CN106564964A - 一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用 - Google Patents

一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用 Download PDF

Info

Publication number
CN106564964A
CN106564964A CN201611006008.4A CN201611006008A CN106564964A CN 106564964 A CN106564964 A CN 106564964A CN 201611006008 A CN201611006008 A CN 201611006008A CN 106564964 A CN106564964 A CN 106564964A
Authority
CN
China
Prior art keywords
mesoporous
fes
sio
iron
microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611006008.4A
Other languages
English (en)
Other versions
CN106564964B (zh
Inventor
刁增辉
徐向荣
左林子
刘锦军
胡咏霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Sea Institute of Oceanology of CAS
Original Assignee
South China Sea Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Sea Institute of Oceanology of CAS filed Critical South China Sea Institute of Oceanology of CAS
Priority to CN201611006008.4A priority Critical patent/CN106564964B/zh
Publication of CN106564964A publication Critical patent/CN106564964A/zh
Priority to PCT/CN2017/109485 priority patent/WO2018090846A1/zh
Application granted granted Critical
Publication of CN106564964B publication Critical patent/CN106564964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用。本发明采用溶胶‑凝胶法在天然黄铁矿物表面形成介孔SiO2微球结构制备出一种介孔FeS2/SiO2微球复合固相铁源,并与H2O2联合构建新型Fenton氧化体系,应用于水体中环丙沙星的去除。本发明的介孔FeS2/SiO2微球复合固相铁源既能有效控制矿物铁释放速率,减轻矿物铁源本身的损耗和因大量使用H2O2而产生的运行成本,还能避免了Fe3+大量释放而引起的二次环境污染问题。此外,还能增加与H2O2、污染物质的接触活性位点,进一步促进体系的催化反应和环丙沙星的降解反应充分进行,最终实现环丙沙星持续高效的去除。

