.5~24h得到催化剂载体;
②将金属钨的硫化物和金属镍、钴、钼或钨中至少一种的磷化物前驱体溶液于10~60℃浸渍到催化剂载体上陈化0.5~24h,干燥后备用;
③在氢气或氮气气氛下,于280~450℃热处理1~12h即得催化剂成品。
上述技术方案中,浸渍过程中金属硫化物的前驱体溶液可先于或迟于金属磷化物的前驱体溶液浸渍到载体上。
上述技术方案中所用的金属硫化物硫化钨的前驱体为硫代钨酸铵,优选四硫代钨酸铵溶液。
上述技术方案中所用的金属磷化物磷化镍的前驱体为含有镍离子和次磷酸根离子的溶液,优选次磷酸镍溶液。
上述技术方案中所用的金属磷化物磷化钴的前驱体为含有钴离子和次磷酸根离子的溶液,优选次磷酸钴溶液。
上述技术方案中所用的金属磷化物磷化钼的前驱体为含有钼酸根离子和次磷酸根离子的溶液,优选仲钼酸铵和次磷酸铵的混合溶液。
上述技术方案中所用的金属磷化物磷化钨的前驱体为含有钨酸根离子和次磷酸根离子的溶液,优选偏钨酸铵和次磷酸铵的混合溶液。
为解决上述技术问题之三,本发明采用的技术方案如下:一种高抗氮加氢裂化的方法,含氮馏分油与氢气混合,自上而下通过催化剂床层,在反应温度350~450℃、反应压力3~10MPa、体积空速0.5~4hr-1、氢油体积比500~1200条件下与上述任意一种所述的催化剂接触,进行加氢裂化反应。
上述技术方案中,馏分油中氮含量不高于110μg/g。
本发明使用超临界固定床反应器进行加氢裂化反应的性能考察,反应器内径Ф12毫米,长度800毫米,不锈钢材质。采用电加热,温度自动控制。反应器底部填充Ф2~3毫米玻璃珠为支撑物,反应器内填充催化剂5克,上部填充Ф2~3毫米玻璃珠,供作原料预热和汽化之用。含氮馏分油与氢气混合,自上而下通过催化剂床层进行加氢裂化反应。
本发明提供的催化剂可用于氮含量不高于110μg/g的馏分油加氢裂化过程,裂化活性高。本发明中由于使用了金属硫化物和金属磷化物的组合作为活性组分,显著提高了脱氮的加氢和氢解两条反应路径的活性,在两者的协同作用下进一步脱氮后再与分子筛的酸中心接触发生裂化反应,降低了对催化剂酸中心的毒害作用,保证了裂解反应的顺利进行,提高了裂解活性。
下面通过实施例对本发明作进一步阐述。
具体实施方式
【实施例1】
将干基为60g硅铝比为10的USY沸石(购自山东淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将四硫代钨酸铵溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含硫化钨含量为载体干基重量的12%,陈化8h并经干燥后,再将次磷酸镍溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含磷化镍含量为载体干基重量的6%,陈化8h并经干燥后,在氢气中360℃热处理4h(此步可在反应器中完成)即得成品催化剂1。
将催化剂1用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【实施例2】
将干基为60g硅铝比为15的Beta沸石(购自山东淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将四硫代钨酸铵溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含硫化钨含量为载体干基重量的12%,陈化8h并经干燥后,再将次磷酸镍溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含磷化镍含量为载体干基重量的6%,陈化8h并经干燥后,在氢气中360℃热处理4h(此步可在反应器中完成)即得成品催化剂2。
将催化剂2用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【实施例3】
将干基为60g硅铝比为100的ZSM-5沸石(购自山东淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将四硫代钨酸铵溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含硫化钨含量为载体干基重量的12%,陈化8h并经干燥后,再将次磷酸镍溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含磷化镍含量为载体干基重量的6%,陈化8h并经干燥后,在氢气中360℃热处理4h(此步可在反应器中完成)即得成品催化剂3。
将催化剂3用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【实施例4】
将干基为30g硅铝比为10的USY沸石(购自山东淄博)、30g无定形硅铝(商购淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将四硫代钨酸铵溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含硫化钨含量为载体干基重量的12%,陈化8h并经干燥后,再将次磷酸镍溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含磷化镍含量为载体干基重量的6%,陈化8h并经干燥后,在氢气中360℃热处理4h(此步可在反应器中完成)即得成品催化剂4。
将催化剂4用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【实施例5】
将干基为30g硅铝比为10的USY沸石(购自山东淄博)、30g硅铝比15的Beta沸石(商购淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将四硫代钨酸铵溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含硫化钨含量为载体干基重量的12%,陈化8h并经干燥后,再将次磷酸镍溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含磷化镍含量为载体干基重量的6%,陈化8h并经干燥后,在氢气中360℃热处理4h(此步可在反应器中完成)即得成品催化剂5。
将催化剂5用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【实施例6】
将干基为30g硅铝比为10的USY沸石(购自山东淄博)、30g硅铝比15的Beta沸石(商购淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将四硫代钨酸铵溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含硫化钨含量为载体干基重量的12%,陈化8h并经干燥后,再将次磷酸镍和次磷酸钴混合溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含磷化镍和磷化钴含量均为载体干基重量的3%,陈化8h并经干燥后,在氢气中360℃热处理4h(此步可在反应器中完成)即得成品催化剂6。
将催化剂6用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【实施例7】
将干基为30g硅铝比为10的USY沸石(购自山东淄博)、30g硅铝比15的Beta沸石(商购淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将四硫代钨酸铵溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含硫化钨含量为载体干基重量的15%,陈化8h并经干燥后,再将次磷酸镍溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含磷化镍含量为载体干基重量的3%,陈化8h并经干燥后,在氢气中360℃热处理4h(此步可在反应器中完成)即得成品催化剂7。
将催化剂7用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【实施例8】
将干基为30g硅铝比为10的USY沸石(购自山东淄博)、30g硅铝比15的Beta沸石(商购淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将四硫代钨酸铵溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含硫化钨含量为载体干基重量的12%,陈化8h并经干燥后,再将次磷酸钴溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含磷化钴含量为载体干基重量的6%,陈化8h并经干燥后,在氢气中360℃热处理4h(此步可在反应器中完成)即得成品催化剂8。
将催化剂8用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【实施例9】
将干基为30g硅铝比为10的USY沸石(购自山东淄博)、30g硅铝比15的Beta沸石(商购淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将四硫代钨酸铵溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含硫化钨含量为载体干基重量的12%,陈化8h并经干燥后,再将次磷酸钴、次磷酸铵和仲钼酸铵的混合溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含磷化钴和磷化钼含量各为载体干基重量的3%,陈化8h并经干燥后,在氢气中360℃热处理4h(此步可在反应器中完成)即得成品催化剂9。
将催化剂9用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【实施例10】
将干基为30g硅铝比为10的USY沸石(购自山东淄博)、30g硅铝比15的Beta沸石(商购淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将四硫代钨酸铵溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含硫化钨含量为载体干基重量的12%,陈化8h并经干燥后,再将次磷酸钴、次磷酸铵和偏钨酸铵的混合溶液于40℃下对载体颗粒进行浸渍,浸渍液中折算所含磷化钴和磷化钨含量各为载体干基重量的3%,陈化8h并经干燥后,在氢气中360℃热处理4h(此步可在反应器中完成)即得成品催化剂10。
将催化剂10用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【比较例1】
将干基为30g硅铝比为10的USY沸石(购自山东淄博)、30g硅铝比15的Beta沸石(商购淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将含12%氧化钨的偏钨酸铵溶液于40℃下对载体颗粒进行浸渍,陈化8h并经干燥后,再进行常规的预硫化,还原活化处理即得成品催化剂A。
将催化剂A用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
【比较例2】
将干基为30g硅铝比为10的USY沸石(购自山东淄博)、30g硅铝比15的Beta沸石(商购淄博)和30g拟薄水铝石(购自山东淄博)加入混合器至均匀,然后向混合物中加入3g田菁粉、5g体积比1:1HNO3溶液和40g去离子水,研磨均匀制成适于挤出的面团。将其通过模具挤出,形状呈细长的圆柱形(直径1.7mm),120℃烘干后于550℃焙烧4h,然后将其裁剪成尺寸一致的载体颗粒备用(1.7×4.0mm)。
将含12%氧化钨的偏钨酸铵和含6%氧化镍的硝酸镍混合后于40℃下对载体颗粒进行浸渍,陈化8h并经干燥后,再进行常规的预硫化,还原活化处理即得成品催化剂B。
将催化剂B用于轻循环油精制油加氢裂化性能评价,原料组成示于表1。液体原料与氢气混合,自上而下通过催化剂床层,在反应温度360℃、反应压力6MPa、体积空速1.0hr-1、氢油体积比800条件下与催化剂接触,对产物进行回收和组分检测,将转化结果示于表2。
表1
表2
【实施例11~16】
将实施例1中催化剂用于轻循环油精制油加氢裂化性能评价。液体原料与氢气混合,自上而下通过催化剂床层,分别调整考评工艺条件温度、压力、体积空速、氢油体积比、原料中氮含量进行加氢裂化反应对产物进行回收和组分检测,将转化结果示于表3。
表3

