CN106571481A - 一种锶钙共掺杂锰酸镧基钙钛矿材料及其在sofc中的应用 - Google Patents

一种锶钙共掺杂锰酸镧基钙钛矿材料及其在sofc中的应用 Download PDF

Info

Publication number
CN106571481A
CN106571481A CN201610916239.2A CN201610916239A CN106571481A CN 106571481 A CN106571481 A CN 106571481A CN 201610916239 A CN201610916239 A CN 201610916239A CN 106571481 A CN106571481 A CN 106571481A
Authority
CN
China
Prior art keywords
strontium
calcium
sofc
doping
based perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610916239.2A
Other languages
English (en)
Other versions
CN106571481B (zh
Inventor
王浚英
董文静
邓辉
朱斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201610916239.2A priority Critical patent/CN106571481B/zh
Publication of CN106571481A publication Critical patent/CN106571481A/zh
Application granted granted Critical
Publication of CN106571481B publication Critical patent/CN106571481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种用于低温固体氧化物燃料电池(SOFC)的锶、钙共掺杂锰酸镧基钙钛矿材料及该材料在低温SOFC中的应用。材料结构式为La0.1SrxCa0.9‑xMnO3‑δ,0<x<0.9,δ为使化学式的化合物保持电中性的值。该材料是采用共沉淀法制备。将该材料与离子导体材料混合后用于SOFC电解质层可显著提高SOFC的低温性能,简化SOFC制备工艺,减少La含量,有利于降低电池成本。

Description

一种锶钙共掺杂锰酸镧基钙钛矿材料及其在SOFC中的应用
技术领域
本发明涉及锰酸镧基钙钛矿材料及该材料在低温固体氧化物燃料电池中的应用,更具体地,涉及一种锶、钙共掺杂的锰酸镧基钙钛矿材料在低温固体氧化物燃料电池功能层中的应用。
背景技术
固体氧化物燃料电池(SOFC)具有能量转化效率高、燃料适应性强、可实现热电联供、洁净无污染等特点。但是传统高温SOFC的工作温度通常在1000℃,导致材料成本高、材料腐蚀严重、系统启动停机时间长等问题。降低操作温度不仅可以降低材料成本,解决密封问题,实现快速启动,而且可以提高电池稳定性,延长电池寿命,已经成为SOFC的主要发展方向。目前SOFC的低温化研究主要从材料选择以及结构设计等方面开展工作。
传统SOFC的核心部件主要由阳极、电解质以及阴极构成。其中,电解质起离子传导和隔绝反应气的双重作用;此外,为避免电池发生短路,电解质材料必须是绝缘体。而Zhu等人则冲破传统观念的束缚,采用半导体材料与离子导体的复合材料作为电解质层,得到高性能的低温SOFC。
文献Adv.Funct.Mater.2011,21,2465采用p型半导体Li0.15Ni0.45Zn0.4氧化物与离子导体材料钐掺杂氧化铈(SDC)的复合材料制备了单层SOFC。该电池在550℃下的最高功率密度>600mW cm-2
文献Adv.Energy Mater.2015,1401895采用p型半导体材料LiNi0.85Co0.15O2-δ与离子导体材料SDC的复合材料制备了肖特基结SOFC。该电池在550℃下的最高功率密度达到了1000mW cm-2
发明内容
本发明的目的是提供一种用于低温SOFC的锶、钙共掺杂锰酸镧基钙钛矿材料,提高低温SOFC的性能。
本发明是这样实现的。一种用于低温SOFC的锶、钙共掺杂锰酸镧基钙钛矿材料,其化学式为:La0.1SrxCa0.9-xMnO3-δ(LSCM),0<x<0.9,δ为使化学式的化合物保持电中性的值。
将该材料与离子导体材料复合用于低温SOFC,能够得到高性能的低温固体氧化物燃料电池。
制备锶钙共掺杂锰酸镧基钙钛矿材料的步骤包括:
(1)按化学式La0.1SrxCa0.9-xMnO3-δ,0<x<0.9称量,以硝酸镧、硝酸钙、硝酸锶和硝酸锰为前躯体,配制浓度为0.1-3mol L-1的前驱体混合溶液。
(2)向上述前驱体溶液中滴加化学计量比为1.1-2的碳酸钠水溶液,滴加过程中保持溶液处于搅拌状态,滴加完成后继续搅拌0.5-8h,然后静置0.5-20h。
(3)抽滤清洗至pH为7-9,将所得沉淀在50-200℃干燥1-10h,然后在700-1200℃下焙烧3-10h,得到焙烧粉体。
所述低温固体氧化物燃料电池,包括阳极扩散层、半导体-离子导体复合功能层、阴极扩散层。
用本发明的锶、钙共掺杂锰酸镧基钙钛矿材料制备SOFC燃料电池的方法为:
取锶钙共掺杂锰酸镧基钙钛矿(La0.1SrxCa0.9-xMnO3-δ,0<x<0.9,)的焙烧粉体0.01-0.3g与0.15-0.4g离子导体材料混合均匀后,两边放置阳极扩散层与阴极扩散层,利用粉末压片机压片成型。
所述离子导体材料包括Ce1-zSmzO2-0.5z、Gd1-zSmzO2-0.5z、La1-zSrzGa1-yMgyO3、掺杂SrCeO3、掺杂BaCeO3、掺杂CaZrO3、掺杂SrZrO3、掺杂BaZrO3、掺杂KTaO3和掺杂LnScO3中的一种或两种以上,其中0.05≤y≤0.5,0.1≤z≤0.5,Ln:稀土元素。
用本发明的锶掺杂锰酸镧基钙钛矿材料制备的低温固体氧化物燃料电池的运行温度低于600℃。
本发明具有以下优点:
(1)将本发明半导体材料与离子导体的复合材料用于SOFC,可有效提高SOFC的低温性能。
(2)LSCM具有良好的氧还原催化性能,可避免使用阴极催化层,简化SOFC制备工艺。
(3)LSCM中La元素摩尔份数为0.1,只有传统锰酸镧催化剂中La含量的20~40%,有利于降低电池成本。
附图说明
图1 La0.1Sr0.1Ca0.8MnO3-δ的SEM图;
图2 La0.1Sr0.3Ca0.6MnO3-δ的SEM图;
图3 La0.1Sr0.8Ca0.1MnO3-δ的SEM图;
图4 不同Sr含量的La0.1SrxCa0.9-xMnO3-δXRD图;
图5 不同Sr含量的La0.1SrxCa0.9-xMnO3-δ的电池在550℃时的i-V曲线;
图6 不同Sr含量的La0.1SrxCa0.9-xMnO3-δ的电池在550℃时的i-P曲线;
图7 不同Sr含量的La0.1SrxCa0.9-xMnO3-δ的电池在550℃时的EIS图谱;
具体实施方式
下面结合实施例对本发明做进一步说明。下述实施例是说明性的,不是限定性的,不能以下述实施例限定本发明的保护范围。
实施例1
制备锶钙共掺杂锰酸镧基钙钛矿材料La0.1SrxCa0.9-xMnO3-δ,x=0.1,步骤包括:
(1)按化学式称量,以硝酸镧、硝酸钙、硝酸锶和硝酸锰为前躯体,配制浓度为0.1-3mol L-1的前驱体混合溶液。
(2)向上述前驱体溶液中滴加化学计量比为1.1-2的碳酸钠水溶液,滴加过程中保持溶液处于搅拌状态,滴加完成后继续搅拌0.5-8h,然后静置0.5-20h。
(3)抽滤清洗至pH为7-9,将所得沉淀在50-200℃干燥1-10h,然后在700℃下焙烧4h,得到焙烧粉体。
所得材料形貌如图1所示,结构如图4所示。
实施例2
制备锶钙共掺杂锰酸镧基钙钛矿材料La0.1SrxCa0.9-xMnO3-δ,x=0.3,步骤包括:
(1)按化学式称量,以硝酸镧、硝酸钙、硝酸锶和硝酸锰为前躯体,配制浓度为0.1-3mol L-1的前驱体混合溶液。
(2)向上述前驱体溶液中滴加化学计量比为1.1-2的碳酸钠水溶液,滴加过程中保持溶液处于搅拌状态,滴加完成后继续搅拌0.5-8h,然后静置0.5-20h。
(3)抽滤清洗至pH为7-9,将所得沉淀在50-200℃干燥1-10h,然后在800℃下焙烧4h,得到焙烧粉体。
所得材料形貌如图2所示,结构如图4所示。
实施例3
制备锶掺杂锰酸镧基钙钛矿材料La0.1SrxCa0.9-xMnO3-δ,x=0.5,步骤包括:
(1)按化学式称量,以硝酸镧、硝酸钙、硝酸锶和硝酸锰为前躯体,配制浓度为0.1-3mol L-1的前驱体混合溶液。
(2)向上述前驱体溶液中滴加化学计量比为1.1-2的碳酸钠水溶液,滴加过程中保持溶液处于搅拌状态,滴加完成后继续搅拌0.5-8h,然后静置0.5-20h。
(3)抽滤清洗至pH为7-9,将所得沉淀在50-200℃干燥1-10h,然后在1000℃下焙烧6h,得到焙烧粉体。
所得材料形貌如图3所示,结构如图4所示。
实施例4
制备锶掺杂锰酸镧基钙钛矿材料La0.1SrxCa0.9-xMnO3-δ,x=0.8,步骤包括
(1)按化学式称量,以硝酸镧、硝酸钙、硝酸锶和硝酸锰为前躯体,配制浓度为0.1-3mol L-1的前驱体混合溶液。
(2)向上述前驱体溶液中滴加化学计量比为1.1-2的碳酸钠水溶液,滴加过程中保持溶液处于搅拌状态,滴加完成后继续搅拌0.5-8h,然后静置0.5-20h。
(3)抽滤清洗至pH为7-9,将所得沉淀在50-200℃干燥1-10h,然后在1200℃下焙烧8h,得到焙烧粉体。
所得材料结构如图4所示。
实施例5 SOFC燃料电池的制备方法
选取上述实施例中的焙烧粉体0.01-0.3g分别与0.15-0.4g离子导体材料Ce1- zSmzO2-0.5z混合均匀后,两边放置表面涂覆NCAL的泡沫镍,利用粉末压片机压片成型。其中,0.1≤z≤0.5。电池性能如图5、6、7所示。

Claims (3)

1.一种锶钙共掺杂锰酸镧基钙钛矿材料,其化学式为La0.1SrxCa0.9-xMnO3-δ,0<x<0.9,δ为使化学式的化合物保持电中性的值。
2.一种锶、钙共掺杂锰酸镧基钙钛矿材料的制备方法:
(1)按化学式La0.1SrxCa0.9-xMnO3-δ,0<x<0.9称量,以硝酸镧、硝酸钙、硝酸锶和硝酸锰为前躯体,配制浓度为0.1-3mol L-1的前驱体混合溶液;
(2)向上述前驱体溶液中滴加化学计量比为1.1-2的碳酸钠水溶液,滴加过程中保持溶液处于搅拌状态,滴加完成后继续搅拌0.5-8h,然后静置0.5-20h;
(3)抽滤清洗至pH为7-9,将所得沉淀在50-200℃干燥1-10h,然后在700-1200℃下焙烧3-10h,得到焙烧粉体。
3.一种锶、钙共掺杂锰酸镧基钙钛矿材料的应用方法:
选取锶、钙共掺杂锰酸镧基钙钛矿的焙烧粉体0.01-0.3g分别与0.15-0.4g离子导体材料混合均匀后,两边分别放置阳极扩散层和阴极扩散层,利用粉末压片机压片成型;
所述焙烧粉体化学式为La0.1SrxCa0.9-xMnO3-δ,0<x<0.9;
所述离子导体材料包括Ce1-zSmzO2-0.5z、Gd1-zSmzO2-0.5z、La1-zSrzGa1-yMgyO3、掺杂SrCeO3、掺杂BaCeO3、掺杂CaZrO3、掺杂SrZrO3、掺杂BaZrO3、掺杂KTaO3和掺杂LnScO3中的一种或两种以上,其中0.05≤y≤0.5,0.1≤z≤0.5,Ln:稀土元素。
CN201610916239.2A 2016-10-20 2016-10-20 一种锶钙共掺杂锰酸镧基钙钛矿材料及其在sofc中的应用 Active CN106571481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610916239.2A CN106571481B (zh) 2016-10-20 2016-10-20 一种锶钙共掺杂锰酸镧基钙钛矿材料及其在sofc中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610916239.2A CN106571481B (zh) 2016-10-20 2016-10-20 一种锶钙共掺杂锰酸镧基钙钛矿材料及其在sofc中的应用

Publications (2)

Publication Number Publication Date
CN106571481A true CN106571481A (zh) 2017-04-19
CN106571481B CN106571481B (zh) 2019-08-27

Family

ID=58533122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610916239.2A Active CN106571481B (zh) 2016-10-20 2016-10-20 一种锶钙共掺杂锰酸镧基钙钛矿材料及其在sofc中的应用

Country Status (1)

Country Link
CN (1) CN106571481B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112429777A (zh) * 2020-11-02 2021-03-02 广西科技大学 类钙钛矿结构固体材料及其制备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055104A2 (en) * 1980-12-19 1982-06-30 Matsushita Electric Industrial Co., Ltd. Sensor element and method for fabricating same
JP2002053374A (ja) * 2000-08-04 2002-02-19 Anan Kasei Kk 固体電解質型燃料電池の空気極用及び集電体原料用複合酸化物、その製造方法、並びに固体電解質型燃料電池
CN101274215A (zh) * 2007-12-27 2008-10-01 清华大学 一种用于汽车尾气净化的稀土钙钛矿型储氧材料
JP2010113955A (ja) * 2008-11-06 2010-05-20 Tokyo Electric Power Co Inc:The 固体酸化物形燃料電池用インターコネクト、その製造方法及び固体酸化物形燃料電池
CN103219525A (zh) * 2012-01-19 2013-07-24 中国科学院上海硅酸盐研究所 低温固体氧化物燃料电池及其制备方法
CN103931033A (zh) * 2011-06-15 2014-07-16 Lg燃料电池系统有限公司 具有互连体的燃料电池系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055104A2 (en) * 1980-12-19 1982-06-30 Matsushita Electric Industrial Co., Ltd. Sensor element and method for fabricating same
JP2002053374A (ja) * 2000-08-04 2002-02-19 Anan Kasei Kk 固体電解質型燃料電池の空気極用及び集電体原料用複合酸化物、その製造方法、並びに固体電解質型燃料電池
CN101274215A (zh) * 2007-12-27 2008-10-01 清华大学 一种用于汽车尾气净化的稀土钙钛矿型储氧材料
JP2010113955A (ja) * 2008-11-06 2010-05-20 Tokyo Electric Power Co Inc:The 固体酸化物形燃料電池用インターコネクト、その製造方法及び固体酸化物形燃料電池
CN103931033A (zh) * 2011-06-15 2014-07-16 Lg燃料电池系统有限公司 具有互连体的燃料电池系统
CN103219525A (zh) * 2012-01-19 2013-07-24 中国科学院上海硅酸盐研究所 低温固体氧化物燃料电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. BURSELL,ET AL.: "La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes", 《ELECTROCHIMICA ACTA》 *
MUHAMMAD AFZAL.ETAL.: "Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Sm0.2Ce0.8O1.9) and Schottky barrier", 《JOURNAL OF POWER SOURCES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112429777A (zh) * 2020-11-02 2021-03-02 广西科技大学 类钙钛矿结构固体材料及其制备

Also Published As

Publication number Publication date
CN106571481B (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
Zhang et al. Electrochemical reduction of CO2 in solid oxide electrolysis cells
CN102569786B (zh) 一种钙钛矿型Co基复合阴极材料及其制备和应用
CN111900449B (zh) 固体氧化物燃料电池、其制备方法和用途
CN102290589B (zh) 一种阴极支撑型直接碳燃料电池
CN102544540B (zh) 一种无电解质燃料电池
CN102610842B (zh) 中高温碳-空气电池
Ai et al. Progress on direct assembly approach for in situ fabrication of electrodes of reversible solid oxide cells
CN101599546A (zh) 一种固体氧化物燃料电池阴极材料及应用
CN104916850A (zh) 固体氧化物燃料电池阴极用材料及具其复合阴极材料及其制备方法和电池复合阴极制备方法
CN102340008A (zh) 一种固体氧化物燃料电池阴极材料及其制备方法
Yang et al. Tuning Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode to high stability and activity via Ce-doping for ceramic fuel cells
CN107768690A (zh) 一种半导体薄膜电解质型燃料电池及其制作方法
CN105742646A (zh) 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备
CN103840185A (zh) 含有准对称复合膜电极的固体氧化物燃料电池及制备方法
Wei et al. Interface engineering towards low temperature in-situ densification of SOFC
Dong et al. A comparative study of the RP phase Srn+ 1FenO3n+ 1 (n= 1, 2 and 3) cathodes for intermediate temperature solid oxide fuel cells
Guo et al. From Electrolyte and Electrode Materials to Large‐Area Protonic Ceramic Fuel Cells: A Review
Peng et al. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures
CN114628753A (zh) 一种具有负极阻隔层的质子导体固体氧化物电池
CN107994234B (zh) 陶瓷燃料电池及其制备方法
Zhang et al. A promising strontium and cobalt-free Ba1-xCaxFeO3-δ air electrode for reversible protonic ceramic cells
Afzal et al. Lanthanum-doped calcium manganite (La0. 1Ca0. 9MnO3) cathode for advanced solid oxide fuel cell (SOFC)
CN106571481B (zh) 一种锶钙共掺杂锰酸镧基钙钛矿材料及其在sofc中的应用
CN113430548B (zh) 一种二氧化碳转化电解池及其制备方法与应用
Alvarado-Flores et al. Análisis de materiales catódicos de estructura perovskita para celdas de combustible de óxido sólido, sofc's

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant