CN1065365A - 恒压电路 - Google Patents

恒压电路 Download PDF

Info

Publication number
CN1065365A
CN1065365A CN91102782A CN91102782A CN1065365A CN 1065365 A CN1065365 A CN 1065365A CN 91102782 A CN91102782 A CN 91102782A CN 91102782 A CN91102782 A CN 91102782A CN 1065365 A CN1065365 A CN 1065365A
Authority
CN
China
Prior art keywords
voltage
circuit
operational amplifier
constant voltage
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN91102782A
Other languages
English (en)
Other versions
CN1024308C (zh
Inventor
李芳远
裴一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1065365A publication Critical patent/CN1065365A/zh
Application granted granted Critical
Publication of CN1024308C publication Critical patent/CN1024308C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/461Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Amplifiers (AREA)

Abstract

本发明涉及一种基本上在模拟电路中使用的,作 为数/模变换器和模/数变换器必须电路的恒压电 路,把已充电的电容器连接到运算放大器输入的一端 子上,上述运算放大器输入的另一端与输出端子相互 连接,使运算放大器的输出成为对电容器充电的电 压,是一种能够防止在集成化时因工程常数和温度变 化电路恶化的恒压电路。

Description

本发明涉及一种主要在模拟电路中使用的、作为数/模变换器和模/数变换器必须电路的恒压电路,特别是涉及一种用来防止在集成化时随工程常数和温度的变化使电路恶化的、利用电容和运算放大器的恒压电路。
在附图1所示的以往使用的带隙基准(bandgaq reference)电路中,晶体管(Q1,Q2)是集电极连结到电源电压复端的p-n-p型晶体管,图2(A)示出其侧面图。
此处,全部阻抗都是在n-构中的P+扩散阻抗,假定CMOS运算放大器随着偏置电压(Vos)的变化而有无限大的增益。
CMOS运算放大器被限定的增益效果引起的误差,在这种应用中,因通常是有少量的足够的增益,所以上述这种假定可以说是适当的。
在此电路中,晶体管(Q1)由于因子(A),而比晶体管(Q2)有更大的区域,此二晶体管在顺方向活性区域内。
这时,基准输出电压(VREF)可由下面的式(1)给出。
V REF = V BE + ( 1 + R 3 R 1 ) ( Δ V BE + V DS ) · · · · · · ( 1 )
此处,VBE是晶体管(Q1)的发射极和基极之间的电压,ΔVBE是晶体管(Q1,Q2)发射极-基极的电压差,VOS是运算放大器的输入偏置电压。
式(1)的值由于像图2(B)这样的非理想的双极晶体管而受到影响。这时,晶体管发射极-基极间的电压可由下面的式(2)给出。
V BE = V l Tn I 1 I S 1 + V l Tn 1 1 + 1 β 1 + r b I 1 Aβ 1 · · · · · · ( 2 )
式中VT是热电压 (KT)/(q) ,I1是晶体管(Q1)的发射极电流,Is是晶体管(Q1)的饱和电流,β1是晶体管(Q1)的电流增益,γb是晶体管(Q2)的基极有效直流阻抗。
在式(2)中,第2项是在集电集电流完成发射极-基极间电压 的阱限定功能期间,此电路是借助发射极电流感知和控制电流的结果,式(2)的第二项是在被限定的直流基极阻抗上产生电压降而引起的。
在此,二个发射极-基极间的电压差由下面的式(3)给出。
Δ V BE = V l Tn A + V l Tn I 2 I 1 + V l Tn 1 + 1 β 1 1 + 1 β 1 + r b ( I 1 β 2 - I 1 Aβ 1 ) · · · · · · ( 3 )
式中I2-晶体管(Q2)的发射极电流,
β2-晶体管(Q2)的电流增益,
如果双极晶体管被用作基准手段,严格地说,此基准手段理想情况是有无限大增益和零阴抗。
而且,如果晶体管的发射极电流与上述相同的话,式(2)、(3)的第一项不为零。
可是,由于CMOS互换性装置的比较差的性能,此项使基准电路的实行受到极大影响。
在输出端,运算放大器调整电压的存在,由于通常10倍左右的增益因子(1+ (R2)/(R1) )而增加,因而成为重要的误差。
特别是必须非常注意考虑随温度变化基极电流(I1,I2)的变化。
运算放大器装置是在输出电压温度系数下不能再生产的最大误差源。
给出使输出大体为零的温度系数,带隙基准被用所决定的输出电压来调整。
如果假定偏置电压与温度无关,因5mv偏置电压而引起的温度系数误差,由下面的式(4)给出。
Figure 911027823_IMG5
如像这样,输入偏置电压随温度而变化的话,基准输出电压(VREF)也变成随温度而变化,在MOS工程中,如果使此电路集成化,比在对双向工程集成化时开始产生更大值的偏置电压,使之受到恶劣影响。
一方面在图3所示的以往NMOS恒压电路中运算放大器的两输入晶体管中间,非反转端子的晶体管使耗尽型晶体管用增强型晶体管在反转端子上实现,基准电压由双N沟道MOSFET的栅、源板间电压差组成。
此晶体管,一个是增强型器件,另一个是耗尽型器件,有通过离子注入来调整的阈电压。特别是,二个MOSFET是在饱和电 流条件下调整的。
这时,因为此基本恒压电路的主要变化是由于阈电压相对于温度的变化而发生,基准电压(VREF)可以说是由两晶体管的阈电压值来决定的。
然而,因为在集成化时阈电压值难发准确地调整,因而产生了基准电压也不能得到准确地调整这样的问题。
本发明的目的是提供一种恒压电路,其特征在于它是这样构成的:已充电的电容器(C)连结到已被运算放大的输入的一端。运算放大器输入的另一端和输出的一端相互连接,运算放大器的输出电压成为向电容器充电的电压。
其特征在于所说的电容器(C)的充电电荷量随时间成为一定的量。
其特征在于电容器(C)是由在作为第一多晶层的浮置栅和作为第二多晶层的控制栅之间形成绝缘层的双多晶MOS工艺制成的。
其特征在于作为第一多晶层的浮置栅和作为第二多晶层的控制栅相互形成凸缘状。
本发明为了解决上述问题,使电容和运算放大器输入的一端连结,运算放大器输出端和输入的一端互相连结,使运算放大器的输出成为向电容器充电的电压这样的结构。
从考虑到此电路工作状况和作用效果来看,用恒压电路,我们把所得到的电压值向电容器充电。这时,如用CREF作为电容器的容量,被充电的电荷量(Q)用下面的式(55)表示。
Q=CREF×VREF……(55)
如把以充电的电容器连结到运算放大器的非反转端子上,运算放大器的输出端子和反转端子互相连结的话,在运算放大器的输出端,由电容器输出已充电的电压(VREF)。
这时,因为上述电容器必须做得使已充电的电荷量不随时间增加和减少,与此对应的实施例示于图5。
如图所示的结构,在E2PROM中主要是使用晶体管的结构,制作在P-基板上,源极和漏极用n+来实现。这由于要借助于双多晶MOS工艺,在浮置栅和控制栅间形成绝缘层,浮置栅用第一多晶层,控制栅用第二多晶层来实现。
浮置栅和控制栅在其交会处作成凸缘状,使二个栅板间的电场增强,以使隧穿电压减少。特别是隧穿电压随凸缘数增加程度而减少。
对浮置栅充电的电荷量通过加在控制栅上的外部电压(Vprog)来调整。加在浮置栅和源极之间的电压(Vfs,图中末示出),在初始由浮置栅和控制栅之间的电容量与浮置栅和基板间的电容量之比来决定,加在浮置栅和控制栅之间的电压因发生隧道效应开始变成足够的电压,电压(Vfs)开始呈指数函数变化。
所以,对浮置栅充电的电荷量能够借助于电压(Vfs)的大小和脉冲帽度以及脉冲的数量来调整。因为对浮置栅充电的电荷不 随栅极特性上时间变化,所以在本发明能够作为必要的电容器使用。
也就说,由于这样制得的电容器的电荷量(Q)不随温度变化,因而也防止了基准电压(VREF)随温度的变化,因为运算放大器的输入偏置电压一成不变地表现为基准电压(VREF),与以往的代隙基准电路相比,运算放大器输入偏置电压的影响大大减少,能够防止由于工程的变化而引起工程常数随温度所造成的电路特性的变化。
图1是以往的代隙基准电路;
图2(A)是图1中的晶体管的侧面图;
图2(B)示出在PTA补正电压发生电路中非理想的参量;
图3是以往的NMOM恒压电路;
图4是本发明的恒压电路;
图5(A)是图4实施例的平面图;
图5(B)是图4实施例的断面图;
其中VREF1,VREF2,VREF…为基准输出电压。

Claims (4)

1、一种恒压电路,其特征在于它是样构成的:已充电的电容器(C)连接到已被运算放大的输入的一端,运算放大器输入的另一端和输出的一端相互连结,运算放大器的输出电压成为向电容器充电的电压。
2、按照权利要求1所述的恒压电路,其特征在于所述的电容器(C)的充电电荷量随时间成为一定的量。
3、按照权利要求1所述的恒压电路,其特征在于电容器(C)是由在作为第一多晶层的浮置栅和作为第二多晶层的控制栅之间形成绝缘层的双多晶MOS工艺制成的。
4、按照权利要求3所说的恒压电路,其特征在于作为第一多晶层的浮置栅和作为第二多晶层的控制栅相互形成凸缘状。
CN91102782A 1991-03-27 1991-05-29 恒压电路 Expired - Lifetime CN1024308C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019910004830A KR0175319B1 (ko) 1991-03-27 1991-03-27 정전압 회로
KR4830/91 1991-03-27

Publications (2)

Publication Number Publication Date
CN1065365A true CN1065365A (zh) 1992-10-14
CN1024308C CN1024308C (zh) 1994-04-20

Family

ID=19312562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN91102782A Expired - Lifetime CN1024308C (zh) 1991-03-27 1991-05-29 恒压电路

Country Status (5)

Country Link
US (1) US5184061A (zh)
JP (1) JP2635848B2 (zh)
KR (1) KR0175319B1 (zh)
CN (1) CN1024308C (zh)
DE (1) DE4117324C2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629148A (zh) * 2011-02-08 2012-08-08 阿尔卑斯电气株式会社 恒压电路

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428287A (en) * 1992-06-16 1995-06-27 Cherry Semiconductor Corporation Thermally matched current limit circuit
US5339272A (en) * 1992-12-21 1994-08-16 Intel Corporation Precision voltage reference
US5654713A (en) * 1994-01-19 1997-08-05 National Semiconductor Corporation N-bit analog-to-digital converter having ratioed reference voltage generation using self-correcting capacitor ratio and voltage coefficient error
DE19630112C1 (de) * 1996-07-25 1997-08-14 Siemens Ag Verstärker mit Neuron-MOS-Transistoren
US5936391A (en) * 1997-10-01 1999-08-10 Lucent Technologies, Inc. Partially temperature compensated low noise voltage reference
JP3244057B2 (ja) 1998-07-16 2002-01-07 日本電気株式会社 基準電圧源回路
US8176296B2 (en) 2000-10-26 2012-05-08 Cypress Semiconductor Corporation Programmable microcontroller architecture
US8149048B1 (en) 2000-10-26 2012-04-03 Cypress Semiconductor Corporation Apparatus and method for programmable power management in a programmable analog circuit block
US8160864B1 (en) 2000-10-26 2012-04-17 Cypress Semiconductor Corporation In-circuit emulator and pod synchronized boot
US6724220B1 (en) 2000-10-26 2004-04-20 Cyress Semiconductor Corporation Programmable microcontroller architecture (mixed analog/digital)
US8103496B1 (en) 2000-10-26 2012-01-24 Cypress Semicondutor Corporation Breakpoint control in an in-circuit emulation system
EP1456884A2 (en) * 2001-05-04 2004-09-15 Koninklijke Philips Electronics N.V. Integrated circuit
US7406674B1 (en) 2001-10-24 2008-07-29 Cypress Semiconductor Corporation Method and apparatus for generating microcontroller configuration information
US8078970B1 (en) 2001-11-09 2011-12-13 Cypress Semiconductor Corporation Graphical user interface with user-selectable list-box
US8042093B1 (en) 2001-11-15 2011-10-18 Cypress Semiconductor Corporation System providing automatic source code generation for personalization and parameterization of user modules
US8069405B1 (en) 2001-11-19 2011-11-29 Cypress Semiconductor Corporation User interface for efficiently browsing an electronic document using data-driven tabs
US7844437B1 (en) * 2001-11-19 2010-11-30 Cypress Semiconductor Corporation System and method for performing next placements and pruning of disallowed placements for programming an integrated circuit
US6971004B1 (en) 2001-11-19 2005-11-29 Cypress Semiconductor Corp. System and method of dynamically reconfiguring a programmable integrated circuit
US8103497B1 (en) 2002-03-28 2012-01-24 Cypress Semiconductor Corporation External interface for event architecture
DE10218344A1 (de) * 2002-04-25 2003-07-17 Infineon Technologies Ag Einrichtung zum Erzeugen einer zur Spannungsstabilisierung benötigten Referenzspannung
US6768371B1 (en) 2003-03-20 2004-07-27 Ami Semiconductor, Inc. Stable floating gate voltage reference using interconnected current-to-voltage and voltage-to-current converters
US7295049B1 (en) 2004-03-25 2007-11-13 Cypress Semiconductor Corporation Method and circuit for rapid alignment of signals
US7332976B1 (en) * 2005-02-04 2008-02-19 Cypress Semiconductor Corporation Poly-phase frequency synthesis oscillator
US7368980B2 (en) * 2005-04-25 2008-05-06 Triquint Semiconductor, Inc. Producing reference voltages using transistors
US7400183B1 (en) 2005-05-05 2008-07-15 Cypress Semiconductor Corporation Voltage controlled oscillator delay cell and method
US7307468B1 (en) * 2006-01-31 2007-12-11 Xilinx, Inc. Bandgap system with tunable temperature coefficient of the output voltage
US8067948B2 (en) * 2006-03-27 2011-11-29 Cypress Semiconductor Corporation Input/output multiplexer bus
US20080169866A1 (en) * 2007-01-16 2008-07-17 Zerog Wireless, Inc. Combined charge storage circuit and bandgap reference circuit
US8040266B2 (en) * 2007-04-17 2011-10-18 Cypress Semiconductor Corporation Programmable sigma-delta analog-to-digital converter
US8106637B2 (en) * 2007-04-17 2012-01-31 Cypress Semiconductor Corporation Programmable floating gate reference
US8130025B2 (en) 2007-04-17 2012-03-06 Cypress Semiconductor Corporation Numerical band gap
US8026739B2 (en) 2007-04-17 2011-09-27 Cypress Semiconductor Corporation System level interconnect with programmable switching
US9720805B1 (en) 2007-04-25 2017-08-01 Cypress Semiconductor Corporation System and method for controlling a target device
US8049569B1 (en) 2007-09-05 2011-11-01 Cypress Semiconductor Corporation Circuit and method for improving the accuracy of a crystal-less oscillator having dual-frequency modes
JP5529214B2 (ja) * 2012-06-28 2014-06-25 株式会社アドバンテスト 試験装置用の電源装置およびそれを用いた試験装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390347A (en) * 1966-01-10 1968-06-25 Ibm Sample and hold circuit
JPS5272833U (zh) * 1975-11-27 1977-05-31
US4250445A (en) * 1979-01-17 1981-02-10 Analog Devices, Incorporated Band-gap voltage reference with curvature correction
JPS55155492A (en) * 1979-05-22 1980-12-03 Fujitsu Ltd Method of manufacturing el display panel
JPS5619676A (en) * 1979-07-26 1981-02-24 Fujitsu Ltd Semiconductor device
DE3133468A1 (de) * 1981-08-25 1983-03-17 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen von hochintegrierten komplementaeren mos-feldeffekttransistorschaltungen in siliziumgate-technologie
JPS60252927A (ja) * 1984-09-28 1985-12-13 Hitachi Ltd 基準電圧発生装置及びそれを用いた電子装置
US4849684A (en) * 1988-11-07 1989-07-18 American Telephone And Telegraph Company, At&T Bell Laaboratories CMOS bandgap voltage reference apparatus and method
JPH02222175A (ja) * 1989-02-22 1990-09-04 Seiko Instr Inc 半導体不揮発性メモリの製造方法
US5030848A (en) * 1990-03-06 1991-07-09 Honeywell Inc. Precision voltage divider

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629148A (zh) * 2011-02-08 2012-08-08 阿尔卑斯电气株式会社 恒压电路

Also Published As

Publication number Publication date
US5184061A (en) 1993-02-02
JP2635848B2 (ja) 1997-07-30
KR920018557A (ko) 1992-10-22
KR0175319B1 (ko) 1999-04-01
DE4117324A1 (de) 1992-10-01
CN1024308C (zh) 1994-04-20
JPH04312107A (ja) 1992-11-04
DE4117324C2 (de) 1995-04-06

Similar Documents

Publication Publication Date Title
CN1065365A (zh) 恒压电路
US4843265A (en) Temperature compensated monolithic delay circuit
CN1061864A (zh) 半导体存储器件基准电压生成电路
JPH03214779A (ja) 閾値が調整可能なmos集積回路
CN1395310A (zh) 用于具有温度补偿基准电压发生器的集成电路的内部电源
EP0214899A1 (en) Semiconductor device having means for regulating power supply voltage applied thereto
JPS63502858A (ja) Cmos電圧変換器
GB2086681A (en) Temperature compensated semiconductor integrated circuit
CN1487384A (zh) 电压调节器
JPH01205470A (ja) 半導体装置およびその製造方法
CN200983116Y (zh) 金属氧化物半导体电压基准电路
US20060017084A1 (en) Integrated semiconductor metal-insulator-semiconductor capacitor
EP0133721B1 (en) Semiconductor device
US4071830A (en) Complementary field effect transistor linear amplifier
CN1081841C (zh) 具有小的输出电流波动的恒流电路
US4661726A (en) Utilizing a depletion mode FET operating in the triode region and a depletion mode FET operating in the saturation region
KR920001405B1 (ko) 승압회로를 갖춘 전하전송장치
JPH05136355A (ja) 半導体装置
JPH0724308B2 (ja) 半導体装置
JP3651647B2 (ja) 固体撮像装置
Nathanson A high field triode
CN1154191C (zh) 稳定绝缘体基半导体器件的方法及绝缘体基半导体器件
GB2040630A (en) Transistor resistive network
GB2273837A (en) Polysilicon thin film transistor operational amplifier
BÂRSAN SUBTHRESHOLD CONDUCTION IN DUAL-GATE MOS TRANSISTORS

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20110529

Granted publication date: 19940420