CN111036207A - 加氢催化剂及其制备方法以及甘油加氢方法 - Google Patents

加氢催化剂及其制备方法以及甘油加氢方法 Download PDF

Info

Publication number
CN111036207A
CN111036207A CN201811197904.2A CN201811197904A CN111036207A CN 111036207 A CN111036207 A CN 111036207A CN 201811197904 A CN201811197904 A CN 201811197904A CN 111036207 A CN111036207 A CN 111036207A
Authority
CN
China
Prior art keywords
metal
catalyst
active
glycerol
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811197904.2A
Other languages
English (en)
Inventor
晋超
郑仁垟
吴玉
张荣俊
王薇
夏国富
李明丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201811197904.2A priority Critical patent/CN111036207A/zh
Publication of CN111036207A publication Critical patent/CN111036207A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本公开涉及一种加氢催化剂及其制备方法以及甘油加氢方法,该催化剂包括活性载体和负载在所述活性载体上的活性组分,所述活性组份为选自第VIII族金属的金属组分的一种或多种,所述活性载体包括金属M的碳化物和金属M的氧化物,其中M为选自第VIB族金属中的一种。该催化剂具有较高的加氢催化活性,用于甘油加氢反应时能够显著提高目标产物1,3‑丙二醇的选择性。

Description

加氢催化剂及其制备方法以及甘油加氢方法
技术领域
本公开涉及一种加氢催化剂及其制备方法以及甘油加氢方法。
背景技术
甘油是生产生物柴油的主要副产物。目前,市场上的甘油主要来自生物柴油和油脂工业。随着生物柴油产量的不断升高,目前甘油市场基本饱和,供应量明显过剩,这使甘油的价格一直稳定在低位。在甘油的衍生物中,1,3-丙二醇具有广泛的应用和较高的市场价值。1,3-丙二醇(1,3-Propanediol或1,3-PDO)是一种重要的有机化工原料,其最主要用途是作为合成新型聚酯材料聚对苯二甲酸1,3-丙二醇酯(PTT)的原料单体。因此,以廉价的甘油为原料生产1,3-丙二醇对增加生物柴油产业的经济效益具有重要的意义。
目前,国内外1,3-PDO主要有三种生产工艺,分别为德国Degussa的丙烯醛水合氢化法,美国壳牌的环氧乙烷羰基化法和杜邦的生物工程发酵法。由于丙烯醛水合加氢法和环氧乙烷羰基甲酰化法对反应条件比较苛刻,需要高温高压,且丙烯醛和环氧乙烷分别易燃、易爆和剧毒的危险化学品,在生产中带来更大的安全隐患。而生物工程法以可再生资源为原料,且具有生产成本低、绿色环保等优点,生物工程法逐渐成为1,3-PDO的主要生产方法,产能不断扩大。考虑到而甘油直接氢解制1,3-丙二醇的过程工艺简单,且原料廉价易得,同时无有毒副产物生成,符合绿色化学发展的要求,因此具有广泛的应用前景和市场价值。
甘油直接氢解制1,3-丙二醇近年来受到了研究者们的广泛关注。文献(Chin.J.Catal.,2012,33:1257-1261)报道了采用蒸发诱导自组装法制备了介孔氧化钨(m-WO3),担载Pt后应用于催化甘油氢解制1,3-丙二醇。结果表明,与商业氧化钨(c-WO3)相比,m-WO3具有高比表面积和易还原的优点,从而使得Pt纳米粒子高度分散于其上。在180℃和5.5MPaH2下反应12h,Pt/m-WO3催化剂上甘油转化率和1,3-丙二醇的选择性分别为18.0%和39.2%,明显高于Pt/c-WO3催化剂。文献(Green Chemistry,2017,19(9):2174-2183)报道了以一种W掺杂SBA-15分子筛负载Pt催化剂,该催化剂用于甘油加氢反应可使1,3-PDO的收率达到61.5%,作者发现随着W/Si比的增大,Pt粒径呈火山型分布,当W/Si比为1/640时Pt粒径最小,此时催化剂活性和选择性最高。
CN107096564A公开一种SAPO-34负载Pt和WOx的催化剂及其制备方法。将该催化剂用于甘油直接加氢制1,3-PDO反应既保证了催化剂中中等强度,数量较大的B酸酸性位,又保证了WOx与金属Pt的分散。CN104667924A公开了一种以为载体,通过共浸渍或分步浸渍法将活性组分Re和Ir浸渍于SiO2和HZSM-5分子筛载体上,该催化剂用于甘油加氢反应,可高选择性的制备1,3-PDO。
在化学合成燃料电池和石油化工领域中,一般采用金属铂及其元素周期表中相邻的贵金属元素如钯、钌作为催化活性组分,但这些稀有贵金属的价格昂贵,因此人们寻求一种代替铂及铂族元素的新型催化剂。
目前,甘油直接氢解制1,3-丙二醇的生产工艺尚未应用于工业化生产中,主要是由于甘油氢解反应对能耗以及设备要求相对较高、1,3-PDO选择性较低、1,3-PDO分离难度大等。同时催化剂在反应过程中稳定性较差,寿命较短,催化剂的活性相对较差。因此,开发一种高选择性制备1,3-PDO的催化剂具有非常现实的意义。
发明内容
本公开的目的是提供一种加氢催化剂及其制备方法以及甘油加氢方法,该催化剂具有较高的加氢催化活性,用于甘油加氢反应时能够显著提高目标产物1,3-丙二醇的选择性。
为了实现上述目的,本公开第一方面:提供一种加氢催化剂,该催化剂包括活性载体和负载在所述活性载体上的活性组分,所述活性组份为选自第VIII族金属的金属组分的一种或多种,所述活性载体包括金属M的碳化物和金属M的氧化物,其中M为选自第VIB族金属中的一种。
可选地,以催化剂的干基重量为基准,所述活性载体的含量为80~99.9重量%,以金属元素计,所述活性组分的含量为0.1~20重量%。
可选地,以催化剂的干基重量为基准,所述活性载体的含量为85~99.8重量%,以金属元素计,所述活性组分的含量为0.2~15重量%。
可选地,以金属元素计,所述金属M的碳化物和金属M的氧化物的重量比为(0.1~10):1,优选为(0.2~5):1。
可选地,所述活性组分为Ru组分、Pt组分、Co组分、Rh组分、Pd组分或Ir组分,或者它们中的两种或三种的组合;M为Mo、W或Cr。
本公开第二方面:提供一种制备本公开第一方面所述的催化剂的方法,该方法包括以下步骤:
a、将金属M前驱物在含碳化合物气氛中碳化,得到金属M的碳化物;
b、将步骤a得到的所述金属M的碳化物与金属M的氧化物混合,得到活性载体,将所述活性载体与含有活性组分前驱物的浸渍液接触进行浸渍,收集固体产物。
可选地,步骤a中,所述含碳化合物为甲烷、一氧化碳、乙烷、乙烯、乙炔、丙烷、丙烯或丙炔,或者它们中的两种或三种的组合;所述含碳化合物气氛中,含碳化合物的含量为5~50体积%,优选为10~40体积%;优选地,所述含碳化合物气氛包括甲烷和氢气,其中甲烷与氢气的体积比为(5~50):(30~95),优选为(10~40):(40~90);
所述碳化的条件包括:碳化温度为500~1000℃,优选为600~900℃;碳化升温速率为0.2~30℃/min,优选为0.5~20℃/min;碳化恒温时间为1~12h,优选2~10h。
可选地,该方法还包括:将步骤a得到的所述金属M的碳化物在惰性气氛下冷却至50℃以下,并在钝化气氛下钝化处理1~12h后再进行步骤b的操作;所述钝化气氛中,氧气的含量为0.05~5体积%,优选为0.1~3体积%。
可选地,步骤b中,所述混合包括:将步骤a得到的所述金属M的碳化物与金属M的氧化物在惰性气氛下球磨0.5~10h。
可选地,步骤b中,所述浸渍包括:将所述活性载体与含有活性组分前驱物的浸渍液混合后进行超声处理0.5~5h,然后静置1~24h。
可选地,所述活性组分前驱物为所述活性组分的硝酸盐、醋酸盐、硫酸盐、氯化物、酸或配合物,或者它们中的两种或三种的组合;所述金属M前驱物为所述金属M的氧化物、金属酸或金属酸盐,或者它们中的两种或三种的组合。
可选地,该方法还包括收集固体产物后进行干燥和焙烧的步骤;所述干燥的条件包括:温度为50~350℃,优选为80~300℃;时间为1~24小时,优选为2~12小时;所述焙烧的条件包括:温度为200~800℃,优选为300~600℃;时间为1~24h,优选为2~12h。
本公开第三方面:提供一种甘油加氢方法,该方法包括在催化甘油加氢反应的条件下,将含有甘油的原料、氢气与催化剂接触,其中,所述催化剂为本公开第一方面所述的负载型催化剂。
可选地,所述甘油与催化剂的重量比为(10~50):1;
所述催化甘油加氢反应的条件包括:氢气压力为1~15MPa,优选为2~8MPa;反应温度为90~300℃,优选为100~220℃;反应时间为0.5h以上,优选为4~36h。
通过上述技术方案,本公开的催化剂以碳化物为载体负载活性金属组分,特别适用于催化甘油直接加氢反应,具有较高的催化活性,可明显提高目标产物的选择性,且制备工艺简单,成本低,有利于工业化推广。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
以下对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
本公开第一方面:提供一种加氢催化剂,该催化剂包括活性载体和负载在所述活性载体上的活性组分,所述活性组份为选自第VIII族金属的金属组分的一种或多种,所述活性载体包括金属M的碳化物和金属M的氧化物,其中M为选自第VIB族金属中的一种。
本公开的催化剂中,由于存在特殊的金属M的碳化物和氧化物作为活性载体,使其具有较高的催化加氢活性,用于甘油加氢反应时能够获得较高的1,3-丙二醇选择性。
根据本公开,以催化剂的干基重量为基准,所述活性载体的含量可以为80~99.9重量%,以金属元素计,所述活性组分的含量可以为0.1~20重量%。为了进一步提高所述催化剂的催化活性,优选地,以催化剂的干基重量为基准,所述活性载体的含量为85~99.8重量%,以金属元素计,所述活性组分的含量为0.2~15重量%。
根据本公开,以金属元素计,所述金属M的碳化物和金属M的氧化物重量比可以为(0.1~10):1,优选为(0.2~5):1,上述范围内的催化剂具有较优的催化加氢反应活性。
进一步地,所述活性组分可以为Ru组分、Pt组分、Co组分、Rh组分、Pd组分或Ir组分,或者它们中的两种或三种的组合,更进一步为Ru组分和/或Pt组分,最优选为Pt组分。所述金属M为可以Mo、W或Cr,更进一步为Mo或W,最优选为W。
本公开第二方面:提供一种制备本公开第一方面所述的催化剂的方法,该方法包括以下步骤:
a、将金属M前驱物在含碳化合物气氛中碳化,得到金属M的碳化物;
b、将步骤a得到的所述金属M的碳化物与金属M的氧化物混合,得到活性载体,将所述活性载体与含有活性组分前驱物的浸渍液接触进行浸渍,收集固体产物。
根据本公开,步骤a中,金属M前驱物在含碳化合物气氛中高温分解,碳化生成可作为部分活性载体的碳化物。所述含碳化合物可以为甲烷、一氧化碳、乙烷、乙烯、乙炔、丙烷、丙烯或丙炔,或者它们中的两种或三种的组合。所述含碳化合物气氛中,含碳化合物的含量较少时即可达到本公开的目的,例如,所述含碳化合物气氛中,含碳化合物的含量可以为5~50体积%,优选为10~40体积%;这时,所述含碳化合物气氛中还可以包括氢气、氮气、氩气或氦气,或者它们中的两种或三种的组合。在一种优选的实施方式中,所述含碳化合物气氛包括甲烷和氢气,其中甲烷与氢气的体积比可以为(5~50):(30~95),优选为(10~40):(40~90)。所述碳化的条件可以包括:碳化温度为500~1000℃,优选为600~900℃;碳化升温速率为0.2~30℃/min,优选为0.5~20℃/min;碳化恒温时间为1~12h,优选2~10h。
根据本公开,该方法还可以包括:将步骤a得到的所述金属M的碳化物在惰性气氛下冷却至50℃以下,并在钝化气氛下钝化处理1~12h后再进行步骤b的操作。其中,所述惰性气氛可以为氩气、氦气或氮气。所述钝化气氛可以为含有微量氧气的气氛,进一步地,所述钝化气氛中,氧气的含量可以为0.05~5体积%,优选为0.1~3体积%;该钝化气氛中还可以包括氮气、氩气或氦气,一般为氮气。
根据本公开,步骤b中,所述金属M的氧化物的来源没有特殊的限制,可以为直接商购的产品,也可以为采用金属M前驱物在空气气氛下焙烧后所得到的氧化物,所述焙烧的条件可以包括:温度为200~900℃,时间为1~24h。
根据本公开,步骤b中,将所述金属M的碳化物与金属M的氧化物进行混合的方法可以为本领域技术人员熟知的各种常规混合方法。为了进一步提高催化剂的催化活性,优选地,步骤b中,所述混合包括:将步骤a得到的所述金属M的碳化物与金属M的氧化物在惰性气氛下球磨0.5~10h。所述球磨的含义为本领域技术人员所熟知,可以采用现有技术中的任意常规球磨机进行,本公开没有特殊的限制。所述惰性气氛可以为氩气、氦气或氮气。
根据本公开,步骤b中,所述浸渍的方法没有特别的限定,可以为本领域技术人员公知的各种方法,例如等体积浸渍法或过饱和浸渍法等。具体而言,所述浸渍的条件可以包括:所述浸渍的条件包括:温度为20~50℃,时间为0.5~12h。在一种优选的实施方式中,所述浸渍包括:将所述活性载体与含有活性组分前驱物的浸渍液混合后进行超声处理0.5~5h,优选1~3h,然后静置1~24h。这样,能够进一步提高活性组分在活性载体上的分散度,从而降低活性组分用量,并提高催化剂的催化活性。
根据本公开,所述活性组分前驱物是指含有所述活性组份的化合物,例如可以为所述活性组分的硝酸盐、醋酸盐、硫酸盐、氯化物、酸或配合物,或者它们中的两种或三种的组合;例如,当所述第一组分为Pt组分时,所述第一活性组分前驱物可以为氯铂酸、二氯四氨合铂、硝酸铂等。所述活性组分前驱物可以为具有一定浓度的水溶液的形式,例如,以金属元素计,所述活性组分前驱物的浓度可以为0.5~10重量%,优选为1~5重量%。所述金属M前驱物是指含有所述金属M的化合物,例如可以为所述金属M的氧化物、金属酸或金属酸盐,或者它们中的两种或三种的组合;例如,当所述金属M为W时,所述金属M前驱物可以为偏钨酸铵、钨酸钠、硅钨酸、磷钨酸等。
根据本公开,所述金属M前驱物、活性组分前驱物的用量为使得所制备的催化剂中,以催化剂的干基重量为基准,所述活性载体的含量为80~99.9重重量%,优选为0.1~20重量%,以金属元素计,所述活性组分的含量为85~99.8重量%,优选为0.2~15重量%。
根据本公开,该方法还可以包括收集固体产物后进行干燥和焙烧的步骤。该干燥和焙烧的步骤为制备催化剂中的常规步骤,本公开没有特殊的限制。例如,所述干燥的条件可以包括:温度为50~350℃,优选为80~300℃;时间为1~24小时,优选为2~12小时。所述焙烧的条件可以包括:温度为200~800℃,优选为300~600℃;时间为1~24h,优选为2~12h。
本公开的催化剂在用于甘油加氢反应时具有较高的催化活性和1,3-丙二醇选择性。因此,本公开第三方面:提供一种甘油加氢方法,该方法包括在催化甘油加氢反应的条件下,将甘油、氢气与催化剂接触,其中,所述催化剂为本公开第一方面所述的负载型催化剂。
进一步地,所述接触可以在任何足以使所述含有甘油的原料在催化甘油加氢的条件下与所述催化剂接触以进行反应的反应器中进行,例如固定床反应器或高压釜反应器。所述甘油可以为水溶液的形式,甘油的浓度可以为5~95重量%。所述甘油与催化剂的重量比可以为(10~50):1。所述催化甘油加氢的条件可以参照现有技术进行,以高压釜反应器的评价为例,所述催化甘油加氢的条件可以包括:氢气压力为1~15MPa,优选为2~8MPa;反应温度为90~300℃,优选为100~220℃;反应时间为0.5h以上,优选为4~36h。
以下的实施例便于更好地理解本公开,但并不限定本公开。
实施例1
向1.7g偏钨酸铵通入CH4与H2体积比为15:85的含碳化合物气氛,通过程序升温程序设定以1℃/min的升温速率升至800℃,恒温6h进行碳化,之后切换为高纯Ar气,降温至室温并恒温2h,再切换为氧气含量为0.2体积%的O2与N2的钝化气氛中钝化处理2h,得到钝化后的钨的碳化物。
将5g偏钨酸铵置于马弗炉中在700℃焙烧3h,得到钨的氧化物。
将上述钝化后的钨的碳化物和钨的氧化物按照重量比为1:1混合,在高纯Ar气氛下以及行星式球磨机中研磨2h,得到载体Z1。
将铂含量为2.375重量%的氯铂酸溶液0.17g溶于10g去离子水中充分搅拌,将上述Z1载体1.0g加入稀释后的氯铂酸溶液中,室温充分搅拌后,放置于超声仪中超声2h,然后静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃下焙烧3h,得到本实施例制备的催化剂A1,以金属元素计并以催化剂的干基重量为基准,催化剂A1的组成为0.5重量%Pt/Z1。
实施例2
按照实施例1的方法制备钝化后的钨的碳化物和钨的氧化物。
将上述钝化后的钨的碳化物和钨的氧化物按照重量比为2:1混合,在高纯Ar气氛下以及行星式球磨机中研磨2h,得到载体Z2。
将铂含量为2.375重量%的氯铂酸溶液0.34g溶于10g去离子水中充分搅拌,将上述Z2载体1.0g加入稀释后的氯铂酸溶液中,室温充分搅拌后,放置于超声仪中超声2h,然后静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃下焙烧3h,得到本实施例制备的催化剂A2,以金属元素计并以催化剂的干基重量为基准,催化剂A2的组成为1.0重量%Pt/Z2。
实施例3
向5g三氧化钼通入CH4与H2体积比为15:85的含碳化合物气氛,通过程序升温程序设定以2℃/min的升温速率升至900℃,恒温5h进行碳化,之后切换为高纯Ar气,降温至室温并恒温2h,再切换为氧气含量为0.2体积%的O2与N2的钝化气氛中钝化处理2h,得到钝化后的钼的碳化物。
将上述钝化后的钼的碳化物和三氧化钼按照重量比为1:1混合,在高纯Ar气氛下以及行星式球磨机中研磨2h,得到载体Z3。
将亚硝酰基硝酸钌0.21g溶于10g去离子水中充分搅拌,将上述Z3载体1.0g加入稀释后的亚硝酰基硝酸钌溶液中,室温充分搅拌后,放置于超声仪中超声2h,然后静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃下焙烧3h,得到本实施例制备的催化剂A3,以金属元素计并以催化剂的干基重量为基准,催化剂A3的组成为0.5重量%Ru/Z3。
实施例4
按照实施例1的方法制备钝化后的钨的碳化物和钨的氧化物。
将上述钝化后的钨的碳化物和钨的氧化物按照重量比为1:1混合,在高纯Ar气氛下以及行星式球磨机中研磨2h,得到载体Z4。
将铂含量为2.375重量%的氯铂酸溶液0.05g溶于10g去离子水中充分搅拌,将上述Z4载体1.0g加入稀释后的氯铂酸溶液中,室温充分搅拌后,放置于超声仪中超声2h,然后静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃下焙烧3h,得到本实施例制备的催化剂A4,以金属元素计并以催化剂的干基重量为基准,催化剂A4的组成为0.15重量%Pt/Z4。
实施例5
按照实施例1的方法制备钝化后的钨的碳化物和钨的氧化物。
将上述钝化后的钨的碳化物和钨的氧化物按照重量比为0.1:1混合,在高纯Ar气氛下以及行星式球磨机中研磨2h,得到载体Z5。
将铂含量为2.375重量%的氯铂酸溶液0.17g溶于10g去离子水中充分搅拌,将上述Z5载体1.0g加入稀释后的氯铂酸溶液中,室温充分搅拌后,放置于超声仪中超声2h,然后静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃下焙烧3h,得到本实施例制备的催化剂A5,以金属元素计并以催化剂的干基重量为基准,催化剂A5的组成为0.5重量%Pt/Z5。
实施例6
按照实施例1的方法制备钝化后的钨的碳化物和钨的氧化物。
将上述钝化后的钨的碳化物和钨的氧化物按照重量比为10:1混合,在高纯Ar气氛下以及行星式球磨机中研磨2h,得到载体Z6。
将铂含量为2.375重量%的氯铂酸溶液0.17g溶于10g去离子水中充分搅拌,将上述Z6载体1.0g加入稀释后的氯铂酸溶液中,室温充分搅拌后,放置于超声仪中超声2h,然后静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃下焙烧3h,得到本实施例制备的催化剂A6,以金属元素计并以催化剂的干基重量为基准,催化剂A6的组成为0.5重量%Pt/Z6。
实施例7
按照实施例1的方法制备催化剂,区别在于,不进行超声处理,即将载体加入稀释后的氯铂酸溶液中,室温充分搅拌后,直接静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃焙烧3h,得到本实施例制备的催化剂A7。
实施例8
向1.7g偏钨酸铵通入CH4与H2体积比为50:50的含碳化合物气氛,通过程序升温程序设定以1℃/min的升温速率升至800℃,恒温6h进行碳化,之后切换为高纯Ar气,降温至室温并恒温2h,再切换为氧气含量为0.2体积%的O2与N2的钝化气氛中钝化处理2h,得到钝化后的钨的碳化物。
将5g偏钨酸铵置于马弗炉中在700℃焙烧3h,得到钨的氧化物。
将上述钝化后的钨的碳化物和钨的氧化物按照重量比为1:1混合,在高纯Ar气氛下以及行星式球磨机中研磨2h,得到载体Z8。
将铂含量为2.375重量%的氯铂酸溶液0.17g溶于10g去离子水中充分搅拌,将上述Z8载体1.0g加入稀释后的氯铂酸溶液中,室温充分搅拌后,放置于超声仪中超声2h,然后静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃下焙烧3h,得到本实施例制备的催化剂A8,以金属元素计并以催化剂的干基重量为基准,催化剂A8的组成为0.5重量%Pt/Z8。
实施例9
向1.7g偏钨酸铵通入CH4与H2体积比为15:85的含碳化合物气氛,通过程序升温程序设定以25℃/min的升温速率升至1000℃,恒温12h进行碳化,之后切换为高纯Ar气,降温至室温并恒温2h,再切换为氧气含量为0.2体积%的O2与N2的钝化气氛中钝化处理2h,得到钝化后的钨的碳化物。
将5g偏钨酸铵置于马弗炉中在700℃焙烧3h,得到钨的氧化物。
将上述钝化后的钨的碳化物和钨的氧化物按照重量比为1:1混合,在高纯Ar气氛下以及行星式球磨机中研磨2h,得到载体Z9。
将铂含量为2.375重量%的氯铂酸溶液0.17g溶于10g去离子水中充分搅拌,将上述Z9载体1.0g加入稀释后的氯铂酸溶液中,室温充分搅拌后,放置于超声仪中超声2h,然后静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃下焙烧3h,得到本实施例制备的催化剂A9,以金属元素计并以催化剂的干基重量为基准,催化剂A9的组成为0.5重量%Pt/Z9。
实施例10
按照实施例1的方法制备催化剂,区别在于,不进行球磨,即将钝化后的钨的碳化物和钨的氧化物混合,搅拌均匀后得到活性载体Z10。然后按照与实施例1相同的方法负载铂,得到本实施例制备的催化剂A10。
对比例1
按照实施例1的方法制备催化剂,区别在于,载体为钝化后的钨的碳化物。具体步骤为:
向1.7g偏钨酸铵通入CH4与H2体积比为15:85的含碳化合物气氛,通过程序升温程序设定以1℃/min的升温速率升至800℃,恒温6h进行碳化,之后切换为高纯Ar气,降温至室温并恒温2h,再切换为氧气含量为0.2体积%的O2与N2的钝化气氛中钝化处理2h,得到钝化后的钨的碳化物作为载体DZ1。
将铂含量为2.375重量%的氯铂酸溶液0.17g溶于10g去离子水中充分搅拌,将上述1.0g载体DZ1加入稀释后的氯铂酸溶液中,室温充分搅拌后,放置于超声仪中超声2h,然后静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃下焙烧3h,得到本对比例制备的催化剂D1,以金属元素计并以催化剂的干基重量为基准,催化剂D1的组成为0.5重量%Pt/DZ1。
对比例2
按照实施例1的方法制备催化剂,区别在于,载体为钨的氧化物。具体步骤为:
将5g偏钨酸铵置于马弗炉中在700℃焙烧3h,得到钨的氧化物作为载体DZ2。
将铂含量为2.375重量%的氯铂酸溶液0.17g溶于10g去离子水中充分搅拌,将上述1.0g载体DZ2加入稀释后的氯铂酸溶液中,室温充分搅拌后,放置于超声仪中超声2h,然后静置12h,然后在80℃下将溶液蒸干,将固体产物在400℃下焙烧3h,得到本对比例制备的催化剂D2,以金属元素计并以催化剂的干基重量为基准,催化剂D2的组成为0.5重量%Pt/DZ2。
测试实施例
测试实施例1-10和对比例1-2制备的催化剂用于催化甘油加氢反应的催化活性。
称取催化剂0.5g置于50mL的高压反应釜中,加入甘油质量浓度为10重量%的甘油水溶液20g,在反应温度为180℃,磁力搅拌转速为700r/min和氢气压力为4.0MPa的条件下反应24h,反应结束后冷却至室温,采用气相色谱进行取样分析,并按照下式计算转化率、选择性,反应结果列于表1。
甘油转化率(%)=(反应前甘油的摩尔量-反应后甘油的摩尔量)/反应前甘油的摩尔量×100%
1,3-丙二醇选择性(%)=1,3-丙二醇的摩尔量/生成碳物质的总摩尔量×100%
表1
Figure BDA0001829270380000141
由表1可见,本公开的催化剂在用于甘油加氢反应中时具有较高的催化活性和1,3-丙二醇选择性。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (14)

1.一种加氢催化剂,其特征在于,该催化剂包括活性载体和负载在所述活性载体上的活性组分,所述活性组份为选自第VIII族金属的金属组分的一种或多种,所述活性载体包括金属M的碳化物和金属M的氧化物,其中M为选自第VIB族金属中的一种。
2.根据权利要求1所述的催化剂,其中,以催化剂的干基重量为基准,所述活性载体的含量为80~99.9重量%,以金属元素计,所述活性组分的含量为0.1~20重量%。
3.根据权利要求2所述的催化剂,其中,以催化剂的干基重量为基准,所述活性载体的含量为85~99.8重量%,以金属元素计,所述活性组分的含量为0.2~15重量%。
4.根据权利要求1所述的催化剂,其中,以金属元素计,所述金属M的碳化物和金属M的氧化物的重量比为(0.1~10):1,优选为(0.2~5):1。
5.根据权利要求1所述的催化剂,其中,所述活性组分为Ru组分、Pt组分、Co组分、Rh组分、Pd组分或Ir组分,或者它们中的两种或三种的组合;和/或,M为Mo、W或Cr。
6.一种制备权利要求1~5中任意一项所述的催化剂的方法,其特征在于,该方法包括以下步骤:
a、将金属M前驱物在含碳化合物气氛中碳化,得到金属M的碳化物;
b、将步骤a得到的所述金属M的碳化物与金属M的氧化物混合,得到活性载体,将所述活性载体与含有活性组分前驱物的浸渍液接触进行浸渍,收集固体产物。
7.根据权利要求6所述的方法,其中,步骤a中,所述含碳化合物为甲烷、一氧化碳、乙烷、乙烯、乙炔、丙烷、丙烯或丙炔,或者它们中的两种或三种的组合;和/或,
所述含碳化合物气氛中,含碳化合物的含量为5~50体积%,优选为10~40体积%;优选地,所述含碳化合物气氛包括甲烷和氢气,其中甲烷与氢气的体积比为(5~50):(50~95),优选为(10~40):(60~90);和/或,
所述碳化的条件包括:碳化温度为500~1000℃,优选为600~900℃;碳化升温速率为0.2~30℃/min,优选为0.5~20℃/min;碳化恒温时间为1~12h,优选2~10h。
8.根据权利要求6所述的方法,其中,该方法还包括:将步骤a得到的所述金属M的碳化物在惰性气氛下冷却至50℃以下,并在钝化气氛下钝化处理1~12h后再进行步骤b的操作;和/或,
所述钝化气氛中,氧气的含量为0.05~5体积%,优选为0.1~3体积%。
9.根据权利要求6所述的方法,其中,步骤b中,所述混合包括:将步骤a得到的所述金属M的碳化物与金属M的氧化物在惰性气氛下球磨0.5~10h。
10.根据权利要求6所述的方法,其中,步骤b中,所述浸渍包括:将所述活性载体与含有活性组分前驱物的浸渍液混合后进行超声处理0.5~5h,然后静置1~24h。
11.根据权利要求6所述的方法,其中,所述活性组分前驱物为所述活性组分的硝酸盐、醋酸盐、硫酸盐、氯化物、酸或配合物,或者它们中的两种或三种的组合;和/或,所述金属M前驱物为所述金属M的氧化物、金属酸或金属酸盐,或者它们中的两种或三种的组合。
12.根据权利要求6所述的方法,其中,该方法还包括收集固体产物后进行干燥和焙烧的步骤;和/或,所述干燥的条件包括:温度为50~350℃,优选为80~300℃;时间为1~24小时,优选为2~12小时;和/或,所述焙烧的条件包括:温度为200~800℃,优选为300~600℃;时间为1~24h,优选为2~12h。
13.一种甘油加氢方法,该方法包括在催化甘油加氢反应的条件下,将含有甘油的原料、氢气与催化剂接触,其中,所述催化剂为权利要求1~5中任意一项所述的负载型催化剂。
14.根据权利要求13所述的方法,其中,所述甘油与催化剂的重量比为(10~50):1;和/或,
所述催化甘油加氢反应的条件包括:氢气压力为1~15MPa,优选为2~8MPa;反应温度为90~300℃,优选为100~220℃;反应时间为0.5h以上,优选为4~36h。
CN201811197904.2A 2018-10-15 2018-10-15 加氢催化剂及其制备方法以及甘油加氢方法 Pending CN111036207A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811197904.2A CN111036207A (zh) 2018-10-15 2018-10-15 加氢催化剂及其制备方法以及甘油加氢方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811197904.2A CN111036207A (zh) 2018-10-15 2018-10-15 加氢催化剂及其制备方法以及甘油加氢方法

Publications (1)

Publication Number Publication Date
CN111036207A true CN111036207A (zh) 2020-04-21

Family

ID=70230487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811197904.2A Pending CN111036207A (zh) 2018-10-15 2018-10-15 加氢催化剂及其制备方法以及甘油加氢方法

Country Status (1)

Country Link
CN (1) CN111036207A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811624A (en) * 1995-09-05 1998-09-22 Exxon Research And Engineering Company Selective opening of five and six membered rings
US20040220441A1 (en) * 2003-04-30 2004-11-04 Basf Akiengesellschaft Preparation of olefins by metathesis over a carbide or oxycarbide of a transition metal
CN102728380A (zh) * 2012-05-08 2012-10-17 中国科学院大连化学物理研究所 甘油氢解制备1,3-丙二醇的催化剂及其制备和应用
CN104226354A (zh) * 2014-08-29 2014-12-24 中国科学院山西煤炭化学研究所 一种用于丙酮加氢制异丙醇的催化剂及制法和应用
CN106552623A (zh) * 2015-09-30 2017-04-05 中国石油化工股份有限公司 一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811624A (en) * 1995-09-05 1998-09-22 Exxon Research And Engineering Company Selective opening of five and six membered rings
US20040220441A1 (en) * 2003-04-30 2004-11-04 Basf Akiengesellschaft Preparation of olefins by metathesis over a carbide or oxycarbide of a transition metal
CN102728380A (zh) * 2012-05-08 2012-10-17 中国科学院大连化学物理研究所 甘油氢解制备1,3-丙二醇的催化剂及其制备和应用
CN104226354A (zh) * 2014-08-29 2014-12-24 中国科学院山西煤炭化学研究所 一种用于丙酮加氢制异丙醇的催化剂及制法和应用
CN106552623A (zh) * 2015-09-30 2017-04-05 中国石油化工股份有限公司 一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI, LF ET AL.: "Comparative study of WCx-based catalysts for aqueous phase hydrogenolysis of glycerol into bioadditives", 《NEW JOURNAL OF CHEMISTRY》 *

Similar Documents

Publication Publication Date Title
EP3427822B1 (en) Catalyst for preparing 2,5-furancarboxylic acid and method for preparing 2,5-furancarboxylic acid using catalyst
TWI432406B (zh) 利用鉑/錫催化劑由醋酸直接且選擇性產製乙醇
CN109225254B (zh) 一种PtNi/C双金属催化剂及其制备方法
CN109603819B (zh) 一种石墨烯负载PdRu双金属催化剂及其制备方法和应用
CN112791721A (zh) 负载型催化剂前体、负载型催化剂及制备方法和活化方法
CN110433802B (zh) 一种加氢催化剂及其制备方法和该催化剂用于α,β-不饱和醛加氢制备饱和醛的方法
WO2014034752A1 (ja) 多価アルコールの水素化分解用触媒、及び該触媒を使用する1,3-プロパンジオールの製造方法
CN114849694B (zh) 一种基于金属负载氧化钨氢化硝基芳烃的催化剂及其制备方法和应用
CN108654635B (zh) 一种负载型三金属催化剂及其制备方法和催化甘油氢解反应方法
CN113070078B (zh) 一种掺杂有稀土元素的有机储氢介质加氢单原子催化剂及其制备方法
Führer et al. Cinnamaldehyde hydrogenation over carbon supported molybdenum and tungsten carbide catalysts
CN109851473B (zh) 一种甘油溶液氢解制备1,3-丙二醇的方法
CN110498780B (zh) 一种由糠酸气相加氢制备四氢糠酸的方法
CN110871075B (zh) 负载铁钴钾的二氧化锆催化剂、制备方法及其应用
CN112774670A (zh) 一种铑单原子催化剂在间氯硝基苯选择性加氢制备间氯苯胺反应中的应用
CN114100653B (zh) 一种氮化物负载钯催化剂及其制备方法和应用
CN111036207A (zh) 加氢催化剂及其制备方法以及甘油加氢方法
CN111036253A (zh) 加氢催化剂及其制备方法以及甘油加氢方法
KR102231862B1 (ko) 바이오-오일의 수첨 반응용 촉매
CN111036204B (zh) 一种甘油氢解方法
CN107952439B (zh) 用于催化甲醇羰基化的催化剂及其制备方法、甲醇羰基化制备乙酸和乙酸甲酯的方法
CN111036287A (zh) 负载型催化剂及其制备方法以及甘油加氢方法
CN112237913A (zh) 钯系负载型加氢催化剂的制备方法及其催化剂
CN108620084B (zh) 一种用于硝基苯液相加氢制苯胺的体相镍钼催化剂及其制备方法
CN112791737B (zh) 负载型催化剂及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination