CN1065365A - 恒压电路 - Google Patents
恒压电路 Download PDFInfo
- Publication number
- CN1065365A CN1065365A CN91102782A CN91102782A CN1065365A CN 1065365 A CN1065365 A CN 1065365A CN 91102782 A CN91102782 A CN 91102782A CN 91102782 A CN91102782 A CN 91102782A CN 1065365 A CN1065365 A CN 1065365A
- Authority
- CN
- China
- Prior art keywords
- voltage
- circuit
- operational amplifier
- constant voltage
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 18
- 230000004888 barrier function Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 101100219315 Arabidopsis thaliana CYP83A1 gene Proteins 0.000 description 1
- 101000806846 Homo sapiens DNA-(apurinic or apyrimidinic site) endonuclease Proteins 0.000 description 1
- 101000835083 Homo sapiens Tissue factor pathway inhibitor 2 Proteins 0.000 description 1
- 101100269674 Mus musculus Alyref2 gene Proteins 0.000 description 1
- 101100140580 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) REF2 gene Proteins 0.000 description 1
- 102100026134 Tissue factor pathway inhibitor 2 Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0214—Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/461—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/24—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/30—Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S323/00—Electricity: power supply or regulation systems
- Y10S323/907—Temperature compensation of semiconductor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Power Engineering (AREA)
- Nonlinear Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Control Of Electrical Variables (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
- Control Of Voltage And Current In General (AREA)
- Semiconductor Integrated Circuits (AREA)
- Amplifiers (AREA)
Abstract
本发明涉及一种基本上在模拟电路中使用的,作
为数/模变换器和模/数变换器必须电路的恒压电
路,把已充电的电容器连接到运算放大器输入的一端
子上,上述运算放大器输入的另一端与输出端子相互
连接,使运算放大器的输出成为对电容器充电的电
压,是一种能够防止在集成化时因工程常数和温度变
化电路恶化的恒压电路。
Description
本发明涉及一种主要在模拟电路中使用的、作为数/模变换器和模/数变换器必须电路的恒压电路,特别是涉及一种用来防止在集成化时随工程常数和温度的变化使电路恶化的、利用电容和运算放大器的恒压电路。
在附图1所示的以往使用的带隙基准(bandgaq reference)电路中,晶体管(Q1,Q2)是集电极连结到电源电压复端的p-n-p型晶体管,图2(A)示出其侧面图。
此处,全部阻抗都是在n-构中的P+扩散阻抗,假定CMOS运算放大器随着偏置电压(Vos)的变化而有无限大的增益。
CMOS运算放大器被限定的增益效果引起的误差,在这种应用中,因通常是有少量的足够的增益,所以上述这种假定可以说是适当的。
在此电路中,晶体管(Q1)由于因子(A),而比晶体管(Q2)有更大的区域,此二晶体管在顺方向活性区域内。
这时,基准输出电压(VREF)可由下面的式(1)给出。
此处,VBE是晶体管(Q1)的发射极和基极之间的电压,ΔVBE是晶体管(Q1,Q2)发射极-基极的电压差,VOS是运算放大器的输入偏置电压。
式(1)的值由于像图2(B)这样的非理想的双极晶体管而受到影响。这时,晶体管发射极-基极间的电压可由下面的式(2)给出。
式中VT是热电压 (KT)/(q) ,I1是晶体管(Q1)的发射极电流,Is是晶体管(Q1)的饱和电流,β1是晶体管(Q1)的电流增益,γb是晶体管(Q2)的基极有效直流阻抗。
在式(2)中,第2项是在集电集电流完成发射极-基极间电压 的阱限定功能期间,此电路是借助发射极电流感知和控制电流的结果,式(2)的第二项是在被限定的直流基极阻抗上产生电压降而引起的。
在此,二个发射极-基极间的电压差由下面的式(3)给出。
式中I2-晶体管(Q2)的发射极电流,
β2-晶体管(Q2)的电流增益,
如果双极晶体管被用作基准手段,严格地说,此基准手段理想情况是有无限大增益和零阴抗。
而且,如果晶体管的发射极电流与上述相同的话,式(2)、(3)的第一项不为零。
可是,由于CMOS互换性装置的比较差的性能,此项使基准电路的实行受到极大影响。
在输出端,运算放大器调整电压的存在,由于通常10倍左右的增益因子(1+ (R2)/(R1) )而增加,因而成为重要的误差。
特别是必须非常注意考虑随温度变化基极电流(I1,I2)的变化。
运算放大器装置是在输出电压温度系数下不能再生产的最大误差源。
给出使输出大体为零的温度系数,带隙基准被用所决定的输出电压来调整。
如果假定偏置电压与温度无关,因5mv偏置电压而引起的温度系数误差,由下面的式(4)给出。
如像这样,输入偏置电压随温度而变化的话,基准输出电压(VREF)也变成随温度而变化,在MOS工程中,如果使此电路集成化,比在对双向工程集成化时开始产生更大值的偏置电压,使之受到恶劣影响。
一方面在图3所示的以往NMOS恒压电路中运算放大器的两输入晶体管中间,非反转端子的晶体管使耗尽型晶体管用增强型晶体管在反转端子上实现,基准电压由双N沟道MOSFET的栅、源板间电压差组成。
此晶体管,一个是增强型器件,另一个是耗尽型器件,有通过离子注入来调整的阈电压。特别是,二个MOSFET是在饱和电 流条件下调整的。
这时,因为此基本恒压电路的主要变化是由于阈电压相对于温度的变化而发生,基准电压(VREF)可以说是由两晶体管的阈电压值来决定的。
然而,因为在集成化时阈电压值难发准确地调整,因而产生了基准电压也不能得到准确地调整这样的问题。
本发明的目的是提供一种恒压电路,其特征在于它是这样构成的:已充电的电容器(C)连结到已被运算放大的输入的一端。运算放大器输入的另一端和输出的一端相互连接,运算放大器的输出电压成为向电容器充电的电压。
其特征在于所说的电容器(C)的充电电荷量随时间成为一定的量。
其特征在于电容器(C)是由在作为第一多晶层的浮置栅和作为第二多晶层的控制栅之间形成绝缘层的双多晶MOS工艺制成的。
其特征在于作为第一多晶层的浮置栅和作为第二多晶层的控制栅相互形成凸缘状。
本发明为了解决上述问题,使电容和运算放大器输入的一端连结,运算放大器输出端和输入的一端互相连结,使运算放大器的输出成为向电容器充电的电压这样的结构。
从考虑到此电路工作状况和作用效果来看,用恒压电路,我们把所得到的电压值向电容器充电。这时,如用CREF作为电容器的容量,被充电的电荷量(Q)用下面的式(55)表示。
Q=CREF×VREF……(55)
如把以充电的电容器连结到运算放大器的非反转端子上,运算放大器的输出端子和反转端子互相连结的话,在运算放大器的输出端,由电容器输出已充电的电压(VREF)。
这时,因为上述电容器必须做得使已充电的电荷量不随时间增加和减少,与此对应的实施例示于图5。
如图所示的结构,在E2PROM中主要是使用晶体管的结构,制作在P-基板上,源极和漏极用n+来实现。这由于要借助于双多晶MOS工艺,在浮置栅和控制栅间形成绝缘层,浮置栅用第一多晶层,控制栅用第二多晶层来实现。
浮置栅和控制栅在其交会处作成凸缘状,使二个栅板间的电场增强,以使隧穿电压减少。特别是隧穿电压随凸缘数增加程度而减少。
对浮置栅充电的电荷量通过加在控制栅上的外部电压(Vprog)来调整。加在浮置栅和源极之间的电压(Vfs,图中末示出),在初始由浮置栅和控制栅之间的电容量与浮置栅和基板间的电容量之比来决定,加在浮置栅和控制栅之间的电压因发生隧道效应开始变成足够的电压,电压(Vfs)开始呈指数函数变化。
所以,对浮置栅充电的电荷量能够借助于电压(Vfs)的大小和脉冲帽度以及脉冲的数量来调整。因为对浮置栅充电的电荷不 随栅极特性上时间变化,所以在本发明能够作为必要的电容器使用。
也就说,由于这样制得的电容器的电荷量(Q)不随温度变化,因而也防止了基准电压(VREF)随温度的变化,因为运算放大器的输入偏置电压一成不变地表现为基准电压(VREF),与以往的代隙基准电路相比,运算放大器输入偏置电压的影响大大减少,能够防止由于工程的变化而引起工程常数随温度所造成的电路特性的变化。
图1是以往的代隙基准电路;
图2(A)是图1中的晶体管的侧面图;
图2(B)示出在PTA补正电压发生电路中非理想的参量;
图3是以往的NMOM恒压电路;
图4是本发明的恒压电路;
图5(A)是图4实施例的平面图;
图5(B)是图4实施例的断面图;
其中VREF1,VREF2,VREF…为基准输出电压。
Claims (4)
1、一种恒压电路,其特征在于它是样构成的:已充电的电容器(C)连接到已被运算放大的输入的一端,运算放大器输入的另一端和输出的一端相互连结,运算放大器的输出电压成为向电容器充电的电压。
2、按照权利要求1所述的恒压电路,其特征在于所述的电容器(C)的充电电荷量随时间成为一定的量。
3、按照权利要求1所述的恒压电路,其特征在于电容器(C)是由在作为第一多晶层的浮置栅和作为第二多晶层的控制栅之间形成绝缘层的双多晶MOS工艺制成的。
4、按照权利要求3所说的恒压电路,其特征在于作为第一多晶层的浮置栅和作为第二多晶层的控制栅相互形成凸缘状。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019910004830A KR0175319B1 (ko) | 1991-03-27 | 1991-03-27 | 정전압 회로 |
KR4830/91 | 1991-03-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1065365A true CN1065365A (zh) | 1992-10-14 |
CN1024308C CN1024308C (zh) | 1994-04-20 |
Family
ID=19312562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN91102782A Expired - Lifetime CN1024308C (zh) | 1991-03-27 | 1991-05-29 | 恒压电路 |
Country Status (5)
Country | Link |
---|---|
US (1) | US5184061A (zh) |
JP (1) | JP2635848B2 (zh) |
KR (1) | KR0175319B1 (zh) |
CN (1) | CN1024308C (zh) |
DE (1) | DE4117324C2 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102629148A (zh) * | 2011-02-08 | 2012-08-08 | 阿尔卑斯电气株式会社 | 恒压电路 |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5428287A (en) * | 1992-06-16 | 1995-06-27 | Cherry Semiconductor Corporation | Thermally matched current limit circuit |
