WO2009133787A1 - プロピレングリコールの製造方法 - Google Patents
プロピレングリコールの製造方法 Download PDFInfo
- Publication number
- WO2009133787A1 WO2009133787A1 PCT/JP2009/057888 JP2009057888W WO2009133787A1 WO 2009133787 A1 WO2009133787 A1 WO 2009133787A1 JP 2009057888 W JP2009057888 W JP 2009057888W WO 2009133787 A1 WO2009133787 A1 WO 2009133787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- copper
- propylene glycol
- oxide
- glycerin
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/15—X-ray diffraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/60—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Definitions
- the present invention relates to a method for producing propylene glycol using glycerin as a raw material.
- Propylene glycol is a compound in which the hydroxyl group at the 1-position of glycerin is converted to hydrogen, but it has low toxicity to organisms and is tasteless and odorless. Widely used in fields such as pharmaceuticals, cosmetics and foodstuffs. Generally, propylene glycol is produced by oxidizing propylene derived from petroleum called a fossil raw material to form propylene oxide, and then hydrating it.
- An object of the present invention is to provide a method for producing propylene glycol, which uses glycerin as a raw material, has high catalytic activity, and has a high yield of propylene glycol per unit volume / unit time of the catalyst packed bed.
- the present inventors have used X-ray diffraction measurement after hydrogen reduction of a catalyst containing at least one of copper and copper oxide and zinc oxide used in the production of propylene glycol using glycerin as a raw material.
- a catalyst containing at least one of copper and copper oxide and zinc oxide used in the production of propylene glycol using glycerin as a raw material.
- a catalyst containing a first component composed of at least one of copper and copper oxide and a second component composed of zinc oxide catalytic hydrogenation is performed on glycerin to produce propylene glycol.
- the catalyst has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 43.1 in an X-ray diffraction pattern using CuK ⁇ as a radiation source after reduction at 180 ° C. to 230 ° C. in the presence of hydrogen.
- This is a method for producing propylene glycol which is a catalyst having a peak half-value width in the range of 0.4 to 1.1 having a peak top at a position of °.
- the catalyst preferably has a weight ratio of the first component to the second component ((total weight of copper and copper oxide) / (weight of zinc oxide)) in the range of 30/70 to 70/30. 40/60 to 60/40 is more preferable.
- the catalyst preferably further contains a third component other than copper, copper oxide and zinc oxide, more preferably the content of the third component is 25% by weight or less, and the third component is silica. More preferably, it is at least one selected from ferric oxide and magnesium oxide.
- the catalyst is also preferably a catalyst that has been calcined at a calcining temperature of 400 ° C. to 500 ° C. and a calcining time of 2.5 to 6 hours.
- the catalytic hydrogenation to the glycerin is preferably carried out at a reaction pressure in the range of 2 to 30 MPa, a reaction temperature in the range of 150 to 250 ° C., a reaction pressure in the range of 2 to 30 MPa, and a reaction temperature of 180 to 220. More preferably, it is carried out in the range of ° C.
- the present invention uses propylene glycol as a raw material, has high catalytic activity, and high propylene glycol yield per unit volume / unit time of the catalyst packed bed (hereinafter sometimes referred to as “space-time yield”).
- a method for producing glycol can be provided. As a result, both the conversion rate and the selectivity are good, and the space time yield of propylene glycol is high, so that propylene glycol can be efficiently produced in industrial production.
- the equipment can be minimized and the purification load after the reaction can be reduced.
- the method for producing propylene glycol according to the present invention provides propylene glycol by catalytic hydrogenation to glycerin in the presence of a catalyst containing a first component comprising at least one of copper and copper oxide and a second component comprising zinc oxide.
- the catalyst has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 43.1 ° in an X-ray diffraction pattern using CuK ⁇ as a radiation source after reduction at 180 ° C. to 230 ° C. in the presence of hydrogen.
- the half-width of a peak having a peak top at the position of is in the range of 0.4 to 1.1.
- the catalyst used in the present invention is a catalyst containing a first component composed of at least one of copper and copper oxide and a second component composed of zinc oxide, and CuK ⁇ after reduction at 180 ° C. to 230 ° C. in the presence of hydrogen.
- the half width of the peak having a peak top at a position where the diffraction angle (2 ⁇ ⁇ 0.2 °) is 43.1 ° is in the range of 0.4 to 1.1. It is a catalyst.
- a specific catalyst such a catalyst will be referred to as a “specific catalyst”.
- the specific catalyst may contain only one of copper and copper oxide, or may contain copper and copper oxide mixed in an arbitrary ratio.
- the specific catalyst contains at least one of copper and copper oxide and zinc oxide, and is reduced under the above conditions. Thereafter, the diffraction angle (2 ⁇ ⁇ 0.2 °) in an X-ray diffraction pattern using CuK ⁇ as a radiation source is 43. Any catalyst may be used as long as the half width of the peak having a peak top at a position of 1 ° is in the range of 0.4 to 1.1.
- the specific catalyst has a weight ratio of (at least one of copper and copper oxide) to zinc oxide ((total weight of copper and copper oxide) / (weight of zinc oxide)), 30 / 70 ⁇ 70/30 is preferable, 40/60 to 70/30 is more preferable, and 40/60 to 60/40 is still more preferable.
- the said specific catalyst can further contain at least 1 sort (s) of 3rd components other than copper, a copper oxide, and a zinc oxide in the range which does not inhibit the effect of this invention.
- the third component is not particularly limited as long as it is other than copper, copper oxide and zinc oxide, and may be a metal oxide or a single metal.
- the metal contained in the third component include a Group IIa metal such as magnesium and barium, a Group IIIb metal such as aluminum, a Group IVa metal such as zirconium, a Group IVb metal such as silicon, and chromium.
- Examples include Group VIa metals, Group VIIa metals such as manganese and iron, and Group VIII metals such as cobalt and nickel.
- the third component is preferably at least one selected from magnesium oxide, ferric oxide and silica from the viewpoint of glycerol conversion.
- the third component may be included in the specific catalyst alone or in combination of two or more.
- the content of the third component in the specific catalyst is preferably 25% by weight or less, and more preferably 20% by weight or less in terms of high glycerin conversion.
- the third component is preferably included in the specific catalyst by replacing a part of zinc oxide in the specific catalyst. That is, the weight ratio of (at least one of copper and copper oxide) to zinc oxide and the third component ((total weight of copper and copper oxide) / (total weight of zinc oxide and third component)) is high in glycerol conversion. In this respect, 30/70 to 70/30 is preferable, and 40/60 to 60/40 is more preferable.
- the content of copper, copper oxide, zinc oxide and the third component in the specific catalyst is determined by wavelength dispersive X-ray fluorescence analysis (for example, apparatus: XRF-1700 manufactured by Shimadzu Corporation, X-ray tube: Rh, 40 kV, 95 mA). , Aperture: 3 mm, measurement atmosphere: vacuum, analysis method: Fundamental Parameter method).
- the specific catalyst has a diffraction angle (2 ⁇ ⁇ 0.2 °) in an X-ray diffraction pattern using CuK ⁇ as a radiation source after reduction at 180 ° C. to 230 ° C. in the presence of hydrogen before producing propylene glycol.
- the catalyst has a peak half-value width at a peak of 43.1 ° in the range of 0.4 to 1.1.
- the half width from a large value to a small value during the reaction. fluctuate.
- the half width in this application is intended for the catalyst before the production of propylene glycol.
- the half width of a peak having a peak top at a diffraction angle (2 ⁇ ⁇ 0.2 °) of 43.1 ° in an X-ray diffraction pattern using CuK ⁇ as a radiation source is the following steps (i) and (ii): It is calculated by going through.
- step (i) A step of reducing copper oxide to copper at 180 ° C. to 230 ° C. in the presence of hydrogen with a catalyst containing at least one of copper and copper oxide and zinc oxide (hereinafter referred to as “step (i)”).
- Step (i) is a step in which a catalyst containing at least one of copper and copper oxide and zinc oxide is catalytically reduced with hydrogen to obtain a copper / zinc oxide catalyst.
- the temperature at which the reduction of the catalyst is started varies depending on the copper / zinc ratio and the content of the third component, in the present application, the reduction of the catalyst is performed in a temperature range of 180 ° C. to 230 ° C.
- the catalyst when the specific catalyst does not contain a third component, the catalyst is preferably reduced in a temperature range of 185 ° C. to 210 ° C., more preferably in a temperature range of 185 ° C. to 200 ° C.
- the catalyst is preferably reduced in the temperature range of 200 ° C. to 230 ° C., more preferably in the temperature range of 210 ° C. to 225 ° C.
- the reduction time is 2 hours.
- Step (i) is specifically an internal temperature (meaning a value obtained by measuring the temperature in the catalyst layer with the thermocouple located at the center of the height of the catalyst layer in the glass reaction tube). And a sample in a glass reaction tube that can measure the external temperature (meaning that a thermocouple is located on the outer wall of the glass reaction tube at the center of the catalyst layer and the temperature of the outer wall of the reaction tube is measured by the thermocouple). 0.75 g to 1.0 g of the catalyst to be obtained is charged. The glass reaction tube is appropriately selected and used so that the catalyst layer has a height of 0.4 to 2.0 cm. As described above, hydrogen is brought into contact at an internal temperature of 180 ° C. to 200 ° C. to reduce the catalyst.
- the reduction reaction is an exothermic reaction, and both the internal temperature and the external temperature rise. Of the internal temperature and the external temperature, the temperature is controlled so that the temperature showing a high value does not exceed 230 ° C. If an amount of hydrogen that can be reduced within 2 hours is diluted with nitrogen gas, the temperature can be controlled easily.
- the reduced catalyst thus obtained (copper / zinc oxide-containing catalyst) is recovered under a nitrogen atmosphere.
- the internal temperature is set to 180 ° C., hydrogen is brought into contact with the catalyst, and the catalyst is reduced. It is preferable to control the temperature so as not to exceed, more preferably to a temperature not exceeding 210 ° C, and further preferably a temperature not exceeding 200 ° C. Further, when the specific catalyst contains a third component, the internal temperature is set to 200 ° C., hydrogen is brought into contact with the catalyst, and the catalyst is reduced so that the high temperature of the internal temperature and the external temperature does not exceed 230 ° C. It is preferable to control the catalyst, and it is more preferable to reduce the catalyst by contacting hydrogen with an internal temperature of 210 ° C.
- Step (Ii) X-ray diffraction of the copper / zinc oxide-containing catalyst is measured, and the half width of a peak having a peak top at a position of 43.1 ° is measured with respect to the diffraction angle (2 ⁇ ⁇ 0.2 °).
- step (ii) includes the following steps (ii-1) and (ii-2).
- (Ii-1) Preparation of sample for X-ray diffraction measurement of copper / zinc oxide-containing catalyst
- the reduced copper / zinc oxide-containing catalyst obtained in the step (i) was sealed in a resin.
- a sample is prepared.
- the resin to be used is a nitrocellulose-based resin, and generally a clear lacquer that does not contain a pigment and is used for a transparent finish that makes use of the grain of an indoor wood part or wood product is used.
- the clear lacquer product there is Clear Lacquer (trade name) manufactured by Wadashin Paint Co., Ltd.
- 0.35 g to 0.4 g of the catalyst When encapsulating the reduced copper / zinc oxide-containing catalyst in the resin, 0.35 g to 0.4 g of the catalyst is used. Specifically, 0.35 g to 0.4 g of the catalyst is weighed in a nitrogen box, transferred to an agate mortar, and 0.2 ml to 0.4 ml of acetone is added to wet the catalyst, and then 3.5 ml of lacquer thinner is added. Add 4 ml and evaporate the solvent with stirring. Depending on the temperature, a viscous liquid suspension is obtained after 20 to 40 minutes. The suspension is applied to a glass cell for X-ray diffraction and dried overnight at room temperature to form a thin film. These series of operations are performed under a nitrogen atmosphere.
- the half-value width referred to in the present application is the width of a peak at a location corresponding to 1 ⁇ 2 of the height of the peak obtained by X-ray diffraction measurement.
- the half width of a peak having a peak top at 43.1 ° (hereinafter, simply referred to as “half width”) is measured.
- the half width can be determined using commercially available software. For example, “RINT2000 series application software crystallite size / lattice strain analysis” manufactured by Rigaku Corporation.
- the peak top is obtained at the position where the diffraction angle (2 ⁇ ⁇ 0.2 °) is 43.1 ° obtained by the method described above.
- a copper / zinc oxide-containing catalyst having a peak half-value width in the range of 0.4 to 1.1 is highly active as a catalyst for producing propylene glycol by catalytic hydrogenation of glycerin. For example, when the half width is less than 0.4, the contact efficiency between glycerin and the catalyst is poor, and when the half width is greater than 1.1, the activity is lowered due to destabilization of the catalyst. it is conceivable that.
- the glycerin conversion rate decreases. That is, when the copper / zinc oxide-containing catalyst having a half width in the range of 0.4 to 1.1 produces propylene glycol by catalytic hydrogenation of glycerin, the glycerin conversion rate is high. As a result, a high yield of propylene glycol can be obtained.
- the half width is preferably 0.5 to 1.1.
- the specific catalyst is made from at least one metal compound containing copper, at least one metal compound containing zinc, and at least one metal compound containing a metal contained in the third component as necessary. It can be produced by a known method called a coprecipitation method, an impregnation method, or a kneading method. Among these, the coprecipitation method is preferable in that the dispersibility of copper is good.
- the metal compound containing copper include copper nitrates, sulfates, carbonates, acetates, chlorides, oxides and hydroxides.
- the metal compound containing zinc examples include zinc nitrate, sulfate, carbonate, acetate, chloride, oxide and hydroxide.
- the metal compound containing the metal contained in the third component includes nitrate, sulfate, carbonate, acetate, chloride of the third metal. , Oxides and hydroxides, silica, colloidal silica, sodium silicate, and the like.
- the coprecipitation method includes, for example, an aqueous solution or dispersion containing copper nitrate, zinc nitrate, and third metal nitrate, silica, colloidal silica, and the like, and sodium carbonate.
- An aqueous solution containing a base such as the above is dropped simultaneously in water to produce a coprecipitate containing copper and zinc, and then the coprecipitate is dried and fired.
- a catalyst containing copper / zinc oxide / third component can be produced.
- the coprecipitate obtained by the coprecipitation method is dried and then calcined for use in this reaction. Drying is performed at 100 to 120 ° C. for 3 to 10 hours.
- the calcination temperature may be 300 ° C. or higher, but the calcination temperature of the catalyst used in this reaction is preferably 400 to 500 ° C.
- the impregnation method is a method of obtaining a mixture as follows, and then drying and firing the mixture.
- a method for obtaining a mixture in the impregnation method for example, a mixture containing copper and zinc, a mixture containing copper and a third metal, or a mixture containing zinc and a third metal, obtained by a coprecipitation method, water, etc. And an aqueous solution or suspension containing the metal constituting the remaining components is added thereto, and then a solvent such as water is removed to remove copper, zinc, and a third metal.
- the method of obtaining the mixture containing this can be mentioned.
- the kneading method is a method in which a mixture is obtained as follows, and then the mixture is dried and fired.
- a method for obtaining a mixture in the kneading method for example, a method of mixing each component constituting a specific catalyst in a solid state or a state suspended in a solvent, a mixture containing copper and zinc obtained by a coprecipitation method or the like , A method of mixing a mixture containing copper and a third metal, or a mixture containing zinc and a third metal in a solid state or a state in which a metal compound containing a metal constituting the remaining component is suspended in a solvent, etc. Can be mentioned.
- the same raw materials as those described in the coprecipitation method can be used. Moreover, when drying and baking the mixture obtained by the impregnation method or the kneading
- the method for producing the specific catalyst in which the half width falls within the range of 0.4 to 1.1 is not particularly limited.
- it can be controlled by the firing temperature and firing time of the catalyst obtained by the coprecipitation method or the like. it can.
- the firing temperature is lowered or the firing time is shortened, the half width is a large value.
- the firing temperature is increased or the firing time is lengthened, the half width is apt to be reduced.
- the preferred calcination temperature and calcination time vary depending on the composition of the catalyst and the preparation method. For example, in the case of a catalyst obtained by a coprecipitation method, the calcination temperature is 400 ° C.
- the half-value width is measured by the method described above, and a catalyst having a half-value width in the range of 0.4 to 1.1 is obtained.
- a specific catalyst it is used in a reaction for producing propylene glycol by catalytic hydrogenation of glycerin.
- the specific catalyst may be used as it is in a reaction for producing propylene glycol by catalytic hydrogenation to glycerin, or may be activated by reduction with hydrogen before use in the reaction and used in the reaction. In general, this reduction is carried out by contacting with hydrogen gas at 180 to 230 ° C.
- the catalyst of the present invention may be used in the form of a powder, and a known molding technique such as compression, tableting, extrusion, granulation, spraying, pulverization, spherical molding in oil (for example, Catalyst Course 5).
- the amount of the catalyst used is not particularly limited by the reaction mode, but is preferably 0.1 to 20% by weight, more preferably 1 to 10% by weight with respect to 100% by weight of glycerol.
- glycerin is catalytically hydrogenated to obtain propylene glycol, but glycerin can be used alone, in an aqueous solution or in a solution with an organic solvent.
- the amount of water or organic solvent used is not particularly limited, but is usually 10 to 90% by weight with respect to 100% by weight of glycerin. From the viewpoint of volumetric efficiency and reaction rate, it is preferably 20 to 70% by weight.
- the reactor for carrying out the production method of the present invention is not particularly limited, and is a batch reactor using an autoclave or the like, and a continuous reactor such as a fixed bed catalyst reactor, a fluidized bed catalyst reactor or a moving bed catalyst reactor. It is preferable to use an industrially more advantageous continuous reactor.
- the method for charging the catalyst into the reactor is not particularly limited as long as the reaction is not inhibited.
- the reaction (catalytic hydrogenation) is carried out under a reaction temperature in the range of 150 ° C. to 250 ° C., preferably in the range of 180 ° C. to 220 ° C., more preferably in the range of 180 ° C. to 210 ° C., either continuously or batchwise.
- a reaction temperature in the range of 150 ° C. to 250 ° C., preferably in the range of 180 ° C. to 220 ° C., more preferably in the range of 180 ° C. to 210 ° C., either continuously or batchwise.
- a reaction temperature in the range of 150 ° C. to 250 ° C., preferably in the range of 180 ° C. to 220 ° C., more preferably in the range of 180 ° C. to 210 ° C., either continuously or batchwise.
- reaction temperature in the range of 150 ° C. to 250 ° C., preferably in the range of 180 ° C. to 220 ° C., more preferably
- the reaction is generally carried out at a reaction pressure of 2 MPa to 30 MPa, preferably 2 MPa to 15 MPa, more preferably 3 MPa to 15 MPa. At a pressure in such a range, the reaction rate is sufficiently high, and propylene glycol can be obtained efficiently.
- the reaction can be carried out in the presence of an inert gas such as nitrogen in order to control the reaction pressure.
- the reaction time in the batch reaction or the contact time between the catalyst and glycerol in the continuous reaction is not particularly limited, but the reaction time in the batch reaction is usually 1 to 12 hours, preferably 2 to 10 hours. is there. Further, the contact time of the catalyst and glycerin in the continuous reaction is usually 0.01 to 10 hours, preferably 0.05 to 5 hours, and more preferably 0.05 to 2 hours. By setting the contact time to be equal to or more than the lower limit value, the reaction rate of glycerin is improved, and the reaction product separation and recovery process is more efficient. Moreover, the production efficiency of propylene glycol improves by making contact time into the said upper limit or less.
- the method for producing propylene glycol of the present invention uses a specific catalyst, the yield is high and propylene glycol can be efficiently produced in industrial production. In addition, the equipment can be minimized and the purification load after the reaction can be reduced. Moreover, if it reacts in a liquid phase (catalytic hydrogenation), propylene glycol can be produced from glycerin in high yield without vaporizing glycerin. Of course, you can go. Of course, before the step of catalytically hydrogenating glycerin, a step of removing the catalyst poison from the raw material glycerin may be appropriately provided.
- the aqueous solution B and the aqueous solution C were added dropwise to 150 ml of distilled water at a rate of 3 ml / min with vigorous stirring, and the resulting precipitate was collected by filtration and washed with 400 ml of distilled water four times.
- the obtained solid was dried at 110 ° C. for 3 hours and calcined in air at 400 ° C. for 2.5 hours. From the elemental analysis values of the obtained solid, the solid was copper oxide / zinc oxide (50/50 (wt%)) (hereinafter abbreviated as Catalyst A-1).
- ⁇ Catalyst preparation example 2> (A) Preparation of catalyst A-23 (copper oxide / zinc oxide (70/30 (wt%))) Copper nitrate trihydrate (31.9 g) and zinc nitrate hexahydrate (16.5 g) were distilled water. 300 ml of an aqueous solution was obtained (hereinafter abbreviated as “aqueous solution B ′”.) On the other hand, anhydrous sodium carbonate (25.8 g) was dissolved in distilled water to obtain 300 ml of an aqueous solution (hereinafter referred to as “aqueous solution B ′”).
- aqueous solution B ′ and the aqueous solution C ′ were respectively added dropwise at a rate of 3 ml / min with vigorous stirring to 150 ml of distilled water, and the resulting precipitate was collected by filtration. Washed with distilled water four times, the obtained solid was dried at 110 ° C. for 3 hours, and calcined in air at 300 ° C. for 3 hours to obtain copper oxide / zinc oxide (70/30 (% by weight)). Catalyst A-23 was obtained.
- Catalyst Production Example 3> (A) Preparation of Catalysts A-2 to A-22, A-24, A-25 In the preparation of Catalyst A-1, the use ratio of copper oxide and zinc oxide, the firing temperature, and the firing time are shown in Table 1 below. Catalysts A-2 to A-22, A-24, and A-25 shown in Table 1 were obtained in the same manner as in the preparation of the catalyst A-1, except that the values were changed.
- catalysts B-2 to 25 were produced by the same operation as the catalyst A-1, and X-ray diffraction measurement was performed.
- the half width of a peak having a peak top at a position where the diffraction angle 2 ⁇ is 43.1 ° is simply expressed as “half width” in Table 1. The same applies to Tables 2 to 5 described later).
- Example 1 24 g of glycerin, 6 g of distilled water and 1.2 g of catalyst A-1 were weighed and charged into a 100 ml autoclave made of SUS316 equipped with an electromagnetic induction rotary stirrer. The inside of the autoclave was replaced with nitrogen (10 MPa ⁇ 5 times), and then replaced with hydrogen (10 MPa ⁇ 5 times). Finally, hydrogen was charged at room temperature to an internal pressure of 10 MPa, and the autoclave was sealed. While stirring the reaction liquid containing the catalyst inside the autoclave at a stirring speed of 450 rpm, the autoclave was heated to 200 ° C. to carry out a catalytic hydrogenation reaction.
- Example 2 Comparative Examples 1 to 9
- Example 1 except that the catalysts A-2 to 25 were used instead of the catalyst A-1, glycerin was catalytically reduced with hydrogen (catalytic hydrogenation reaction) in the same manner as in Example 1 to obtain propylene glycol.
- Table 3 shows the conversion rate of glycerin and the yield of propylene glycol.
- Example 18 In Example 17, a catalytic hydrogenation reaction of glycerin was performed in the same manner as in Example 17 except that the catalyst A-1 was replaced with the catalyst A-2. As a result, the conversion rate of glycerin was 78.2%, the yield of propylene glycol was 72.8%, and the yield of propylene glycol per 1 hour of catalyst packed part volume was 0.37 kg / L / hr. .
- Example 17 a catalytic hydrogenation reaction of glycerin was performed in the same manner as in Example 17 except that the catalyst A-1 was replaced with the catalyst A-18. As a result, the conversion rate of glycerin was 56.4%, the yield of propylene glycol was 52.4%, and the yield of propylene glycol per hour in the catalyst packed part volume was 0.26 kg / L / hr. .
- Example 17 a catalytic hydrogenation reaction of glycerin was performed in the same manner as in Example 17 except that the catalyst A-1 was replaced with the catalyst A-17. As a result, the conversion rate of glycerin was 46.8%, the yield of propylene glycol was 43.4%, and the yield of propylene glycol per 1 hour of the catalyst packed part volume was 0.21 kg / L / hr. .
- aqueous solution E 500 ml aqueous solution
- dispersion D and the aqueous solution E were simultaneously added dropwise to 300 ml of distilled water at a rate of 3 ml / min.
- the resulting precipitate was collected by filtration and washed with distilled water.
- catalyst A-26 Reduction of catalyst A-26 0.75 g of catalyst A-26 was weighed and charged into a quartz glass tube having an inner diameter of 14 mm and an outer diameter of 20 mm. The temperature was raised while supplying nitrogen gas, so that the inner temperature was 210 ° C. and the outer temperature was 215 ° C. Nitrogen gas (15 ml / min) and hydrogen gas (4.5 ml / min) were mixed for 0.5 hour. Thereafter, the mixture was further circulated with a mixed gas of nitrogen gas (15 ml / min) and hydrogen gas (9 ml / min) for 1.5 hours to obtain a copper / zinc oxide / silica catalyst (hereinafter abbreviated as catalyst B-26). . During the reduction, the internal temperature was 210-220 ° C and the external temperature was 215-225 ° C. Catalyst B-26 was recovered in a nitrogen box.
- Catalyst Production Example 5> (A) Preparation of Catalysts A-27 to A-30 In the preparation of Catalyst A-26, the usage ratio, firing temperature, and firing time of copper oxide, zinc oxide, and colloidal silica were set to the values shown in Table 4 below. Catalysts A-27 to A-30 shown in Table 4 were obtained in the same manner as in the preparation of catalyst A-26, except that the changes were made. The obtained catalysts A-27 to A-30 were subjected to reduction treatment in the same manner as the catalyst A-26, and the half width of each catalyst was measured. The results are shown in Table 4.
- aqueous solution G aqueous solution G
- aqueous solution F and aqueous solution G were added dropwise to 150 ml of distilled water at a rate of 3 ml / min with vigorous stirring, and the resulting precipitate was collected by filtration to 300 ml. Washed 4 times with distilled water. The obtained solid was dried at 110 ° C. for 3 hours and calcined in air at 400 ° C. for 3 hours. From the elemental analysis value of the obtained solid, the solid was copper oxide / zinc oxide / ferric oxide (45/45/10 (wt%)) (hereinafter abbreviated as “catalyst A-31”). . With respect to Catalyst A-31 obtained above, Catalyst B-31 was prepared in the same manner as Catalyst A-26, and X-ray diffraction measurement was performed. As a result, the half width was 0.76.
- Catalyst Production Example 7> (A) Preparation of catalyst A-32 (copper oxide / zinc oxide / magnesium oxide (45/45/10 (% by weight))) Copper nitrate trihydrate (13.7 g), zinc nitrate hexahydrate (16 0.5 g), magnesium nitrate hexahydrate (6.4 g), and anhydrous sodium carbonate (18.8 g) as raw materials, and the same operation as in the preparation of the catalyst A-31 was performed to obtain copper oxide / zinc oxide / oxide. Magnesium (45/45/10 (% by weight)) was obtained (hereinafter abbreviated as “Catalyst A-32”). With respect to Catalyst A-32 obtained above, Catalyst B-32 was prepared in the same manner as Catalyst A-26, and X-ray diffraction measurement was performed. As a result, the half width was 1.06.
- ⁇ Catalyst Production Example 8> (A) Preparation of catalyst A-33 (copper oxide / zinc oxide / silica (45/45/10 (% by weight))) Copper nitrate trihydrate (15.2 g), zinc nitrate hexahydrate (18. 3 g) was dissolved in distilled water to obtain 300 ml of an aqueous solution (hereinafter abbreviated as “aqueous solution H”). Meanwhile, anhydrous sodium carbonate (17.1 g) was dissolved in distilled water to obtain 300 ml of an aqueous solution.
- aqueous solution J (Hereinafter, abbreviated as “aqueous solution J”.)
- aqueous solution H and aqueous solution J were added dropwise to 150 ml of distilled water at a rate of 3 ml / min with vigorous stirring, and the resulting precipitate was collected by filtration to 300 ml. Washed 4 times with distilled water. The obtained solid was dried at 110 ° C. for 3 hours.
- colloidal silica 2.8 g, trade name, Ludox AS-40 (manufactured by Aldrich)
- xanthan gum 1.0 g
- distilled water (10.5 g)
- Catalyst A-33 copper oxide / zinc oxide / silica (45/45/10 (% by weight)) (hereinafter abbreviated as “catalyst A-33”).
- Catalyst A-33 After the catalyst A-33 was pulverized, it was used for the measurement of the half width and the catalytic hydrogenation reaction of glycerin.
- Catalyst B-33 was prepared in the same manner as Catalyst A-26, and X-ray diffraction measurement was performed. As a result, the half width was 0.83.
- Example 19 a catalytic hydrogenation reaction of glycerin with hydrogen was performed in the same manner as in Example 19 except that the catalysts A-27 to A-33 described in Table 4 were used instead of the catalyst A-26. The results are shown in Table 5.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
前記開示では、銅と亜鉛の原子比(銅/亜鉛)が0.2~6の間の触媒を開示しているにすぎず、該触媒の製造条件など、詳細な開示はされていない。また、触媒活性も低いため、触媒充填層の単位体積・単位時間あたりのプロピレングリコールの収率(以下「空時収率」という場合がある。)も不十分である。
更に、硝酸銅及び硝酸亜鉛を尿素と反応させて触媒を調製後に110℃で3時間乾燥し、次に300℃で3時間焼成した触媒の存在下、グリセリンと水素とを反応させて、プロピレングリコールに変換する方法が開示されている(例えば、非特許文献1参照)。
また前記触媒は、銅、酸化銅及び酸化亜鉛以外の第3成分を更に含むこともまた好ましく、前記第3成分の含有量が25重量%以下であることがより好ましく、前記第3成分がシリカ、酸化第2鉄及び酸化マグネシウムから選ばれる少なくとも1種であることが更に好ましい。
また前記触媒は、400℃~500℃の焼成温度、2.5時間~6時間の焼成時間で焼成処理された触媒であることもまた好ましい。
本発明のプロピレングリコールの製造方法は、銅及び酸化銅の少なくとも一方からなる第1成分と酸化亜鉛からなる第2成分とを含む触媒の存在下で、グリセリンに接触水素添加してプロピレングリコールを得る工程を含み、前記触媒は、水素の存在下、180℃~230℃で還元した後のCuKαを線源とするX線回折パターンにおける、回折角(2θ±0.2°)が43.1°の位置にピークトップを有するピークの半価幅が、0.4~1.1の範囲の触媒であることを特徴とする。
前記第3成分は銅、酸化銅及び酸化亜鉛以外であれば特に制限はなく、金属酸化物であっても、また金属単体であってもよい。前記第3成分に含まれる金属としては、例えば、マグネシウム、バリウムなどのIIa族の金属、アルミニウムなどのIIIb族の金属、ジルコニウムなどのIVa族の金属、ケイ素などのIVb族の金属、クロムなどのVIa族の金属、マンガン、鉄などのVIIa族の金属、コバルト、ニッケルなどのVIII族の金属等が挙げられる。中でも、マグネシウム、ケイ素および鉄から選ばれる少なくとも1種であることが好ましい。また前記第3成分は、グリセリン転化率の観点から、酸化マグネシウム、酸化第2鉄及びシリカから選ばれる少なくとも1種であることが好ましい。
前記第3成分は、1種単独で、あるいは2種以上を混合して特定触媒に含まれていても良い。
(i)銅及び酸化銅の少なくとも一方と酸化亜鉛とを含む触媒を水素の存在下、180℃~230℃で酸化銅を銅に還元する工程。
(ii)前記酸化銅を銅に還元した触媒のX線回折を測定して、X線回折パターンにおける、回折角(2θ±0.2°)が43.1°の位置にピークトップを有するピークの半価幅を測定する工程。
以上の工程により、得られたピークの半価幅が0.4~1.1の範囲の値を示す特定触媒を本願では使用する。
以下に、前記(i)(ii)の工程を詳述する。
工程(i)は、銅及び酸化銅の少なくとも一方と酸化亜鉛とを含む触媒を水素で接触還元して銅/酸化亜鉛触媒を得る工程である。該触媒の還元が開始される温度は銅/亜鉛比、及び第3成分の含有量により、異なるが、本願では、180℃~230℃の温度範囲で触媒の還元を行う。本発明において、前記特定触媒が第3成分を含まない場合、185℃~210℃の温度範囲で触媒の還元を行うことが好ましく、185℃~200℃の温度範囲で行なうことがより好ましい。また前記特定触媒が第3成分を含む場合、200℃~230℃の温度範囲で触媒の還元を行なうことが好ましく、210℃~225℃の温度範囲で行なうことがより好ましい。
また還元時間は、2時間で行う。
工程(i)は、具体的には、内温(ガラス反応管内の触媒層の高さの中心に熱電対が位置し、該熱電対で触媒層内の温度を測定した値を意味する。)、及び外温(触媒層の高さの中心のガラス反応管外壁に熱電対が位置し、該熱電対で反応管外壁の温度を測定した値を意味する。)を測定できるガラス反応管に試料となる触媒を0.75g~1.0g装入する。ガラス反応管は触媒層の高さが0.4~2.0cmになるように、適宜、選定、使用する。以上のようにして、内温が180℃~200℃で水素を接触させて触媒を還元する。還元反応は発熱反応であり、内温、外温共に上昇していく。内温、外温のうち、高い値を示す温度が230℃を超えないように温度を制御する。還元が2時間以内で終了する量の水素を窒素ガスで希釈して使用すれば、温度制御が行い易い。このようにして得られた還元された触媒(銅/酸化亜鉛含有触媒)は窒素雰囲気下で回収する。
また前記特定触媒が第3成分を含む場合、内温を200℃として水素を接触させて触媒を還元し、内温、外温のうち、高い値を示す温度が230℃を超えないように温度を制御することが好ましく、内温を210℃として水素を接触させて触媒を還元することがより好ましい。
前記工程(i)で得られた還元された銅/酸化亜鉛含有触媒を樹脂に封入して、X線回折測定用のサンプルを作製する。使用する樹脂はニトロセルロース系樹脂で、一般には、屋内の木部、木製品の木目を生かした透明仕上げに使われている、顔料を含まないクリヤーラッカーを使用する。クリヤーラッカーの製品の一例として、和信ペイント(株)製造のクリヤーラッカー(商品名)が挙げられる。
次に、得られた銅/酸化亜鉛含有触媒のX線回折を測定する。この場合、窒素雰囲気下で作製したX線測定用サンプルを空気雰囲気下で、Cu、Kα1を線源とするX線回折を測定するが、測定はX線測定用サンプルを空気中に出してから8時間以内に行う。
銅/酸化亜鉛含有触媒のX線回折の測定の結果、回折角(2θ±0.2°)に対して、31.5°、34.0°、36.0°、43.1°、56.4°、62.7°、67.7°にピークトップを有するピークが得られる。本発明においては43.1°にピークトップを有するピークを対象とする。
特定触媒は、銅を含む金属化合物の少なくとも1種と、亜鉛を含む金属化合物の少なくとも1種と、必要に応じて第3成分に含まれる金属を含む金属化合物の少なくとも1種とを原料として、共沈法、含浸法、混練法と呼ばれる公知の方法で製造することができる。この中でも、銅の分散性がよい点で、共沈法が好ましい。
前記銅を含む金属化合物としては、銅の、硝酸塩、硫酸塩、炭酸塩、酢酸塩、塩化物、酸化物及び水酸化物等を挙げることができる。また前記亜鉛を含む金属化合物としては、亜鉛の、硝酸塩、硫酸塩、炭酸塩、酢酸塩、塩化物、酸化物及び水酸化物等を挙げることができる。さらに前記第3成分に含まれる金属(以下、「第3の金属」ということがある。)を含む金属化合物としては、第3の金属の、硝酸塩、硫酸塩、炭酸塩、酢酸塩、塩化物、酸化物及び水酸化物等、ならびに、シリカ、コロイダルシリカ及び珪酸ナトリウム等を挙げることができる。
共沈法で得られた共沈物は乾燥した後、焼成して本反応に使用する。乾燥は100~120℃で3~10時間行う。焼成の温度は300℃以上であればよいが、本反応に使用する触媒の焼成温度は400~500℃であることが好ましい。
尚、含浸法や混練法においても、前記共沈法で記載した原料と同様の原料が使用できる。また、含浸法や混練法で得られた混合物を乾燥し、焼成する場合、共沈法で行う方法と同様に行う。
得られた銅及び酸化銅の少なくとも一方と酸化亜鉛とを含む触媒のうち、前記で述べた方法で半価幅を測定し、該半価幅が0.4~1.1の範囲の触媒を特定触媒として、グリセリンを接触水素化してプロピレングリコールを製造する反応に使用する。
特定触媒はグリセリンに接触水素添加してプロピレングリコールを製造する反応にそのまま使用してもよく、また、該反応で使用する前に水素による還元で活性化して、反応に使用してもよい。一般に、この還元は180~230℃で水素ガスと接触させることにより実施する。本願発明の触媒は、粉末の状態で使用してもよく、また、公知の成型技術、例えば、圧縮、打錠、押出、造粒、噴霧、粉砕、油中球状成型等(例えば、触媒講座5、触媒設計、第4章、116ページ、触媒学会編、講談社、1985年刊)により成型した成型品でもよい。
触媒の使用量は、反応形式により特に制限されるものではないが、グリセリン100重量%に対して、0.1~20重量%が好ましく、より好ましくは1~10重量%である。
また、本発明において触媒を反応器に装入する方法については反応を阻害しない限り特に制限はない。
反応に際して、反応圧力を制御する等のために反応系内に窒素等の不活性ガスを共存させて実施することができる。
~酸化銅/酸化亜鉛(50/50(重量%))触媒の作製と半価幅の測定~
(a)触媒A-1(酸化銅/酸化亜鉛(50/50(重量%)))の作製
硝酸銅3水和物(22.8g)、硝酸亜鉛6水和物(27.5g)を蒸留水に溶解して、水溶液300mlを得た(以下、「水溶液B」と略す。)。一方、無水炭酸ナトリウム(25.7g)を蒸留水に溶解して、水溶液450mlを得た(以下、「水溶液C」と略す。)。次に、蒸留水150mlに激しい攪拌下に、水溶液B及び水溶液Cをそれぞれ3ml/分の速度で滴下し、得られた沈殿物をろ取し、400mlの蒸留水で水洗を4回行った。得られた固形物を110℃で3時間乾燥し、空気中400℃で2.5時間焼成した。得られた固体の元素分析値より、該固体は酸化銅/酸化亜鉛(50/50(重量%))であった(以下、触媒A-1と略す。)。
前記触媒A-1を0.75g秤り取り、内径14mm、外径20mmの石英ガラス管に装入した。窒素ガスを通気しながら、昇温して、内温185℃、外温188℃とした。窒素ガス(15ml/分)及び水素ガス(4.5ml/分)の混合ガスで0.5時間流通させた。その後、窒素ガス(15ml/分)及び水素ガス(9ml/分)の混合ガスで更に1.5時間流通させて、銅/酸化亜鉛触媒(以降、触媒B-1と略す。)を得た。還元中、内温は185~195℃、外温は188~195℃であった。触媒B-1は窒素ボックス中で回収した。
前記触媒B-1を窒素ボックス中で、めのう乳鉢に0.35g秤り取った。アセトン0.5ml加えて触媒を湿らせた後、クリヤーラッカー(和信ペイント(株)商品名)を3.0ml加えた。30分攪拌すると粘度のある懸濁液が得られた。該懸濁液をX線回折測定用のガラスセルに塗り、一晩、窒素ボックス中で風乾した。
得られた触媒B-1のX線回折測定用サンプルを窒素雰囲気下から取り出し、空気中でX線回折を測定した。その後、各ピークの半価幅を測定した。回折角2θ=43.1°にピークトップを有するピークの半価幅は1.06であった。
前記触媒A-1を使用した4つのサンプルについて、前記(b)~(d)の操作をそれぞれ同様にして行った。その後、4つのサンプルのX線回折を測定し、回折角2θ=43.1°にピークトップを有するピークの半価幅を測定した。それぞれのサンプルの半価幅は、1.03、1.05、1.08、1.06であった。
以上の結果から、酸化銅/酸化亜鉛触媒を還元して、銅/酸化亜鉛触媒を得、該触媒のX線回折測定を行うことで得られる回折角2θ=43.1°にピークトップを有するピークの半価幅は、ほぼ同じ値を示すことがわかった。
(a)触媒A-23(酸化銅/酸化亜鉛(70/30(重量%))の作製
硝酸銅3水和物(31.9g)、硝酸亜鉛6水和物(16.5g)を蒸留水に溶解して、水溶液300mlを得た(以下、「水溶液B’」と略す。)。一方、無水炭酸ナトリウム(25.8g)を蒸留水に溶解して、水溶液300mlを得た。(以下、「水溶液C’と略す。)次に、蒸留水150mlに激しい攪拌下に、水溶液B’及び水溶液C’をそれぞれ3ml/分の速度で滴下し、得られた沈殿物をろ取し、300mlの蒸留水で水洗を4回行った。得られた固形物を110℃で3時間乾燥し、空気中300℃で3時間焼成して、酸化銅/酸化亜鉛(70/30(重量%))の触媒A-23を得た。
(a)触媒A-2~A-22、A-24、A-25の作製
触媒A-1の作製において、酸化銅、酸化亜鉛の使用比率、焼成温度、焼成時間を下記表1に記載の値に変更した以外は触媒A-1の作製と同様にして、表1に記載の触媒A-2~A-22、A-24、A-25を得た。
前記触媒B-1の作製において、触媒A-1の還元条件を下記表2に示した温度条件としたこと以外は、触媒B-1の作製と同様にして触媒A-1を還元して、還元された触媒を作製し、その半価幅を測定した。結果を表2に記載した。
グリセリン 24g、蒸留水 6g、触媒A-1 1.2gをそれぞれ量り取り、電磁誘導回転撹拌装置の付いたSUS316製の100mlオートクレーブに装入した。
オートクレーブ内部を窒素で置換した(10MPa×5回)後、水素で置換(10MPa×5回)を行い、最後に室温で内圧10MPaになるまで水素を充填し、オートクレーブを密閉した。オートクレーブ内部の触媒を含む反応液を撹拌速度450rpmで撹拌しながら、オートクレーブを200℃まで加熱して接触水素添加反応を実施した。12時間後、加熱を停止し、自然放冷でオートクレーブを冷却し、オートクレーブ内の温度が30℃以下に下がってから内部を窒素置換して開封した。内容物をろ過して触媒を除去し、得られた反応液をガスクロマトグラフィーで分析したところ、グリセリンの転化率は86.4%、プロピレングリコールの収率は80.4%であった。
実施例1において、触媒A-1の代わりに触媒A-2~25を用いた以外は、実施例1と同様の方法により、グリセリンを水素で接触還元(接触水素添加反応)して、プロピレングリコールを得た。グリセリンの転化率、プロピレングリコールの収率を表3に示す。
内径9mmの反応管を有するハステロイC276製固定床連続反応装置に表1に記載した触媒A-1(5.0g(5.9ml))を充填し、170℃~180℃で水素を20ml/分の速度で2時間流通させた。その後、触媒充填部を195℃に加熱した。この触媒充填部に80重量%グリセリン水溶液を3g/hr、および水素を50ml/hr供給し(水素/グリセリン供給モル比=5.2/1)、反応を開始した。反応中、反応管内の圧力を3MPaに保った。5時間後、反応管から流出する液を1時間かけて捕集し、その捕集液の分析を行ったところ、グリセリンの転化率は76.7%、プロピレングリコールの収率は71.3%であり、1時間あたり触媒充填部体積あたりのプロピレングリコールの収量は0.36kg/L/hrであった。
実施例17において、触媒A-1を触媒A-2に代えた以外、実施例17と同様にグリセリンの接触水素化反応を行った。その結果、グリセリンの転化率は78.2%、プロピレングリコールの収率は72.8%であり、1時間あたり触媒充填部体積あたりのプロピレングリコールの収量は0.37kg/L/hrであった。
実施例17において、触媒A-1を触媒A-18に代えた以外、実施例17と同様にグリセリンの接触水素化反応を行った。その結果、グリセリンの転化率は56.4%、プロピレングリコールの収率は52.4%であり、1時間あたり触媒充填部体積あたりのプロピレングリコールの収量は0.26kg/L/hrであった。
実施例17において、触媒A-1を触媒A-17に代えた以外、実施例17と同様にグリセリンの接触水素化反応を行った。その結果、グリセリンの転化率は46.8%、プロピレングリコールの収率は43.4%であり、1時間あたり触媒充填部体積あたりのプロピレングリコールの収量は0.21kg/L/hrであった。
(a)触媒A-26(酸化銅/酸化亜鉛/シリカ(50/40/10(重量%)))の作製
硝酸銅3水和物(38.0g)と硝酸亜鉛6水和物(36.6g)、コロイダルシリカ(日産化学工業(株)製、スノーテックスO、シリカ濃度20重量%)12.5gを蒸留水に加えて攪拌して、500mlの分散液(以下、「分散液D」と略す。)を調製した。一方、無水炭酸ナトリウム(32.7g)の水溶液を蒸留水に溶解して、500mlの水溶液(以下、「水溶液E」と略す。)を調製した。次に、蒸留水300mlに激しい攪拌下に、分散液Dと水溶液Eをそれぞれ3ml/分の速度で、同時に滴下して反応を行った。得られた沈殿物をろ取し、蒸留水で水洗を行った。得られた固形物を110℃で3時間乾燥し、空気中400℃で3時間焼成した。得られた固体の元素分析値より、該固体は酸化銅/酸化亜鉛/シリカ=50/40/10(重量%)であった。(以下、「触媒A-26」と略す。)
前記触媒A-26を0.75g秤り取り、内径14mm、外径20mmの石英ガラス管に装入した。窒素ガスを通気しながら、昇温して、内温210℃、外温215℃とした。窒素ガス(15ml/分)及び水素ガス(4.5ml/分)の混合ガスで0.5時間流通させた。その後、窒素ガス(15ml/分)及び水素ガス(9ml/分)の混合ガスで更に1.5時間流通させて、銅/酸化亜鉛/シリカ触媒(以降、触媒B-26と略す)を得た。還元中、内温は210~220℃、外温は215~225℃であった。触媒B-26は窒素ボックス中で回収した。
前記触媒B-26を窒素ボックス中で、めのう乳鉢に0.35g秤り取った。アセトン0.5ml加えて触媒を湿らせた後、クリヤーラッカー(和信ペイント(株)商品名)を3.0ml加えた。30分攪拌すると粘度のある懸濁液が得られた。該懸濁液をX線回折測定用のガラスセルに塗り、一晩、窒素ボックス中で風乾した。
得られた触媒B-26のX線回折測定用サンプルを窒素雰囲気下から取り出し、空気中でX線回折を測定した。その後、各ピークの半価幅を測定した。回折角2θ=43.1°にピークトップを有するピークの半価幅は0.95であった。
(a)触媒A-27~A-30の作製
上記触媒A-26の作製において、酸化銅、酸化亜鉛、及び、コロイダルシリカの使用比率、焼成温度、焼成時間を下記表4に記載の値に変更した以外は、触媒A-26の作製と同様にして、表4に記載の触媒A-27~A-30を得た。
得られた触媒A-27~A-30を、上記触媒A-26と同様に還元処理を行い、各々の触媒の半価幅を測定した。その結果を表4に記載した。
(a)触媒A-31(酸化銅/酸化亜鉛/酸化第2鉄(45/45/10(重量%)))の作製
硝酸銅3水和物(13.7g)、硝酸亜鉛6水和物(16.5g)、硝酸鉄9水和物(5.1g)を蒸留水に溶解して、水溶液300mlを得た(以下、「水溶液F」と略す。)。一方、無水炭酸ナトリウム(25.8g)を蒸留水に溶解して、水溶液300mlを得た。(以下、「水溶液G」と略す。)次に、蒸留水150mlに激しい攪拌下に、水溶液F及び水溶液Gをそれぞれ3ml/分の速度で滴下し、得られた沈殿物をろ取し、300mlの蒸留水で水洗を4回行った。得られた固形物を110℃で3時間乾燥し、空気中400℃で3時間焼成した。得られた固体の元素分析値より、該固体は酸化銅/酸化亜鉛/酸化第2鉄(45/45/10(重量%))であった(以下、「触媒A-31」と略す。)。
上記で得られた触媒A-31について、触媒A-26と同様の操作により、触媒B-31を作製し、X線回折測定を行なったところ、半価幅は0.76であった。
(a)触媒A-32(酸化銅/酸化亜鉛/酸化マグネシウム(45/45/10(重量%)))の作製
硝酸銅3水和物(13.7g)、硝酸亜鉛6水和物(16.5g)、硝酸マグネシウム6水和物(6.4g)、無水炭酸ナトリウム(18.8g)を原料として、前記触媒A-31の作製と同様の操作を行って、酸化銅/酸化亜鉛/酸化マグネシウム(45/45/10(重量%))を得た(以下、「触媒A-32」と略す。)。
上記で得られた触媒A-32について、触媒A-26と同様の操作により、触媒B-32を作製し、X線回折測定を行なったところ、半価幅は1.06であった。
(a)触媒A-33(酸化銅/酸化亜鉛/シリカ(45/45/10(重量%)))の作製
硝酸銅3水和物(15.2g)、硝酸亜鉛6水和物(18.3g)を蒸留水に溶解して、水溶液300mlを得た(以下、「水溶液H」と略す。)。一方、無水炭酸ナトリウム(17.1g)を蒸留水に溶解して、水溶液300mlを得た。(以下、「水溶液J」と略す。)次に、蒸留水150mlに激しい攪拌下に、水溶液H及び水溶液Jをそれぞれ3ml/分の速度で滴下し、得られた沈殿物をろ取し、300mlの蒸留水で水洗を4回行った。得られた固形物を110℃で3時間乾燥した。
この固形物にコロイダルシリカ(2.8g、商品名、Ludox AS-40 (アルドリッチ製))、キサンタンガム(1.0g)、蒸留水(10.5g)を加え、よく混合した。混合物を直径3mmのノズルを通して押し出し、110℃で3時間乾燥し、空気中で、400℃で3時間焼成した。得られた固体の元素分析値より、酸化銅/酸化亜鉛/シリカ(45/45/10(重量%))であった(以下、「触媒A-33」と略す。)。
触媒A-33は粉砕した後、半価幅の測定、及び、グリセリンの接触水素化反応に使用した。
上記で得られた触媒A-33について、触媒A-26と同様の操作により、触媒B-33を作製し、X線回折測定を行なったところ、半価幅は0.83であった。
内径9mmの反応管を有するハステロイC276製固定床連続反応装置に表4に記載した触媒A-26(5.0g(5.9ml))を充填し、内温が210℃~225℃の範囲で水素を20ml/分の速度で2時間流通させた。その後、触媒充填部を195℃に加熱した。この触媒充填部に80重量%グリセリン水溶液を3g/hr、および水素を50ml/hr供給し(水素/グリセリン供給モル比=5.2/1)、反応を開始した。反応中、反応管内の圧力を3MPaに保った。5時間後、反応管から流出する液を1時間かけて捕集し、その捕集液の分析を行ったところ、グリセリンの転化率は97.4%、プロピレングリコールの収率は93.2%であり、1時間あたり触媒充填部体積あたりのプロピレングリコールの収量は0.47kg/L/hrであった。
実施例19において、触媒A-26の代わりに表4に記載した触媒A-27~A-33を用いた以外は実施例19と同様にして、グリセリンを水素で接触水素化反応を行った。結果を表5に記載した。
内径9mmの反応管を有するハステロイC276製固定床連続反応装置に表4に記載した触媒A-26(5.0g(5.9ml))を充填し、内温が210℃~225℃の範囲で水素を20ml/分の速度で2時間流通させた。その後、触媒充填部を220℃に加熱した。この触媒充填部に80重量%グリセリン水溶液を3g/hr、および水素を50ml/hr供給し(水素/グリセリン供給モル比=5.2/1)、反応を開始した。反応中、反応管内の圧力を3MPaに保った。5時間後、反応管から流出する液を1時間かけて捕集し、その捕集液の分析を行ったところ、グリセリンの転化率は99.8%、プロピレングリコールの収率は90.6%であり、1時間あたり触媒充填部体積あたりのプロピレングリコールの収量は0.45kg/L/hrであった。
[実施例28]
Claims (9)
- 銅及び酸化銅の少なくとも一方からなる第1成分と酸化亜鉛からなる第2成分とを含む触媒の存在下で、グリセリンに接触水素添加してプロピレングリコールを得る工程を含み、
前記触媒は、水素の存在下、180℃~230℃で還元した後のCuKαを線源とするX線回折パターンにおける、回折角(2θ±0.2°)が43.1°の位置にピークトップを有するピークの半価幅が、0.4~1.1の範囲の触媒であるプロピレングリコールの製造方法。 - 前記触媒は、前記第1成分と第2成分との重量比((銅及び酸化銅の合計重量)/(酸化亜鉛の重量))が、30/70~70/30の範囲である請求項1に記載のプロピレングリコールの製造方法。
- 前記触媒は、前記第1成分と第2成分との重量比((銅及び酸化銅の合計重量)/(酸化亜鉛の重量))が、40/60~60/40の範囲である請求項1または請求項2に記載のプロピレングリコールの製造方法。
- 前記触媒は、銅、酸化銅及び酸化亜鉛以外の第3成分を更に含む請求項1~請求項3のいずれか1項に記載のプロピレングリコールの製造方法。
- 前記触媒は、前記第3成分の含有量が25重量%以下である請求項4に記載のプロピレングリコールの製造方法。
- 前記第3成分は、シリカ、酸化第2鉄及び酸化マグネシウムから選ばれる少なくとも1種である請求項4または請求項5に記載のプロピレングリコールの製造方法。
- 前記触媒は、400℃~500℃の焼成温度、2.5時間~6時間の焼成時間で焼成処理された請求項1~請求項6のいずれか1項に記載のプロピレングリコールの製造方法。
- 前記グリセリンへの接触水素添加は、反応圧力が2~30MPaの範囲、反応温度が150~250℃の範囲で行われる請求項1~請求項7のいずれか1項に記載のプロピレングリコールの製造方法。
- 前記グリセリンへの接触水素添加は、反応圧力が2~30MPaの範囲、反応温度が180~220℃の範囲で行われる請求項8に記載のプロピレングリコールの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/989,892 US8378152B2 (en) | 2008-04-30 | 2009-04-21 | Method of producing propylene glycol |
JP2010510083A JP5328777B2 (ja) | 2008-04-30 | 2009-04-21 | プロピレングリコールの製造方法 |
EP09738724A EP2281795A4 (en) | 2008-04-30 | 2009-04-21 | PROCESS FOR PREPARING PROPYLENE GLYCOL |
CN200980115401.9A CN102015597B (zh) | 2008-04-30 | 2009-04-21 | 丙二醇的制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008119026 | 2008-04-30 | ||
JP2008-119026 | 2008-04-30 | ||
JP2008-155666 | 2008-06-13 | ||
JP2008155666 | 2008-06-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009133787A1 true WO2009133787A1 (ja) | 2009-11-05 |
Family
ID=41255004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/057888 WO2009133787A1 (ja) | 2008-04-30 | 2009-04-21 | プロピレングリコールの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8378152B2 (ja) |
EP (1) | EP2281795A4 (ja) |
JP (1) | JP5328777B2 (ja) |
CN (1) | CN102015597B (ja) |
MY (1) | MY150295A (ja) |
WO (1) | WO2009133787A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8846985B2 (en) | 2012-04-27 | 2014-09-30 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
US8859826B2 (en) | 2012-04-27 | 2014-10-14 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
US8865940B2 (en) | 2011-12-30 | 2014-10-21 | E I Du Pont De Nemours And Company | Process for preparing 1,6-hexanediol |
US8884036B2 (en) | 2011-12-30 | 2014-11-11 | E I Du Pont De Nemours And Company | Production of hydroxymethylfurfural from levoglucosenone |
US8884035B2 (en) | 2011-12-30 | 2014-11-11 | E I Du Pont De Nemours And Company | Production of tetrahydrofuran-2, 5-dimethanol from isosorbide |
US8889912B2 (en) | 2011-12-30 | 2014-11-18 | E I Du Pont De Nemours And Company | Process for preparing 1,6-hexanediol |
US8889922B2 (en) | 2011-12-30 | 2014-11-18 | E I Du Pont De Nemours And Company | Process for preparing 1, 6-hexanediol |
US8981130B2 (en) | 2011-12-30 | 2015-03-17 | E I Du Pont De Nemours And Company | Process for the production of hexanediols |
US9018423B2 (en) | 2012-04-27 | 2015-04-28 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102319568A (zh) * | 2011-07-13 | 2012-01-18 | 郝云青 | 一种改进的缩合还原烷基化催化剂 |
CN103073399B (zh) * | 2013-01-28 | 2015-04-22 | 爱斯特(成都)医药技术有限公司 | 3,5-二甲氧基苯甲醇的制备方法 |
WO2025132402A1 (en) | 2023-12-19 | 2025-06-26 | Clariant International Ltd | Process for the preparation of polyesters using terephthalic acid |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5214219A (en) | 1991-07-10 | 1993-05-25 | Novamont S.P.A. | Method of hydrogenating glycerol |
DE4302464A1 (de) | 1993-01-29 | 1994-08-04 | Henkel Kgaa | Herstellung von 1,2-Propandiol aus Glycerin |
US20070149830A1 (en) * | 2005-07-15 | 2007-06-28 | Davy Process Technology Limited | Process |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4283581A (en) * | 1978-02-24 | 1981-08-11 | Chevron Research Company | Hydrogenation process |
US4199479A (en) * | 1978-02-24 | 1980-04-22 | Chevron Research Company | Hydrogenation catalyst |
JPS57122941A (en) | 1981-01-26 | 1982-07-31 | Ube Ind Ltd | Preparation of hydrogenation catalyst for preparing ethylene glycol |
DE102006050751A1 (de) * | 2006-10-27 | 2008-05-08 | Clariant International Limited | Verfahren zur Herstellung von 1,2-Propandiol durch Hydrogenolyse von Glycerin |
CN101835730B (zh) * | 2007-10-31 | 2013-06-26 | 三井化学株式会社 | 丙二醇的制造方法 |
-
2009
- 2009-04-21 EP EP09738724A patent/EP2281795A4/en not_active Withdrawn
- 2009-04-21 MY MYPI2010005029A patent/MY150295A/en unknown
- 2009-04-21 JP JP2010510083A patent/JP5328777B2/ja not_active Expired - Fee Related
- 2009-04-21 CN CN200980115401.9A patent/CN102015597B/zh not_active Expired - Fee Related
- 2009-04-21 US US12/989,892 patent/US8378152B2/en not_active Expired - Fee Related
- 2009-04-21 WO PCT/JP2009/057888 patent/WO2009133787A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5214219A (en) | 1991-07-10 | 1993-05-25 | Novamont S.P.A. | Method of hydrogenating glycerol |
DE4302464A1 (de) | 1993-01-29 | 1994-08-04 | Henkel Kgaa | Herstellung von 1,2-Propandiol aus Glycerin |
US20070149830A1 (en) * | 2005-07-15 | 2007-06-28 | Davy Process Technology Limited | Process |
Non-Patent Citations (3)
Title |
---|
CATALYSIS LETTERS, vol. 117, 2007, pages 62 |
See also references of EP2281795A4 |
SHAUAI WANG ET AL.: "Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts", CATALYSIS LETTERS, vol. 117, 2007, pages 62 - 67, XP019524743 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8889912B2 (en) | 2011-12-30 | 2014-11-18 | E I Du Pont De Nemours And Company | Process for preparing 1,6-hexanediol |
US8865940B2 (en) | 2011-12-30 | 2014-10-21 | E I Du Pont De Nemours And Company | Process for preparing 1,6-hexanediol |
US8884036B2 (en) | 2011-12-30 | 2014-11-11 | E I Du Pont De Nemours And Company | Production of hydroxymethylfurfural from levoglucosenone |
US8884035B2 (en) | 2011-12-30 | 2014-11-11 | E I Du Pont De Nemours And Company | Production of tetrahydrofuran-2, 5-dimethanol from isosorbide |
US8889922B2 (en) | 2011-12-30 | 2014-11-18 | E I Du Pont De Nemours And Company | Process for preparing 1, 6-hexanediol |
US8962894B2 (en) | 2011-12-30 | 2015-02-24 | E I Du Pont De Nemours And Company | Process for preparing 1, 6-hexanediol |
US8981130B2 (en) | 2011-12-30 | 2015-03-17 | E I Du Pont De Nemours And Company | Process for the production of hexanediols |
US8846984B2 (en) | 2012-04-27 | 2014-09-30 | E I Du Pont De Nemours And Company | Production of α,ω-diols |
US8859826B2 (en) | 2012-04-27 | 2014-10-14 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
US8846985B2 (en) | 2012-04-27 | 2014-09-30 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
US9018423B2 (en) | 2012-04-27 | 2015-04-28 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
US9181157B2 (en) | 2012-04-27 | 2015-11-10 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
US9670118B2 (en) | 2012-04-27 | 2017-06-06 | E I Du Pont De Nemours And Company | Production of alpha, omega-diols |
Also Published As
Publication number | Publication date |
---|---|
US20110040131A1 (en) | 2011-02-17 |
JP5328777B2 (ja) | 2013-10-30 |
US8378152B2 (en) | 2013-02-19 |
JPWO2009133787A1 (ja) | 2011-09-01 |
MY150295A (en) | 2013-12-31 |
EP2281795A4 (en) | 2011-11-16 |
CN102015597A (zh) | 2011-04-13 |
EP2281795A1 (en) | 2011-02-09 |
CN102015597B (zh) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5328777B2 (ja) | プロピレングリコールの製造方法 | |
CA3052345C (en) | Fischer-tropsch synthesis catalyst containing nitride carrier, and preparation method therefor and use thereof | |
Brandner et al. | Production of biomass-derived chemicals and energy: chemocatalytic conversions of glycerol | |
Palacio et al. | Selective glycerol conversion to lactic acid on Co3O4/CeO2 catalysts | |
CN106552623B (zh) | 一种负载型双金属组分催化剂及其制备方法和甘油氢解反应方法 | |
US8053608B2 (en) | Process for producing propylene glycol | |
JP5095203B2 (ja) | グリセリンからのアリルアルコールおよびアクリル酸の製造方法 | |
US6781018B2 (en) | Process and catalyst for production of formaldehyde from dimethyl ether | |
CN105837420B (zh) | 从甘油制备丙烯醛的方法 | |
WO2018157815A1 (zh) | 选择性加氢催化剂、其制备方法及生成异丁醛的催化评价方法 | |
TW201602068A (zh) | 生產烯醇之方法及其用於生產1,3-丁二烯之用途 | |
Palacio et al. | CuO/CeO 2 catalysts for glycerol selective conversion to lactic acid | |
WO2012005348A1 (ja) | 新規なグリセリン脱水用触媒とその製造方法 | |
JP2012529986A (ja) | Coおよびh2から炭化水素を合成するための触媒およびその製造方法 | |
CN108654618B (zh) | 金属氧化物催化剂、其制备方法及使用其的醇的制备方法 | |
CN108654635B (zh) | 一种负载型三金属催化剂及其制备方法和催化甘油氢解反应方法 | |
JP7227564B2 (ja) | アルコール合成用触媒及びそれを用いたアルコールの製造方法 | |
JP5350059B2 (ja) | プロピレングリコールの製造方法 | |
El-Sharkawy et al. | Preparation of butyl acetate using solid acid catalysts: textural and structural characterization | |
JP5486491B2 (ja) | プロピレングリコールの製造方法 | |
Guo et al. | Kinetics and optimization studies of modified VPO/γ-Al 2 O 3 catalyst prepared in situ for cross-aldol condensation | |
JPH08176034A (ja) | メタノールの合成方法 | |
CN115121270A (zh) | 一种选择性加氢合成2-乙基己醛的催化剂及其应用方法 | |
CN111278556B (zh) | 丁烯的氧化脱氢催化剂及其制备方法 | |
CN108654611B (zh) | 一种负载型双金属催化剂及其制备方法和甘油氢解反应方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980115401.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09738724 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010510083 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12989892 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7805/DELNP/2010 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2009738724 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009738724 Country of ref document: EP |