Claims (10)

1.一种高抗氮加氢裂化催化剂,按催化剂重量百分比计包括:
(a)35~48%选自FAU、BEA、MOR、MFI型沸石或无定形硅铝中的至少一种;
(b)10~30%的拟薄水铝石;
(c)8~18%的硫化钨为活性组分;
(d)4~11%选自磷化镍、磷化钴、磷化钼或磷化钨中的至少一种为活性组分。
2.权利要求1所述的高抗氮加氢裂化催化剂的制备方法,包括以下步骤:
①将选自FAU、BEA、MOR、MFI型沸石或无定形硅铝中的至少一种与拟薄水铝石经混捏、成型、挤条、干燥后,于450~650℃焙烧0.5~24h得到催化剂载体;
②将金属钨的硫化物和金属镍、钴、钼或钨中至少一种的磷化物前驱体溶液于10~60℃浸渍到催化剂载体上陈化0.5~24h,干燥后备用;
③在氢气或氮气气氛下,于280~450℃热处理1~12h即得催化剂成品。
3.根据权利要求2所述的高抗氮加氢裂化催化剂的制备方法,其特征在于浸渍过程中金属硫化物的前驱体溶液可先于或迟于金属磷化物的前驱体溶液浸渍到载体上。
4.根据权利要求2所述的高抗氮加氢裂化催化剂的制备方法,其特征在于所述的金属硫化物硫化钨的前驱体为硫代钨酸铵。
5.根据权利要求2所述的高抗氮加氢裂化催化剂的制备方法,其特征在于所述的金属磷化物磷化镍的前驱体为含有镍离子和次磷酸根离子的溶液。
6.根据权利要求2所述的高抗氮加氢裂化催化剂的制备方法,其特征在于所述的金属磷化物磷化钴的前驱体为含有钴离子和次磷酸根离子的溶液。
7.根据权利要求2所述的高抗氮加氢裂化催化剂的制备方法,其特征在于所述的金属磷化物磷化钼的前驱体为含有钼酸根离子和次磷酸根离子的溶液。
8.根据权利要求2所述的高抗氮加氢裂化催化剂的制备方法,其特征在于所述的金属磷化物磷化钨的前驱体为含有钨酸根离子和次磷酸根离子的溶液。
9.一种高抗氮加氢裂化的方法,含氮馏分油与氢气混合,自上而下通过催化剂床层,在反应温度350~450℃、反应压力3~10MPa、体积空速0.5~4hr-1、氢油体积比500~1200条件下与权利要求1中任意一种所述的催化剂接触,进行加氢裂化反应。
10.根据权利要求9所述的高抗氮加氢裂化方法,其特征在于馏分油中氮含量不高于110μg/g。
CN201510671000.9A 2015-10-15 2015-10-15 高抗氮加氢裂化催化剂及其制备方法 Pending CN106582782A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510671000.9A CN106582782A (zh) 2015-10-15 2015-10-15 高抗氮加氢裂化催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510671000.9A CN106582782A (zh) 2015-10-15 2015-10-15 高抗氮加氢裂化催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN106582782A true CN106582782A (zh) 2017-04-26

Family

ID=58553593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510671000.9A Pending CN106582782A (zh) 2015-10-15 2015-10-15 高抗氮加氢裂化催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106582782A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101670300A (zh) * 2009-10-01 2010-03-17 厦门大学 一种抗硫抗氮加氢裂化催化剂及其制备方法
CN102463147A (zh) * 2010-11-04 2012-05-23 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及制备方法
CN102909048A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法和应用
CN102994147A (zh) * 2011-09-15 2013-03-27 中国石油天然气股份有限公司 一种重质油中压加氢裂化生产中间馏分油的方法
CN103102966A (zh) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 一种高氮原料加氢裂化方法
CN103638968A (zh) * 2013-11-12 2014-03-19 中国石油大学(华东) 一种非贵金属重整催化剂的制备方法及应用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101670300A (zh) * 2009-10-01 2010-03-17 厦门大学 一种抗硫抗氮加氢裂化催化剂及其制备方法
CN102463147A (zh) * 2010-11-04 2012-05-23 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及制备方法
CN102909048A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法和应用
CN102994147A (zh) * 2011-09-15 2013-03-27 中国石油天然气股份有限公司 一种重质油中压加氢裂化生产中间馏分油的方法
CN103102966A (zh) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 一种高氮原料加氢裂化方法
CN103638968A (zh) * 2013-11-12 2014-03-19 中国石油大学(华东) 一种非贵金属重整催化剂的制备方法及应用方法

Similar Documents

Publication Publication Date Title
CN105126815B (zh) 一种劣质重油悬浮床加氢催化剂及其制备和使用方法
CN109423336B (zh) 一种加氢裂化方法
EP1651347B1 (en) A process for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom
EP3785796B1 (en) Method for preparing hydrocracking catalyst
CN103285914A (zh) 一种含硅铝-磷铝复合分子筛的加氢预处理催化剂的制法
CN106179414B (zh) 一种硫化型加氢精制催化剂及其制备方法
CN108393096A (zh) 加氢脱硫催化剂、加氢精制催化剂的级配组合方法及应用
CN112538384B (zh) 一种多产异丁烷和轻质芳烃的加氢处理-催化裂化组合工艺方法
CA1335809C (en) Process for the preparation of catalyst particles and catalyst particles thus prepared
CN106552640B (zh) 重整原料预加氢催化剂及其制备方法
CN104275191B (zh) 一种用于fcc汽油预加氢的催化剂及其制备方法
US9422486B2 (en) Selective hydrogenation catalyst for unsaturated compound
CN105709805B (zh) 一种化工型加氢裂化催化剂及其制备方法
CN112275310A (zh) 一种基于ⅵb、ⅷ族复合金属元素的重芳烃轻质化催化剂及其制备方法、应用
CN106582782A (zh) 高抗氮加氢裂化催化剂及其制备方法
CN106582781A (zh) 高抗硫加氢裂化催化剂及其制备方法
CN106582778A (zh) 轻循环油加氢裂化催化剂及其制备方法
CN108795489B (zh) 一种掺炼柴油的加氢裂化方法
CN104096584B (zh) 一种渣油加氢催化剂及其制备方法
CN102836726A (zh) 一种加氢催化剂组合物的制备方法及应用
CN108795493B (zh) 一种生产清洁汽油的加氢方法
CN105121017B (zh) 使用蒸汽活化加氢处理催化剂
CN106582742B (zh) 多环芳烃加氢饱和催化剂及其制备方法
CN115247079B (zh) 一种增产乙烯裂解原料的方法
CN106582889B (zh) 高抗氮加氢裂化催化剂载体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170426

RJ01 Rejection of invention patent application after publication