US5339272A (en) * | 1992-12-21 | 1994-08-16 | Intel Corporation | Precision voltage reference |
US5654713A (en) * | 1994-01-19 | 1997-08-05 | National Semiconductor Corporation | N-bit analog-to-digital converter having ratioed reference voltage generation using self-correcting capacitor ratio and voltage coefficient error |
DE19630112C1 (de) * | 1996-07-25 | 1997-08-14 | Siemens Ag | Verstärker mit Neuron-MOS-Transistoren |
US5936391A (en) * | 1997-10-01 | 1999-08-10 | Lucent Technologies, Inc. | Partially temperature compensated low noise voltage reference |
JP3244057B2 (ja) | 1998-07-16 | 2002-01-07 | 日本電気株式会社 | 基準電圧源回路 |
US8176296B2 (en) | 2000-10-26 | 2012-05-08 | Cypress Semiconductor Corporation | Programmable microcontroller architecture |
US8149048B1 (en) | 2000-10-26 | 2012-04-03 | Cypress Semiconductor Corporation | Apparatus and method for programmable power management in a programmable analog circuit block |
US8160864B1 (en) | 2000-10-26 | 2012-04-17 | Cypress Semiconductor Corporation | In-circuit emulator and pod synchronized boot |
US6724220B1 (en) | 2000-10-26 | 2004-04-20 | Cyress Semiconductor Corporation | Programmable microcontroller architecture (mixed analog/digital) |
US8103496B1 (en) | 2000-10-26 | 2012-01-24 | Cypress Semicondutor Corporation | Breakpoint control in an in-circuit emulation system |
EP1456884A2 (en) * | 2001-05-04 | 2004-09-15 | Koninklijke Philips Electronics N.V. | Integrated circuit |
US7406674B1 (en) | 2001-10-24 | 2008-07-29 | Cypress Semiconductor Corporation | Method and apparatus for generating microcontroller configuration information |
US8078970B1 (en) | 2001-11-09 | 2011-12-13 | Cypress Semiconductor Corporation | Graphical user interface with user-selectable list-box |
US8042093B1 (en) | 2001-11-15 | 2011-10-18 | Cypress Semiconductor Corporation | System providing automatic source code generation for personalization and parameterization of user modules |
US8069405B1 (en) | 2001-11-19 | 2011-11-29 | Cypress Semiconductor Corporation | User interface for efficiently browsing an electronic document using data-driven tabs |
US7844437B1 (en) * | 2001-11-19 | 2010-11-30 | Cypress Semiconductor Corporation | System and method for performing next placements and pruning of disallowed placements for programming an integrated circuit |
US6971004B1 (en) | 2001-11-19 | 2005-11-29 | Cypress Semiconductor Corp. | System and method of dynamically reconfiguring a programmable integrated circuit |
US8103497B1 (en) | 2002-03-28 | 2012-01-24 | Cypress Semiconductor Corporation | External interface for event architecture |
DE10218344A1 (de) * | 2002-04-25 | 2003-07-17 | Infineon Technologies Ag | Einrichtung zum Erzeugen einer zur Spannungsstabilisierung benötigten Referenzspannung |
US6768371B1 (en) | 2003-03-20 | 2004-07-27 | Ami Semiconductor, Inc. | Stable floating gate voltage reference using interconnected current-to-voltage and voltage-to-current converters |
US7295049B1 (en) | 2004-03-25 | 2007-11-13 | Cypress Semiconductor Corporation | Method and circuit for rapid alignment of signals |
US7332976B1 (en) * | 2005-02-04 | 2008-02-19 | Cypress Semiconductor Corporation | Poly-phase frequency synthesis oscillator |
US7368980B2 (en) * | 2005-04-25 | 2008-05-06 | Triquint Semiconductor, Inc. | Producing reference voltages using transistors |
US7400183B1 (en) | 2005-05-05 | 2008-07-15 | Cypress Semiconductor Corporation | Voltage controlled oscillator delay cell and method |
US7307468B1 (en) * | 2006-01-31 | 2007-12-11 | Xilinx, Inc. | Bandgap system with tunable temperature coefficient of the output voltage |
US8067948B2 (en) * | 2006-03-27 | 2011-11-29 | Cypress Semiconductor Corporation | Input/output multiplexer bus |
US20080169866A1 (en) * | 2007-01-16 | 2008-07-17 | Zerog Wireless, Inc. | Combined charge storage circuit and bandgap reference circuit |
US8040266B2 (en) * | 2007-04-17 | 2011-10-18 | Cypress Semiconductor Corporation | Programmable sigma-delta analog-to-digital converter |
US8106637B2 (en) * | 2007-04-17 | 2012-01-31 | Cypress Semiconductor Corporation | Programmable floating gate reference |
US8130025B2 (en) | 2007-04-17 | 2012-03-06 | Cypress Semiconductor Corporation | Numerical band gap |
US8026739B2 (en) | 2007-04-17 | 2011-09-27 | Cypress Semiconductor Corporation | System level interconnect with programmable switching |
US9720805B1 (en) | 2007-04-25 | 2017-08-01 | Cypress Semiconductor Corporation | System and method for controlling a target device |
US8049569B1 (en) | 2007-09-05 | 2011-11-01 | Cypress Semiconductor Corporation | Circuit and method for improving the accuracy of a crystal-less oscillator having dual-frequency modes |
JP5529214B2 (ja) * | 2012-06-28 | 2014-06-25 | 株式会社アドバンテスト | 試験装置用の電源装置およびそれを用いた試験装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3390347A (en) * | 1966-01-10 | 1968-06-25 | Ibm | Sample and hold circuit |
JPS5272833U (zh) * | 1975-11-27 | 1977-05-31 | ||
US4250445A (en) * | 1979-01-17 | 1981-02-10 | Analog Devices, Incorporated | Band-gap voltage reference with curvature correction |
JPS55155492A (en) * | 1979-05-22 | 1980-12-03 | Fujitsu Ltd | Method of manufacturing el display panel |
JPS5619676A (en) * | 1979-07-26 | 1981-02-24 | Fujitsu Ltd | Semiconductor device |
DE3133468A1 (de) * | 1981-08-25 | 1983-03-17 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zum herstellen von hochintegrierten komplementaeren mos-feldeffekttransistorschaltungen in siliziumgate-technologie |
JPS60252927A (ja) * | 1984-09-28 | 1985-12-13 | Hitachi Ltd | 基準電圧発生装置及びそれを用いた電子装置 |
US4849684A (en) * | 1988-11-07 | 1989-07-18 | American Telephone And Telegraph Company, At&T Bell Laaboratories | CMOS bandgap voltage reference apparatus and method |
JPH02222175A (ja) * | 1989-02-22 | 1990-09-04 | Seiko Instr Inc | 半導体不揮発性メモリの製造方法 |
US5030848A (en) * | 1990-03-06 | 1991-07-09 | Honeywell Inc. | Precision voltage divider |
-
1991
- 1991-03-27 KR KR1019910004830A patent/KR0175319B1/ko not_active IP Right Cessation
- 1991-05-27 DE DE4117324A patent/DE4117324C2/de not_active Expired - Lifetime
- 1991-05-28 JP JP3123757A patent/JP2635848B2/ja not_active Expired - Fee Related
- 1991-05-29 CN CN91102782A patent/CN1024308C/zh not_active Expired - Lifetime
- 1991-05-30 US US07/708,285 patent/US5184061A/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102629148A (zh) * | 2011-02-08 | 2012-08-08 | 阿尔卑斯电气株式会社 | 恒压电路 |
Also Published As
Publication number | Publication date |
---|---|
US5184061A (en) | 1993-02-02 |
JP2635848B2 (ja) | 1997-07-30 |
KR920018557A (ko) | 1992-10-22 |
KR0175319B1 (ko) | 1999-04-01 |
DE4117324A1 (de) | 1992-10-01 |
CN1024308C (zh) | 1994-04-20 |
JPH04312107A (ja) | 1992-11-04 |
DE4117324C2 (de) | 1995-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1065365A (zh) | 恒压电路 | |
US4843265A (en) | Temperature compensated monolithic delay circuit | |
CN1061864A (zh) | 半导体存储器件基准电压生成电路 | |
JPH03214779A (ja) | 閾値が調整可能なmos集積回路 | |
CN1395310A (zh) | 用于具有温度补偿基准电压发生器的集成电路的内部电源 | |
EP0214899A1 (en) | Semiconductor device having means for regulating power supply voltage applied thereto | |
JPS63502858A (ja) | Cmos電圧変換器 | |
GB2086681A (en) | Temperature compensated semiconductor integrated circuit | |
CN1487384A (zh) | 电压调节器 | |
JPH01205470A (ja) | 半導体装置およびその製造方法 | |
CN200983116Y (zh) | 金属氧化物半导体电压基准电路 | |
US20060017084A1 (en) | Integrated semiconductor metal-insulator-semiconductor capacitor | |
EP0133721B1 (en) | Semiconductor device | |
US4071830A (en) | Complementary field effect transistor linear amplifier | |
CN1081841C (zh) | 具有小的输出电流波动的恒流电路 | |
US4661726A (en) | Utilizing a depletion mode FET operating in the triode region and a depletion mode FET operating in the saturation region | |
KR920001405B1 (ko) | 승압회로를 갖춘 전하전송장치 | |
JPH05136355A (ja) | 半導体装置 | |
JPH0724308B2 (ja) | 半導体装置 | |
JP3651647B2 (ja) | 固体撮像装置 | |
Nathanson | A high field triode | |
CN1154191C (zh) | 稳定绝缘体基半导体器件的方法及绝缘体基半导体器件 | |
GB2040630A (en) | Transistor resistive network | |
GB2273837A (en) | Polysilicon thin film transistor operational amplifier | |
BÂRSAN | SUBTHRESHOLD CONDUCTION IN DUAL-GATE MOS TRANSISTORS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C15 | Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993) | ||
OR01 | Other related matters | ||
C17 | Cessation of patent right | ||
CX01 | Expiry of patent term |
Expiration termination date: 20110529 Granted publication date: 19940420 |