Description

一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方 法及其应用
技术领域
本发明属于难降解有机污染物处理领域,具体涉及一种介孔FeS2/SiO2微球复合固相铁源的制备方法和在去除难降解有机污染物的应用。
背景技术
Fenton氧化法是一种操作过程简单、反应彻底的高级氧水处理技术,一直被广泛地应用于化工、制药、印染、焦化和制革等污染水体的处理。然而,传统均相Fenton氧化法存在一些缺陷,如受环境pH的影响大,反应在酸性条件下才能进行,导致其应用pH值范围窄,在反应过程中需要反复调节pH值;还有因H2O2与Fe2+快速反应,Fe2+短时间内被全部消耗,导致有机污染物的去除效果持续时间短,反应后体系有大量的Fe3+的残留,容易造成二次环境污染等问题。为了克服传统均相Fenton氧化体系在应用上的诸多技术瓶颈,有不少研究者尝试把含铁的矿物作为固相铁源催化剂,与H2O2相结合构成非均相Fenton氧化体系应用于有机污染物质治理。而这些含铁的矿物主要包括磁铁矿、赤铁矿、针铁矿和黄铁矿等。相关研究表明,采用含铁的矿物替代外加Fe2+的确能使该体系在一定程度上克服了Fe2+的快速被氧化成Fe3+而引起污染物降解反应中止的缺陷。然而,在非均相Fenton氧化体系降解有机污染物的过程中,由于矿物直接与H2O2接触,使两者之间反应非常激烈,容易使含铁矿物因受到快速氧化而使催化剂本身受到大量损耗。另外,反应过程中短时间内产生大量的Fe2+,其中一部分与H2O2反应生成OH·降解有机污染物,还有一部分被氧化为Fe3+而消耗。以上种因素都可能使有机污染物在固相铁源催化剂的非均相Fenton氧化体系中的降解不能维持长时间的高效率运行,最终导致污染物的降解不完全。因此,在固相铁源Fenton氧化体系里,很有必要对矿物铁源的释放速率加予控制,并增加铁源矿物与H2O2、污染物的接触,最终实现维系污染物在Fenton氧化体系中的持续高效降解。
发明内容
本发明的目的是为了克服现有固相铁源非均相Fenton氧化体系因Fe2+离子释放速率过快导致污染物降解不完全、矿物铁源本身快速损耗和因矿物表面活性吸附位点较少,未能与H2O2和污染物质充分接触反应的等缺陷,而提供一种介孔FeS2/SiO2微球复合固相铁源及其制备方法,并应用于水体有机污染物的治理。
本发明的介孔FeS2/SiO2微球复合固相铁源,其是通过以下方法制备的:
通过溶胶-凝胶法在FeS2颗粒表面上形成SiO2微球,从而制备获得介孔FeS2/SiO2微球复合固相铁源。
优选,具体方法为:将十二烷胺溶于乙醇中,在搅拌的条件下加入FeS2颗粒形成混合液,并搅拌,然后往混合液加入正硅酸乙酯并保持搅拌形成固体凝胶,分离固体凝胶,用乙醇洗涤固体凝胶表面的杂质,经真空干燥后,再置于马弗炉中煅烧去模板获得介孔FeS2/SiO2微球复合固相铁源。
进一步优选,是将0.2质量份的十二烷胺溶于乙醇中,在搅拌的条件下加入0.5质量份的FeS2颗粒形成混合液,并搅拌,然后往混合液加入正硅酸乙酯并保持搅拌形成固体凝胶,所述的正硅酸乙酯与十二烷胺的用量按体积质量比为6ml:1g;分离固体凝胶,用乙醇洗涤固体凝胶表面的杂质,固体凝胶于60℃真空干燥后,再置于马弗炉中煅烧去模板获得介孔FeS2/SiO2微球复合固相铁源,所述的煅烧是于600℃下保持240min。
本发明的第二个目的是提供介孔FeS2/SiO2微球复合固相铁源在去除有机污染物中的应用。
优选,所述的应用是介孔FeS2/SiO2微球复合固相铁源联合H2O2在去除有机污染物中的应用。
本发明的第三个目的是提供一种去除有机污染物的方法,其特征在于,将上述FeS2/SiO2微球复合固相铁源和H2O2投加到含有机污染物的水体中形成多相共存体系,去除有机污染物。
所述的含有机污染物的水体优选是含有环丙沙星的抗生素水体。
优选,所述的介孔FeS2/SiO2微球复合固相铁源,其颗粒粒径为1~2μm。
优选,所述的含有机污染物的水体,其pH范围为2.0~9.0,进一步优选为2.0~3.0。
当所述的含有环丙沙星的水体中环丙沙星的浓度范围为0.025~0.15mM,所述的介孔FeS2/SiO2微球复合固相铁源投加量范围为0.75~1.50g/L,所述的H2O2浓度为1~4mM。
进一步优选,所述的含有环丙沙星的水体中环丙沙星的浓度为0.10mM,所述的介孔FeS2/SiO2微球复合固相铁源投加量为1.25g/L,所述的H2O2浓度为3mM,含有环丙沙星的水体的pH值为3.0。
本发明的介孔FeS2/SiO2微球复合固相铁源,其是在矿物铁源表面形成一种介孔SiO2微球包覆结构,这种结构能对矿物铁源的释放速率加予控制,减缓矿物铁源本身的损耗。并且,此微球结构能增加铁源矿物与H2O2、污染物质的接触活性位点,进一步促进体系的催化反应和污染物的降解反应充分进行,最终实现维系污染物质在Fenton氧化体系里的持续高效降解效果。
与现有技术相比,本发明具有以下优点及有益效果:
1、本发明制备出一种介孔FeS2/SiO2微球复合固相铁源,其能与H2O2联合构建新型Fenton氧化体系应用于水体中环丙沙星的去除。一方面,介孔FeS2/SiO2微球复合固相铁源Fenton氧化体系的构建既实现了有机物环丙沙星持续高效的去除,又减轻因大量使用H2O2而产生的运行成本,还避免了Fe3+大量释放而引起的二次环境污染问题。此外,介孔SiO2微球具备较大的比表面积,有序的介孔通道,为环境介质中的污染物质提供更多的吸附活性位点,能进一步提升污染物的去除效果。
2、适用范围广。本发明除了适用于含有环丙沙星的污染水体,还适用于其他含其它难降解的有机污染物水体,此发明为难降解有机污染物的治理提供技术指导。
3、本发明的去除有机污染物的方法具有操作简单、去除彻底、反应物易得、无需复杂设备、对后续的处理无毒害作用及对环境友好等优点。
附图说明:
图1为不同初始pH条件下的环丙沙星去除效果;
图2为不同催化剂投加量条件下的环丙沙星去除效果;
图3为不同污染物初始浓度下的环丙沙星去除效果;
图4为不同H2O2浓度下的环丙沙星去除效果;
图5为介孔FeS2/SiO2微球复合固相铁源的重复使用效果,其中1、2、3、4、5、6、7、8代表第1、2、3、4、5、6、7、8次使用。
具体实施方式:
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
在以下实施例中,环丙沙星采用高效液相法测定:取经过滤后的水样2mL于棕色进样瓶中,采用安捷伦1100LC系列高效液相,色谱柱为反相C18柱(5μm,150×4.6mm),进样体积为10μL,流动相为0.1%甲酸溶液和乙腈,检测波长为278nm。
实施例1:介孔FeS2/SiO2微球复合催化剂(介孔FeS2/SiO2微球复合固相铁源)的制备
先对块状的黄铁矿进行破碎、研磨、过筛和清洗预处理,得到预处理好的FeS2颗粒。再将0.2g的十二烷胺溶于乙醇,在搅拌的条件下加入0.5g预处理好的FeS2颗粒形成混合液,并保持搅拌10min。然后,往上述混合液加入1.2g的正硅酸乙酯并保持搅拌180min形成固体凝胶,采用离心分离固体凝胶,用乙醇洗涤固体凝胶表面的杂质后,固体凝胶放置于真空干燥器于60℃下保持240min,最后置于马弗炉煅烧于600℃下保持240min去模板获得介孔FeS2/SiO2微球复合固相铁源。
介孔SiO2微球的制备方法,除了不加FeS2之外,其他条件和步骤与介孔FeS2/SiO2微球复合固相铁源的相同,FeS2则采用从矿山采集回来的样品,如天然FeS2
实施例2:
向含有环丙沙星水体中加入实施例1制备的介孔FeS2/SiO2微球复合固相铁源,与H2O2联合构建新型Fenton氧化体系应用于水体中环丙沙星的去除。去除环丙沙星的方法的具体步骤如下:采用100mL三角瓶为反应器,处理对象是50mL环丙沙星浓度为0.10mM的水体,水体pH调至3.0。往反应器中加入介孔FeS2/SiO2微球复合固相铁源,使其终浓度为1.25g/L,随后加入H2O2,使其终浓度为3mM,并将反应器置于磁力搅拌器上保持均匀搅拌,反应时间为60min。
对比例1:
参照实施例2的去除环丙沙星的方法,本对比例采用FeS2代替介孔FeS2/SiO2微球复合固相铁源,且不加H2O2,其余条件均与实施例2中的相同,测定水体环丙沙星的去除效果。
对比例2:
参照实施例2的去除环丙沙星的方法,本对比例只采用H2O2,不加催化剂介孔FeS2/SiO2微球复合固相铁源。其余条件均与实施例2中的相同,测定水体环丙沙星的去除效果。
对比例3:
参照实施例2的去除环丙沙星的方法,本对比例只采用实施例1制备的介孔SiO2微球代替介孔FeS2/SiO2微球复合固相铁源,不加H2O2,其余条件均与实施例2中的相同,测定水体环丙沙星的去除效果。
对比例4:
参照实施例2的去除环丙沙星的方法,本对比例只采用实施例1制备的介孔FeS2/SiO2微球复合固相铁源,而不加H2O2,其余条件均与实施例2中的相同,测定水体环丙沙星的去除效果。
对比例5:
参照实施例2的去除环丙沙星的方法,以本对比例中FeS2替代实施例2中的介孔FeS2/SiO2微球复合固相铁源,其余条件均与实施例2中的相同,测定水体环丙沙星的去除效果。
比较实施例2和对比例1~5六种情况下环丙沙星的去除效果,结果如表1所示。由表1可知,单独的FeS2或H2O2均不能有效地去除环丙沙星,在反应60min期间,两者去除率分别为10.6%和6.3%,去除率非常低。此外,当采用单独的介孔SiO2微球或介孔FeS2/SiO2微球复合固相铁源时,尽管去除率有一定的提高,但仍然比较低。然而,在FeS2与H2O2联合的Fenton氧化体系下,环丙沙星的去除率达到了84.3%,当采用介孔FeS2/SiO2微球复合固相铁源与H2O2联合构建的新型Fenton氧化体系时,环丙沙星的去除率接近100%,几乎能完全把水体中的环丙沙星降解。数据表明,在FeS2表面形成的介孔SiO2微球不但有效控制了H2O2与Fe2+的反应,使体系维持高去除率,还为环丙沙星提供更多的吸附活性位点,进一步提升环丙沙星的去除效果。与传统均相和非均相Fenton体系相比,以介孔FeS2/SiO2微球复合固相铁源,与H2O2联合构建的新型Fenton氧化体系显示出更大的应用潜力和优势。
表1
实施例3:
本实施例与实施例2基本相同,只是反应器中的水体pH分别调至至2、3、5、7和9,其余条件均与实施例2中的相同,测定水体环丙沙星的去除效果。结果如图1所示。由图1可知,在这个新型Fenton氧化体系下,环丙沙星的去除率随着pH的升高而下降。在反应60min期间,环丙沙星的去除率在pH 2~3范围内达到了最大值(接近100%)。随后,环丙沙星的去除率随着pH的升高而呈现快速下降的趋势。
实施例4:
本实施例与实施例2基本相同,只是介孔FeS2/SiO2微球复合固相铁源的投加浓度设置为0.75~1.50g/L,其余条件均与实施例2中的相同,测定水体环丙沙星的去除效果。结果如图2所示。由图2可知,在反应60min期间,环丙沙星的去除率随着介孔FeS2/SiO2微球复合固相铁源的投加量的增加而呈现上升高的趋势,当投加量为1.25g/L时,环丙沙星的去除率几乎达到了最大值(100%),当投加量超过1.25g/L时,环丙沙星的去除率已不再变化。
实施例5:
本实施例与实施例2基本相同,只是环丙沙星初始浓度范围设置为0.025~0.15mM,其余条件均与实施例2中的相同,测定水体环丙沙星的去除效果。结果如图3所示。由图3可知,在反应60min期间,环丙沙星的去除率随着环丙沙星初始浓度的增大而下降,当环丙沙星浓度从0.025mM增大到0.10mM时,环丙沙星的去除率出现了微小的下降,其去除率仍保持在98%左右。当环丙沙星浓度超过0.10mM时,其去除率均呈现急剧的下降。
实施例6:
本实施例与实施例2基本相同,只是H2O2投加浓度范围设置为1~4mM,其余条件均与实施例2中的相同,测定水体环丙沙星的去除效果。结果如图4所示。由图4可知,在反应60min期间,环丙沙星的去除率随着H2O2投加浓度的增大而上升,当H2O2投加浓度从1mM增大到3mM时,环丙沙星的去除率出现了显著的提高。当H2O2投加浓度超过3mM时,其去除率已无明显的变化。
实施例7:
本实施例与实施例2基本相同,只是待上一轮反应结束后,离心回收介孔FeS2/SiO2微球复合固相铁源,经乙醇清洗后作为下一轮如上述去除水体中环丙沙星的试验中的铁源催化剂,其余条件均与实施例2中的相同,如此重复利用8次,测定水体环丙沙星的去除效果。
对比例:
与实施例7不同之外在于,用FeS2替代介孔FeS2/SiO2微球复合固相铁源,其余条件均与实施例2中的相同,如此重复利用8次,测定水体环丙沙星的去除效果。比较实施例7和对比例两种情况下环丙沙星的去除效果,结果如图5所示。从图5可以看出,两种铁源下的环丙沙星去除率都随着反应次数的增加而降低。当FeS2重复使用三次后,环丙沙星去除率接近80%,然而,当介孔FeS2/SiO2微球复合固相铁源(图5中的FeS2/SiO2微球)重复使用三次后,环丙沙星去除率均能保持在近99%以上。数据表明介孔FeS2/SiO2微球复合固相铁源具有相对较好的重复性能。

Claims (10)

1.一种介孔FeS2/SiO2微球复合固相铁源的制备方法,其特征在于,包括以下步骤:
通过溶胶-凝胶法在FeS2颗粒表面上形成介孔SiO2微球,从而制备获得介孔FeS2/SiO2微球复合固相铁源。
2.根据权利要求1所述的制备方法,其特征在于,将十二烷胺溶于乙醇中,在搅拌的条件下加入FeS2颗粒形成混合液,并搅拌,然后往混合液加入正硅酸乙酯并保持搅拌形成固体凝胶,分离固体凝胶,用乙醇洗涤固体凝胶表面的杂质,经真空干燥后,再经煅烧去模板获得介孔FeS2/SiO2微球复合固相铁源。
3.根据权利要求2所述的制备方法,其特征在于,是将0.2质量份的十二烷胺溶于乙醇中,在搅拌的条件下加入0.5质量份的FeS2颗粒形成混合液,并搅拌,然后往混合液加入正硅酸乙酯并保持搅拌形成固体凝胶,所述的正硅酸乙酯与十二烷胺的用量按体积质量比为6ml:1g;分离固体凝胶,用乙醇洗涤固体凝胶表面的杂质,固体凝胶于60℃真空干燥后,再置于马弗炉中煅烧去模板获得介孔FeS2/SiO2微球复合固相铁源,所述的煅烧是于600℃下保持240min。
4.一种按照权利要求1、2或3所述的制备方法制备得到的介孔FeS2/SiO2微球复合固相铁源。
5.权利要求4所述的介孔FeS2/SiO2微球复合固相铁源在去除有机污染物中的应用。
6.根据权利要求5所述的应用,其特征在于,介孔FeS2/SiO2微球复合固相铁源联合H2O2在去除有机污染物中的应用。
7.一种去除有机污染物的方法,其特征在于,将权利要求4所述的介孔FeS2/SiO2微球复合固相铁源和H2O2投加到含有机污染物的水体中形成多相共存体系,去除有机污染物。
8.根据权利要求7所述的方法,其特征在于,所述的含有机污染物的水体是含有环丙沙星的水体。
9.根据权利要求7所述的方法,其特征在于,所述的含有机污染物的水体,其pH范围为2.0~9.0。
10.根据权利要求8所述的方法,其特征在于,当所述的含有环丙沙星的水体中环丙沙星的浓度范围为0.025~0.15mM,所述的介孔FeS2/SiO2微球复合固相铁源投加量范围为0.75~1.50g/L,所述的H2O2浓度为1~4mM。
CN201611006008.4A 2016-11-15 2016-11-15 一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用 Active CN106564964B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611006008.4A CN106564964B (zh) 2016-11-15 2016-11-15 一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用
PCT/CN2017/109485 WO2018090846A1 (zh) 2016-11-15 2017-11-06 一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611006008.4A CN106564964B (zh) 2016-11-15 2016-11-15 一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN106564964A true CN106564964A (zh) 2017-04-19
CN106564964B CN106564964B (zh) 2018-06-22

Family

ID=58541898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611006008.4A Active CN106564964B (zh) 2016-11-15 2016-11-15 一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN106564964B (zh)
WO (1) WO2018090846A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107286189A (zh) * 2017-06-19 2017-10-24 太原科技大学 一种处理重金属的有机无机杂化材料及其制备方法
WO2018090846A1 (zh) * 2016-11-15 2018-05-24 中国科学院南海海洋研究所 一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用
CN109065865A (zh) * 2018-08-02 2018-12-21 广州鹏辉能源科技股份有限公司 二硫化亚铁微球及其制备方法、电池正极材料及电池
CN112295573A (zh) * 2020-11-24 2021-02-02 中国科学院南京土壤研究所 电芬顿催化剂及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112076759B (zh) * 2020-09-08 2023-07-25 湖南农业大学 石墨毡阴极、其制备方法和应用
CN114906856B (zh) * 2022-05-06 2024-03-19 西北工业大学 一种可释放h2s/co的纳米介孔二氧化硅球及其制备方法与应用
CN115155620A (zh) * 2022-07-27 2022-10-11 广西民族大学 一种脱硫复合催化剂及其制备方法与应用
CN115385383A (zh) * 2022-09-16 2022-11-25 齐鲁工业大学 一种性能可调控的FeS2纳米材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110174743A1 (en) * 2009-09-18 2011-07-21 The Texas A & M University System Hybrid composites for contaminated fluid treatment
CN103708647A (zh) * 2013-12-27 2014-04-09 同济大学 天然硫铁矿催化h2o2氧化深度处理工业废水的方法
CN104843847A (zh) * 2015-03-25 2015-08-19 同济大学 一种提高黄铁矿催化类Fenton持续反应活性的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157474A (zh) * 2011-12-09 2013-06-19 华东理工大学 用于非均相Fenton体系的负载型固体催化剂
CN102602883B (zh) * 2012-03-13 2013-12-25 中国科学院山西煤炭化学研究所 一种二氧化硅包覆铁氧化物纳米核壳结构材料的制备方法
CN102989398A (zh) * 2012-12-02 2013-03-27 复旦大学 磁性无机纳米粒子/大孔径有序介孔氧化物核壳微球及其制备方法
CN103143305A (zh) * 2013-03-27 2013-06-12 哈尔滨工业大学 一种酸性条件合成核壳结构磁性介孔二氧化硅纳米微球的方法
CN106564964B (zh) * 2016-11-15 2018-06-22 中国科学院南海海洋研究所 一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110174743A1 (en) * 2009-09-18 2011-07-21 The Texas A & M University System Hybrid composites for contaminated fluid treatment
CN103708647A (zh) * 2013-12-27 2014-04-09 同济大学 天然硫铁矿催化h2o2氧化深度处理工业废水的方法
CN104843847A (zh) * 2015-03-25 2015-08-19 同济大学 一种提高黄铁矿催化类Fenton持续反应活性的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIN XIA ET AL.: "Magnetically separable mesoporous silica nanocomposite and its application in Fenton catalysis", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *
WEI LIU ET AL.: "Hydrothermal Synthesis of FeS2 as a High-Efficiency Fenton Reagent to Degrade Alachlor via Superoxide-Mediated Fe(II)/Fe(III) Cycle", 《ACS APPL. MATER. INTERFACES》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090846A1 (zh) * 2016-11-15 2018-05-24 中国科学院南海海洋研究所 一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用
CN107286189A (zh) * 2017-06-19 2017-10-24 太原科技大学 一种处理重金属的有机无机杂化材料及其制备方法
CN107286189B (zh) * 2017-06-19 2019-06-25 太原科技大学 一种处理重金属的有机无机杂化材料及其制备方法
CN109065865A (zh) * 2018-08-02 2018-12-21 广州鹏辉能源科技股份有限公司 二硫化亚铁微球及其制备方法、电池正极材料及电池
CN109065865B (zh) * 2018-08-02 2020-09-25 广州鹏辉能源科技股份有限公司 二硫化亚铁微球及其制备方法、电池正极材料及电池
CN112295573A (zh) * 2020-11-24 2021-02-02 中国科学院南京土壤研究所 电芬顿催化剂及其制备方法和应用

Also Published As

Publication number Publication date
WO2018090846A1 (zh) 2018-05-24
CN106564964B (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
CN106564964A (zh) 一种介孔二硫化亚铁/二氧化硅微球复合固相铁源的制备方法及其应用
Dias et al. Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton
CN105772021B (zh) 一种强化臭氧分解的负载型金属氧化物催化剂的制备方法及其制备的臭氧催化氧化催化剂
CN104891713B (zh) 有机废水臭氧催化氧化处理工艺
Zhang et al. Review of electrochemical oxidation desulfurization for fuels and minerals
Eng et al. Photocatalytic degradation of nonionic surfactant, Brij 35 in aqueous TiO2 suspensions
CN102502944B (zh) 一种赤泥基多相催化臭氧氧化除污染技术
CN105110448A (zh) 一种利用零价铁-过硫酸盐同时去除重金属-有机物复合污染水体的方法
CN104889152B (zh) 一种富含有机质土壤中石油污染物的选择性降解方法
CN102059132A (zh) 用于非均相Fenton体系的负载型固体催化剂及其在水处理中的应用
Hao et al. Activated carbon and cerium supported on activated carbon applied to the catalytic ozonation of polycyclic aromatic hydrocarbons
CN110773559B (zh) 一种小分子酸耦合的还原-氧化一体化异位修复有机污染物土壤的方法
Channei et al. Photocatalytic degradation of dye using CeO2/SCB composite catalysts
CN106493162A (zh) 一种微波强化过氧化钙修复PAEs污染土壤的方法
CN108686648B (zh) 一种负载型活性炭臭氧催化剂的制备方法及应用
Singh Treatment of spent catalyst from the nitrogenous fertilizer industry—A review of the available methods of regeneration, recovery and disposal
CN107626335A (zh) 一种铋系/氮化碳复合催化剂及其制备方法和应用
Wang et al. Promote reactants activation and key intermediates formation for facilitated toluene photodecomposition via Ba active sites construction
CN102728355A (zh) 脱除燃油中含硫化合物的可见光催化剂及其制备和应用
CN106348422A (zh) 一种难降解有机废水多级臭氧催化氧化处理装置
Wen et al. Reactive oxygen species on transition metal-based catalysts for sustainable environmental applications
CN108114974B (zh) 一种修复镉-多环芳烃复合污染土壤的方法
CN111559775A (zh) 一种利用葡萄糖光催化降解水体中硝态氮的方法
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
CN110052286A (zh) 一种Fenton反应的高效自驱动催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant