CN106552623A - 一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法 - Google Patents

一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法 Download PDF

Info

Publication number
CN106552623A
CN106552623A CN201510639614.9A CN201510639614A CN106552623A CN 106552623 A CN106552623 A CN 106552623A CN 201510639614 A CN201510639614 A CN 201510639614A CN 106552623 A CN106552623 A CN 106552623A
Authority
CN
China
Prior art keywords
catalyst
metal component
metal
carrier
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510639614.9A
Other languages
English (en)
Other versions
CN106552623B (zh
Inventor
郑仁垟
李明丰
李会峰
杨建建
晋超
张荣俊
夏国富
张润强
褚阳
刘锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201510639614.9A priority Critical patent/CN106552623B/zh
Publication of CN106552623A publication Critical patent/CN106552623A/zh
Application granted granted Critical
Publication of CN106552623B publication Critical patent/CN106552623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载型双金属组分催化剂及其制备方法和催化甘油氢解反应方法,其特征在于,所述双金属组分包含第VIII族的第一金属M1和第VIB和/或VIIB族的第二金属M2,且以金属元素计的重量比满足(M2/M1)XPS/(M2/M1)XRF=2.0-20.0,其中,(M2/M1)XPS是以X射线光电子能谱表征的催化剂第二金属组分与第一金属组分以金属元素计的重量比,(M2/M1)XRF是以X射线荧光光谱表征的催化剂第二金属组分与第一金属组分以金属元素计的重量比。本发明的第一金属组分为Pt、Pd、Ru、Rh、Ir中的至少一种,第二金属组分为Mo、W、Re、Mn中的至少一种。与现有技术制备的相同金属含量的催化剂相比,本发明的双金属组分催化剂具有明显更高的催化甘油氢解反应活性和选择性。

Description

一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法
技术领域
本发明涉及一种负载型双金属组分催化剂及其制备方法和应用以及使用该催化剂催化甘油氢解反应的方法。
背景技术
1,3-丙二醇是生产可降解聚酯对苯二甲酸丙二醇酯(PTT)等的重要原料,需求量不断增长;而且,作为一种重要的化工原料,还可用于溶剂、乳化剂、医药、化妆品和有机合成中。目前,工业生产1,3-丙二醇主要采用环氧乙烷羰基化法和丙烯醛水合氢化法,这两种工艺路线的原料都来自石油。随着石油资源的不断枯竭,寻找生产1,3-丙二醇的非石油路线具有重要意义。甘油是生物柴油生产过程中的计量比副产物(约10%),随着生物柴油的大量需求与规模化生产,副产物甘油的产量也大幅增加。这使得使甘油成为生产1,3-丙二醇的理想原料,而且也能降低生物柴油的生产成本。
CN102372602B公开了一种甘油加氢制1,3-丙二醇的方法,即采用连续流动固定床反应器和Pt/WO3/TiO2-SiO2催化剂,甘油与溶剂混合后连续送入反应器,在流动的氢气气氛下与装填在反应器中的催化剂接触并进行反应。从反应器出口出来的未反应的甘油、氢气和溶剂在与产品分离后循环使用。与现有的技术相比,按该发明提供的方法,可以有更高的1,3-丙二醇收率。
CN102728380A公开了一种甘油氢解制备1,3-丙二醇的催化剂,具体地说是一种介孔氧化钨担载的铂基催化剂的制备和应用。以介孔氧化钨为载体,活性组分金属铂或其他贵金属高分散于载体表面,其中活性组分的理论含量为载体质量的0.1-40%。催化剂具有选择性好、活性高的特点,它能够在120-300℃、0.1-15MPa氢气压力的水热条件下实现甘油氢解高选择制备1,3-丙二醇。
CN101747150A公开了一种以甘油为原料,通过甘油的气相氢解制备1,3-丙二醇的方法,该方法包括在金属-酸双功能催化剂存在下使甘油气相氢解制备1,3-丙二醇。所述的金属-酸双功能催化剂包含负载于载体上的下述组分:(a)一种固体酸性活性成分和(b)具有加氢活性的金属组分(铜、镍或者钴中的一种),并可任选的加入(c)金属助剂组分(铁、锌、锡、锰和铬中的一种或多种)。
综合已有公开文献的研究进展,甘油氢解生成1,3-丙二醇的选择性主要取决于两方面,一是催化剂所选金属及助剂的本征性质,二是反应条件尤其是溶液的酸碱性及溶剂效应。虽然已有较多文献报道,但是,该反应的催化剂甘油氢解活性和选择性仍有很大改善和提高的余地。
发明内容
本发明的目的在于提供一种具有较高甘油氢解活性和选择性的负载型双金属组分催化剂及其制备方法与应用和催化甘油氢解反应的方法。
本发明提供了一种负载型双金属组分催化剂,该催化剂包括载体及负载在该载体上的加氢活性双金属组分,其特征在于,所述双金属组分含有选自第VIII族的第一金属组分M1和选自第VIB和/或VIIB族的第二金属组分M2,且该催化剂满足(M2/M1)XPS/(M2/M1)XRF=2-20,其中,(M2/M1)XPS是以X射线光电子能谱表征的催化剂中第二金属组分与第一金属组分以金属元素计的重量比,(M2/M1)XRF是以X射线荧光光谱表征的催化剂第二金属组分与第一金属组分以金属元素计的重量比。
本发明还提供了一种负载型双金属组分催化剂的制备方法,该方法包括下述步骤:
1)用含有选自第VIII族的第一金属组分的化合物的溶液浸渍载体,然后将浸渍后的载体依次进行烘干、焙烧和还原活化,得到含第一金属组分的催化剂前体;
2)在还原气氛中用含有选自第VIB族和/或第VIIB族的第二金属组分的化合物的溶液浸渍步骤1)得到的催化剂前体,然后干燥以除去溶剂。
本发明还提供了由上述方法制得的负载型双金属组分催化剂。
本发明还提供了上述负载型双金属组分催化剂在催化甘油氢解反应中的应用。
本发明进一步提供了一种甘油氢解反应方法,该方法包括在催化甘油氢解反应条件下,将含有甘油的原料、氢气与催化剂接触,其中,所述催化剂为上述负载型双金属组分催化剂。
与现有技术制备的相同金属含量的催化剂相比,本发明的双金属组分催化剂具有明显更高的催化甘油氢解活性和选择性。具体地,以甘油质量浓度为20%的水溶液为原料,在高压釜中评价催化剂的催化性能,结果发现,根据本发明方法制备的催化剂R1明显优于共浸渍法制备的催化剂D1,甘油的转化率从19.7%提高到26.1%,对1,3-丙二醇的选择性由26.2%提高至42.3%,且1,3-丙二醇与1,2-丙二醇的选择性比值从1.8增加至9.8。这说明,本发明所提供的催化剂与现有技术制备的相同金属含量的催化剂相比,具有更好的甘油氢解活性,且对高附加值的1,3-丙二醇的选择性提高幅度更大。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为本发明实施例1制得的催化剂R1和对比例1制得的对比催化剂D1的Pt 4d的X射线光电子能谱图;
图2为本发明实施例1制得的催化剂R1和对比例1制得的对比催化剂D1的W 4f的X射线光电子能谱图。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明提供了一种负载型双金属组分催化剂,该催化剂包括载体及负载在该载体上的加氢活性双金属组分,其特征在于,所述双金属组分含有选自第VIII族的第一金属组分M1和选自第VIB和/或VIIB族的第二金属组分M2,且该催化剂满足(M2/M1)XPS/(M2/M1)XRF=2-20,优选2.5-10,更优选3-5,其中,(M2/M1)XPS是以X射线光电子能谱表征的催化剂第二金属组分与第一金属组分以金属元素计的重量比,(M2/M1)XRF是以X射线荧光光谱表征的催化剂第二金属组分与第一金属组分以金属元素计的重量比。
本发明中,(M2/M1)XPS是指X射线光电子能谱表征的催化剂中第二金属组分与第一金属组分以金属元素计的重量比,以相应金属元素特征峰峰面积换算得出。其中X射线光电子能谱的测量仪器为Thermo Scientific公司的ESCALab250型仪器,测量条件为:激发光源为150kW的单色器Al KαX射线,结合能采用C 1s峰(284.8eV)校正。
本发明中,(M2/M1)XRF是指X射线荧光光谱表征的催化剂中第二金属组分与第一金属组分以金属元素计的重量比。其中X射线荧光光谱的测量仪器为日本理学电机工业株式会社3271型仪器,测量条件为:粉末样品压片成型,铑靶,激光电压50kV,激光电流50mA。
根据本发明提供的所述催化剂,优选情况下,以催化剂的总重量为基准,所述载体的含量为60-99.8重量%,负载在载体上的第一金属组分的含量为0.1-20重量%,第二金属组分的含量为0.1-20重量%。
更优选地,以催化剂的总重量为基准,所述载体的含量为70-99.6重量%,负载在载体上的第一金属组分的含量为0.2-15重量%,第二金属组分的含量为0.2-15重量。
进一步优选地,以催化剂的总重量为基准,所述载体的含量为80-99重量%,负载在载体上的第一金属组分的含量为0.5-10重量%,第二金属组分的含量为0.5-10重量%。
根据本发明的一种具体实施方式,所述催化剂的第一金属组分为Pt、Pd、Ru、Rh、Ir中的至少一种,第二金属组分为Mo、W、Re、Mn中的至少一种。
根据本发明,所述催化剂载体可以是各种可用于甘油氢解反应的催化剂载体,本发明优选为氧化铝、氧化硅、氧化钛、氧化镁、氧化锆、氧化钍、氧化铍、粘土、分子筛、活性炭中的一种或多种,特别优选氧化铝、氧化硅或氧化硅-氧化钛载体。所述载体还可以为采用磷、硅、氟、硼中的一种或多种进行改性后的上述载体中的一种或多种。上述改性后的载体可以商购得到,也可以采用现有的方法改性得到。
根据本发明的另一方面,本发明还提供了负载型双金属组分催化剂的制备方法,该方法包括下述步骤:
1)用含有选自第VIII族的第一金属组分的化合物的溶液浸渍载体,然后将浸渍后的载体依次进行干燥、焙烧和还原活化,得到含第一金属组分的催化剂前体;
2)在还原气氛中用含有选自第VIB和/或VIIB族的第二金属组分的化合物的溶液浸渍步骤1)得到的催化剂前体,然后干燥以除去溶剂。
所述第一金属活性组分的化合物为含Pt、Pd、Ru、Rh、Ir元素中的一种或多种的硝酸盐、醋酸盐、硫酸盐、碱式碳酸盐、氯化物中的至少一种,所述第二金属活性组分的化合物为含Mo、W、Re、Mn元素中的一种或多种的可溶性化合物中的至少一种。
所述含有第一金属活性组分的化合物的溶液中,优选以第一金属活性组分计(即以金属元素计)的浓度为0.2-200克/升,进一步优选为1-100克/升。
本发明对于步骤1)的浸渍方法没有特别限定,可以为本领域技术人员公知的各种方法,例如,等体积浸渍法、过饱和浸渍法。具体而言,步骤1)浸渍的条件包括温度可以为10-90℃,优选为15-40℃,时间可以为1-10小时,优选为2-6小时。
步骤1)还原活化优选在纯氢气氛、或氢气和惰性气体的混合气气氛中,如氢气与氮气和/或氩气的混合气气氛中进行,所述还原活化的条件包括温度为200-500℃,优选为300-500℃,更优选为350-450℃,时间为1-12小时,优选为1-5小时,更优选为2-4小时。所述还原的压力可以为常压也可以为加压,具体的,氢气的压力可以为0.1-4MPa,优选为0.1-2MPa。本发明中的压力指绝压。
步骤2)中含有第二金属活性组分的化合物的溶液中,优选以第二金属活性组分计(即以金属元素计)的浓度为0.2-200克/升,进一步优选为1-100克/升。
优选步骤1)所用溶剂是水,步骤2)所用溶剂是水、甲醇、乙醇、丙醇、乙二醇、己烷、环己烷中的至少一种。
步骤2)浸渍的条件包括温度可以为10-90℃,优选为15-40℃,时间可以为0.1-10小时,优选为0.5-2小时。可以采用等体积浸渍也可以过饱和浸渍法。
优选情况下,所述步骤1)采用等体积浸渍,所用浸渍液体积按载体吸水率计算,步骤2)所用浸渍液体积是步骤1)浸渍液体积的0.5-10倍,优选为1-3倍。
根据本发明,上述方法优选还包括将步骤1)得到的浸渍后的载体先进行干燥并进一步焙烧或者不焙烧,然后再进行所述还原活化。
干燥的温度可以为80-150℃。
焙烧的温度可以为220-600℃,时间可以为1-6小时。
根据本发明,步骤1)中还原后的第VIII族的第一金属活性组分有利于促进步骤2)中第二金属活性组分的定向负载。因此,上述方法优选还包括将步骤1)还原活化后的产物在氢气和/或惰性气氛,如氮气和/或氩气中冷却至室温或步骤2)所需温度后再进行步骤2)的浸渍。完成步骤2)后,还可以进一步通入O2/N2体积比为0.05-1.0%的混合气0.5-4小时,以钝化其中的金属活性组分,得到可直接在空气中保存的催化剂。
根据本发明,上述方法优选还包括对步骤2)浸渍后的产物进行干燥。为了防止催化剂中的金属活性组分被氧化,所述干燥优选在真空条件下或惰性气体或还原性气体保护下进行,优选使用步骤2)浸渍气氛的气体吹干的方式对浸渍得到的产物进行干燥。
载体的用量使得以催化剂的总重量为基准,所述载体的含量为60-99.8重量%,负载在载体上的第一金属组分的含量为0.1-20重量%,第二金属组分的含量为0.1-20重量%。更优选地,以催化剂的总重量为基准,所述载体的含量为70-99.6重量%,负载在载体上的第一金属组分的含量为0.2-15重量%,第二金属组分的含量为0.2-15重量。进一步优选地,以催化剂的总重量为基准,所述载体的含量为80-99重量%,负载在载体上的第一金属组分的含量为0.5-10重量%,第二金属组分的含量为0.5-10重量%。该组成根据投料量计算得到。
如上所述,所述载体可以是加氢催化剂中常用的各种载体,如氧化铝、氧化硅、氧化钛、氧化镁、氧化锆、氧化钍、氧化铍、粘土、分子筛、活性炭中的一种或多种,特别优选氧化铝、氧化硅或氧化硅-氧化钛载体。所述载体还可以为采用磷、硅、氟、硼中的一种或多种进行改性后的上述载体中的一种或多种。上述改性后的载体可以商购得到,也可以采用现有的方法改性得到。
本发明还提供了由上述方法制得的负载型双金属组分催化剂以及上述催化剂中催化甘油氢解反应中的应用。
与现有技术制备的相同金属含量的催化剂相比,本发明的双金属组分催化剂具有明显更高的催化甘油氢解活性和选择性。究其原因,可能是形成的第二金属组分M2在第一金属组分M1表面富集的双金属组分结构具有较合适的甘油氢解活性位。因此,采用X射线光电子能谱表征催化剂的表层原子组成,采用X射线荧光光谱表征催化剂的体相原子组成,进一步限定催化剂的具体微观结构,所述双金属组分以金属元素计的重量比满足(M2/M1)XPS/(M2/M1)XRF=2.0-20.0,优选2.5-10,更优选3-5。
本发明提供的上述负载型双金属组分催化剂的反应体系包括甘油、氢气和催化剂。所述反应的装置可以在任何足以使所述含甘油的原料在加氢反应条件下与所述双金属组分催化剂接触反应的反应器中进行,例如固定床反应器或高压釜反应器。反应的条件可以参照现有技术进行,以高压釜反应器的评价为例,其甘油质量浓度为5-95%,溶剂为水、甲醇、乙醇、丙醇中的至少一种,氢气压力为2-15MPa,优选4-10MPa,反应温度为90-300℃,优选100-220℃,甘油与催化剂反应时间0.5小时以上,优选为4-36小时。
本发明还提供了一种催化甘油氢解反应方法,该方法包括在催化甘油氢解条件下,将含有甘油的原料、氢气与催化剂接触,其中,所述催化剂为上述负载型双金属组分催化剂。
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中,所述的百分含量,如无特别说明,均为质量百分含量。以下实施例中,X射线光电子能谱的测量仪器为Thermo Scientific公司的ESCALab250型仪器,测量条件为:激发光源为150kW的单色器Al KαX射线,结合能采用C 1s峰(284.8eV)校正;X射线荧光光谱的测量仪器为日本理学电机工业株式会社3271型仪器,测量条件为:粉末样品压片成型,铑靶,激光电压50kV,激光电流50mA。且为简便,仅提供实施例1和对比例1的X射线光电子能谱图,其他实施例和对比例直接依相同方法给出计算结果。
以下实施例中,催化剂组成是以催化剂的总重量为基准,所述加氢活性金属元素的质量百分含量。且该组成根据投料量计算得到。
实施例1
该实施例用于说明本发明提供的催化剂及其制备方法。
按等体积浸渍法所需金属盐含量,配制成30.6毫升含铂23.5克/升的二氯四氨合铂的浸渍溶液。将浸渍液倾析到36克γ-Al2O3载体(长岭催化剂厂产品,粒度20-40目,以下相同),在20℃下搅匀,静置4小时后,经120℃烘干,在350℃焙烧4小时,350℃氢气还原4小时,氢气压力为0.1兆帕。还原后降至室温,并在通氢气气氛下加入55.1毫升含钨7.84克/升的钨酸铵水溶液,静置2小时,再用氢气吹干。然后经O2/N2体积比为0.5%的混合气钝化0.5小时,存于干燥器备用。得到的催化剂记为R1,其组成、XPS和XRF表征结果见表1,其中X射线光电子能谱图如图1、图2所示。根据Pt4d和W 4f的电子结合能相应峰面积换算获得表层原子比值(M2/M1)XPS
对比例1
该对比例用于说明对比催化剂及其制备方法。
采用共浸渍法制备Pt-W催化剂,其他条件与实施例1相同,得到对比催化剂D1,其组成、XPS和XRF表征结果见表1。其中X射线光电子能谱图如图1、图2所示。
对比例2
按照实施例1的方法制备催化剂,不同的是,负载第一金属并干燥焙烧后不经氢气气氛下还原而直接进行第二金属的负载,得到对比催化剂D2,其组成、XPS和XRF表征结果见表1。
实施例2
该实施例用于说明本发明提供的催化剂及其制备方法。
按等体积浸渍法所需金属盐含量,配制成30.6毫升含铂23.5克/升、铑23.5克/升的二氯四氨合铂和氯化铑的浸渍溶液。将浸渍液倾析到36克SiO2载体(青岛海洋化工厂),15℃下搅匀,静置6小时后,经100℃烘干,在450℃焙烧2小时,450℃氢气还原2小时,氢气压力为1兆帕。还原后降至室温,并在通氢气气氛下加入55.1毫升含铼13.1克/升的高铼酸水溶液,静置2小时,再用氢气吹干。然后经O2/N2体积比为0.8%的混合气钝化2小时,存于干燥器备用。得到的催化剂记为R2,其组成、XPS和XRF表征结果见表1。
实施例3
该实施例用于说明本发明提供的催化剂及其制备方法。
先采用溶胶凝胶法制备TiO2-SiO2载体,即按载体组成为10%质量分数的TiO2和90%质量分数的SiO2配制相应的含钛酸四丁酯的乙醇溶液和含硅酸四乙酯的乙醇溶液,将两者均匀混合后加入盐酸形成凝胶,老化并干燥后制得TiO2-SiO2载体。
按等体积浸渍法所需金属盐含量,配制成30.6毫升含铱35.3克/升的氯化铱的浸渍溶液。将浸渍液倾析到36克所制得的TiO2-SiO2载体,40℃搅匀,静置2小时后,经120℃烘干,在550℃焙烧1小时,400℃氢气还原3小时,氢气压力为2兆帕。还原后降至室温,并在通氢气气氛下加入55.1毫升含铼13.1克/升的高铼酸水溶液,静置2小时,再用氢气吹干。然后经O2/N2体积比为1.0%的混合气钝化1小时,存于干燥器备用。得到的催化剂记为R3,其组成、XPS和XRF表征结果见表1。
实施例4
该实施例用于说明本发明提供的催化剂及其制备方法。
按等体积浸渍法所需金属盐含量,配制成30.6毫升含铱23.5克/升的氯化铱的浸渍溶液。将浸渍液倾析到36克实施例3所制得的TiO2-SiO2载体,搅匀静置4小时后,经120℃烘干,在350℃焙烧4小时,350℃氢气还原4小时,氢气压力为0.1兆帕。还原后降至室温,并在通氢气气氛下加入55.1毫升含钼7.84克/升的钼酸铵水溶液,静置2小时,再用氢气吹干。然后经O2/N2体积比为0.5%的混合气钝化0.5小时,存于干燥器备用。得到的催化剂记为R4,其组成、XPS和XRF表征结果见表1。
实施例5-8
这些实施例用于说明本发明提供的催化剂对甘油氢解反应的性能。
按照下述步骤分别评价催化剂R1、R2、R3和R4。
甘油氢解反应在500ml的Parr不锈钢高压反应釜中进行,称取催化剂2.5克,300毫升甘油质量浓度为20%的水溶液。使用1MPa氢气吹扫五次赶走高压釜内的空气,在室温下向釜内通入氢气使压力达到4MPa后升温到180℃,开启搅拌下(1000rpm)反应15h,待釜内温度降到一定室温后泄压,产物经过滤或离心后,采用GC分析反应前和反应后的液体组成。反应结果列于表2。
对比例3-4
这些对比例用于说明对比催化剂的甘油氢解活性。
按照与实施例5相同的方法和条件评价对比催化剂D1和D2。反应结果列于表2。
表1
表2
由实施例5和对比例3的结果可以看出,采用本发明方法制备的催化剂R1明显优于共浸渍法制备的催化剂D1,甘油的转化率从19.7%提高到26.1%,对1,3-丙二醇的选择性26.2%提高至42.3%,且1,3-丙二醇与1,2-丙二醇的选择性比值从1.8增加至9.8。
这些实施例结果说明,本发明所提供的催化剂与现有技术制备的相同金属含量的催化剂相比,具有更好的甘油氢解活性,且对高附加值的1,3-丙二醇的选择性提高幅度更大。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (19)

1.一种负载型双金属组分催化剂,该催化剂包括载体及负载在该载体上的加氢活性金属组分,其特征在于,所述加氢活性金属组分含有选自第VIII族的第一金属组分M1和选自第VIB和/或VIIB族的第二金属组分M2,且该催化剂满足(M2/M1)XPS/(M2/M1)XRF=2-20,其中(M2/M1)XPS是以X射线光电子能谱表征的催化剂中第二金属组分与第一金属组分以金属元素计的重量比,(M2/M1)XRF是以X射线荧光光谱表征的催化剂中第二金属组分与第一金属组分以金属元素计的重量比。
2.根据权利要求1所述的催化剂,其中,该催化剂满足(M2/M1)XPS/(M2/M1)XRF=2.5-10,优选该催化剂满足(M2/M1)XPS/(M2/M1)XRF=3-5。
3.根据权利要求1或2所述的催化剂,其中,以催化剂的总重量为基准,所述载体的含量为60-99.8重量%,负载在载体上的第一金属组分的含量为0.1-20重量%,第二金属组分的含量为0.1-20重量%;优选地,
以催化剂的总重量为基准,所述载体的含量为70-99.6重量%,负载在载体上的第一金属组分的含量为0.2-15重量%,第二金属组分的含量为0.2-15重量%;进一步优选地,
以催化剂的总重量为基准,所述载体的含量为80-99重量%,负载在载体上的第一金属组分的含量为0.5-10重量%,第二金属组分的含量为0.5-10重量%。
4.根据权利要求1-3中任意一项所述的催化剂,其中,第一金属组分为Pt、Pd、Ru、Rh、Ir中的至少一种,第二金属组分为Mo、W、Re、Mn中的至少一种。
5.根据权利要求1-4中任意一项所述的催化剂,其中,所述载体为氧化铝、氧化硅、氧化钛、氧化镁、氧化锆、氧化钍、氧化铍、粘土、分子筛、活性炭中的一种或多种。
6.根据权利要求1-5中任意一项所述的催化剂,其中,所述X射线光电子能谱采用激发光源为150kW的单色器Al KαX射线测得,所述X射线荧光光谱的测量条件包括铑靶、激光电压为50kV和激光电流为50mA。
7.一种负载型双金属组分催化剂的制备方法,该制备方法包括下述步骤:
1)用含有选自第VIII族的第一金属组分的化合物的溶液浸渍载体,然后将浸渍后的载体依次进行干燥、焙烧和还原活化,得到含第一金属组分的催化剂前体;
2)在还原气氛中用含有选自第VIB和/或VIIB族的第二金属组分的化合物的溶液浸渍步骤1)得到的催化剂前体,然后干燥以除去溶剂。
8.根据权利要求7所述的制备方法,其中,所述第一金属活性组分的化合物为含Pt、Pd、Ru、Rh、Ir元素中的一种或多种的硝酸盐、醋酸盐、硫酸盐、碱式碳酸盐、氯化物中的至少一种,所述第二金属活性组分的化合物为含Mo、W、Re、Mn元素中的至少一种的可溶性化合物中的至少一种。
9.根据权利要求7或8所述的制备方法,其中,步骤1)浸渍的条件包括温度为10-90℃,优选为15-40℃;时间为1-10小时,优选为2-6小时。
10.根据权利要求7-9中任意一项所述的制备方法,其中,步骤1)还原活化在氢气气氛下进行,所述还原活化的条件包括温度为200-500℃,时间为1-12小时。
11.根据权利要求7-10中任意一项所述的制备方法,其中,步骤2)浸渍的条件包括温度为10-90℃,时间为0.1-10小时。
12.根据权利要求7-11中任意一项所述的制备方法,其中,该方法还包括将步骤1)还原活化后的产物在氢气或惰性气氛下冷却至室温或步骤2)所需温度后再进行步骤2)所述的浸渍。
13.根据权利要求7-12中任意一项所述的制备方法,其中,该方法还包括向步骤2)得到的固体通入O2/N2体积比为0.05-1.0%的混合气0.5-4小时,以钝化其中的金属活性组分,得到可直接在空气中保存的催化剂。
14.根据权利要求7所述的制备方法,其中,载体的用量使得以催化剂的总重量为基准,所述载体的含量为60-99.8重量%,负载在载体上的第一金属组分的含量为0.1-20重量%,第二金属组分的含量为0.1-20重量%。
15.根据权利要求7所述的制备方法,其中,所述载体为氧化铝、氧化硅、氧化钛、氧化镁、氧化锆、氧化钍、氧化铍、粘土、分子筛、活性炭中的一种或多种。
16.权利要求7-15中任意一项所述的制备方法制得的负载型双金属组分催化剂。
17.权利要求1-6和16中任意一项所述的负载型双金属组分催化剂在甘油氢解反应中的应用。
18.一种甘油氢解反应方法,该方法包括在催化甘油氢解条件下,将含有甘油的原料、氢气与催化剂接触,其中,所述催化剂为权利要求1-6和16中任意一项所述的负载型双金属组分催化剂。
19.根据权利要求18所述的甘油氢解反应方法,其中,所述催化甘油氢解条件包括氢气压力为2-15MPa,优选4-10MPa,反应温度为90-300℃,优选100-220℃,甘油与催化剂反应时间0.5小时以上,优选为4-36小时。
CN201510639614.9A 2015-09-30 2015-09-30 一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法 Active CN106552623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510639614.9A CN106552623B (zh) 2015-09-30 2015-09-30 一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510639614.9A CN106552623B (zh) 2015-09-30 2015-09-30 一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法

Publications (2)

Publication Number Publication Date
CN106552623A true CN106552623A (zh) 2017-04-05
CN106552623B CN106552623B (zh) 2020-08-18

Family

ID=58417746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510639614.9A Active CN106552623B (zh) 2015-09-30 2015-09-30 一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法

Country Status (1)

Country Link
CN (1) CN106552623B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636440A (zh) * 2018-04-16 2018-10-12 江苏七洲绿色化工股份有限公司 一种甘油水溶液加氢制1,3-丙二醇的催化剂及其制备方法
CN110237848A (zh) * 2018-03-09 2019-09-17 中国石油化工股份有限公司 负载型多金属组分催化剂及其制备方法和应用以及环烷烃氢解开环方法
CN110732351A (zh) * 2018-07-19 2020-01-31 中国石油化工股份有限公司 废催化裂化催化剂的脱金属复活方法
CN110882709A (zh) * 2018-09-07 2020-03-17 中国石油化工股份有限公司 碳化物基催化剂及其制备方法以及甘油氢解方法
CN110882710A (zh) * 2018-09-07 2020-03-17 中国石油化工股份有限公司 碳化物基催化剂及其制备方法以及甘油氢解方法
CN111036203A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 含铌催化剂及其制备方法和应用以及甘油氢解方法
CN111036250A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 含磷催化剂及其制备方法和应用以及甘油氢解方法
CN111036202A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 甘油氢解催化剂及其制备方法和应用
CN111036208A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 甘油氢解催化剂及其制备方法和应用以及甘油氢解方法
CN111036207A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 加氢催化剂及其制备方法以及甘油加氢方法
CN111036244A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 含氟催化剂及其制备方法和应用以及甘油氢解方法
CN111036205A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 一种甘油氢解方法
CN111036204A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 一种甘油氢解方法
CN111036206A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 甘油氢解催化剂及其制备方法和应用以及甘油氢解方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155187A (ja) * 2008-12-26 2010-07-15 Nippon Oil Corp 水素化異性化触媒、その製造方法、炭化水素油の脱蝋方法及び潤滑油基油の製造方法
CN103157492A (zh) * 2011-12-15 2013-06-19 中国石油化工股份有限公司 一种壳层分布的催化剂及其制备方法
CN103769235A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 一种壳层分布的催化剂及其应用
CN104741116A (zh) * 2013-12-31 2015-07-01 上海华谊能源化工有限公司 一种用于co气相合成草酸二甲酯催化剂及其制备方法
CN104888768A (zh) * 2014-03-03 2015-09-09 中国石油化工股份有限公司 一种氧化催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155187A (ja) * 2008-12-26 2010-07-15 Nippon Oil Corp 水素化異性化触媒、その製造方法、炭化水素油の脱蝋方法及び潤滑油基油の製造方法
CN103157492A (zh) * 2011-12-15 2013-06-19 中国石油化工股份有限公司 一种壳层分布的催化剂及其制备方法
CN103769235A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 一种壳层分布的催化剂及其应用
CN104741116A (zh) * 2013-12-31 2015-07-01 上海华谊能源化工有限公司 一种用于co气相合成草酸二甲酯催化剂及其制备方法
CN104888768A (zh) * 2014-03-03 2015-09-09 中国石油化工股份有限公司 一种氧化催化剂及其制备方法和应用

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110237848A (zh) * 2018-03-09 2019-09-17 中国石油化工股份有限公司 负载型多金属组分催化剂及其制备方法和应用以及环烷烃氢解开环方法
CN110237848B (zh) * 2018-03-09 2021-12-17 中国石油化工股份有限公司 负载型多金属组分催化剂及其制备方法和应用以及环烷烃氢解开环方法
CN108636440A (zh) * 2018-04-16 2018-10-12 江苏七洲绿色化工股份有限公司 一种甘油水溶液加氢制1,3-丙二醇的催化剂及其制备方法
CN108636440B (zh) * 2018-04-16 2021-08-10 江苏七洲绿色化工股份有限公司 一种甘油水溶液加氢制1,3-丙二醇的催化剂及其制备方法
CN110732351A (zh) * 2018-07-19 2020-01-31 中国石油化工股份有限公司 废催化裂化催化剂的脱金属复活方法
CN110732351B (zh) * 2018-07-19 2022-07-19 中国石油化工股份有限公司 废催化裂化催化剂的脱金属复活方法
CN110882709A (zh) * 2018-09-07 2020-03-17 中国石油化工股份有限公司 碳化物基催化剂及其制备方法以及甘油氢解方法
CN110882710A (zh) * 2018-09-07 2020-03-17 中国石油化工股份有限公司 碳化物基催化剂及其制备方法以及甘油氢解方法
CN110882709B (zh) * 2018-09-07 2023-04-11 中国石油化工股份有限公司 碳化物基催化剂及其制备方法以及甘油氢解方法
CN110882710B (zh) * 2018-09-07 2022-10-21 中国石油化工股份有限公司 碳化物基催化剂及其制备方法以及甘油氢解方法
CN111036204A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 一种甘油氢解方法
CN111036250A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 含磷催化剂及其制备方法和应用以及甘油氢解方法
CN111036244A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 含氟催化剂及其制备方法和应用以及甘油氢解方法
CN111036206A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 甘油氢解催化剂及其制备方法和应用以及甘油氢解方法
CN111036207A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 加氢催化剂及其制备方法以及甘油加氢方法
CN111036208A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 甘油氢解催化剂及其制备方法和应用以及甘油氢解方法
CN111036202A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 甘油氢解催化剂及其制备方法和应用
CN111036205A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 一种甘油氢解方法
CN111036204B (zh) * 2018-10-15 2023-02-17 中国石油化工股份有限公司 一种甘油氢解方法
CN111036202B (zh) * 2018-10-15 2023-03-10 中国石油化工股份有限公司 甘油氢解催化剂及其制备方法和应用
CN111036208B (zh) * 2018-10-15 2023-03-10 中国石油化工股份有限公司 甘油氢解催化剂及其制备方法和应用以及甘油氢解方法
CN111036203A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 含铌催化剂及其制备方法和应用以及甘油氢解方法
CN111036203B (zh) * 2018-10-15 2023-04-11 中国石油化工股份有限公司 含铌催化剂及其制备方法和应用以及甘油氢解方法
CN111036244B (zh) * 2018-10-15 2023-05-05 中国石油化工股份有限公司 含氟催化剂及其制备方法和应用以及甘油氢解方法

Also Published As

Publication number Publication date
CN106552623B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN106552623A (zh) 一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法
Esteves et al. Effect of support on selective 5-hydroxymethylfurfural hydrogenation towards 2, 5-dimethylfuran over copper catalysts
Zhang et al. Strong Metal–Support Interaction of Ru on TiO2 Derived from the Co-Reduction Mechanism of Ru x Ti1–x O2 Interphase
JP6724253B2 (ja) 金属酸化物支持体を用いた乾式改質触媒及びこれを用いた合成ガスの製造方法
CN108654613B (zh) 一种含炭负载型双金属催化剂及其制备方法和甘油氢解反应方法
Siani et al. The effect of Fe on SiO2-supported Pt catalysts: Structure, chemisorptive, and catalytic properties
He et al. Catalytic CO bond hydrogenolysis of tetrahydrofuran-dimethanol over metal supported WOx/TiO2 catalysts
CN108654635B (zh) 一种负载型三金属催化剂及其制备方法和催化甘油氢解反应方法
WO2018157815A1 (zh) 选择性加氢催化剂、其制备方法及生成异丁醛的催化评价方法
Kim et al. Hydrogenation of 5-hydroxymethylfurfural into 2, 5-bis (hydroxymethyl) furan over mesoporous Cu–Al2O3 catalyst: From batch to continuous processing
Tu et al. Phyllosilicate-derived CuNi/SiO2 catalysts in the selective hydrogenation of adipic acid to 1, 6-hexanediol
WO2009133787A1 (ja) プロピレングリコールの製造方法
CN108940305A (zh) 加氢催化剂和环己烷二甲酸二元酯的制备方法和环己烷二甲醇的生产方法和酯加氢催化剂
Shah et al. One pot menthol synthesis via hydrogenations of citral and citronellal over montmorillonite-supported Pd/Ni-heteropoly acid bifunctional catalysts
Alfilfil et al. Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde
Zhao et al. Promotional effect of copper (ii) on an activated carbon supported low content bimetallic gold–cesium (i) catalyst in acetylene hydrochlorination
CN110152672A (zh) 一种镍基催化剂作为愈创木酚制备苯酚和环己醇的催化剂的用途
Führer et al. Cinnamaldehyde hydrogenation over carbon supported molybdenum and tungsten carbide catalysts
CN110882709B (zh) 碳化物基催化剂及其制备方法以及甘油氢解方法
Bernas et al. Hydrogenation of citral over carbon supported iridium catalysts
CN110882710B (zh) 碳化物基催化剂及其制备方法以及甘油氢解方法
CN108654611A (zh) 一种负载型双金属催化剂及其制备方法和甘油氢解反应方法
CN108654591B (zh) 一种负载型催化剂及其制备方法与应用和费托合成方法
CN108654637A (zh) 一种钴基催化剂及制备方法和应用及费托合成方法
CN113019379A (zh) 一种用于烯醛液相加氢的催化剂及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant