CN106483374B - 一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法 - Google Patents

一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法 Download PDF

Info

Publication number
CN106483374B
CN106483374B CN201610852535.0A CN201610852535A CN106483374B CN 106483374 B CN106483374 B CN 106483374B CN 201610852535 A CN201610852535 A CN 201610852535A CN 106483374 B CN106483374 B CN 106483374B
Authority
CN
China
Prior art keywords
phase
fft
nuttall
window
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610852535.0A
Other languages
English (en)
Other versions
CN106483374A (zh
Inventor
金涛
苏泰新
杨明发
许立彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610852535.0A priority Critical patent/CN106483374B/zh
Publication of CN106483374A publication Critical patent/CN106483374A/zh
Application granted granted Critical
Publication of CN106483374B publication Critical patent/CN106483374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Complex Calculations (AREA)

Abstract

本发明涉及一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法。电网中谐波和间谐波的存在对电力系统带来了巨大的危害,传统的快速傅里叶变换FFT变换算法在频谱泄漏抑制及相位检测方面存在一定问题,为提高测量精度,本发明引入了具有相位不变特性和良好的频谱泄漏抑制功能的全相位傅里叶分析(all‑phase FFT,apFFT),并与旁瓣特性好的Nuttall窗结合,后又采用FFT/apFFT相位差校正方法对检测的幅值及频率进行校正,实现电力系统谐波间谐波检测。本发明在频谱泄漏抑制及相位检测方面有明显优势,与传统方法比较,本发明具有更好的精度。在复杂电力谐波检测,尤其是包含间谐波的情况下仍具有较好的鲁棒性与可靠性。

Description

一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法
技术领域
本发明涉及电力系统电能质量技术领域,特别是一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法。
背景技术
随着智能电网的发展,各种新型能源如风能、太阳能、生物能的接入,导致谐波和间谐波已成为影响电能质量和电网安全的重要因素,如何高精度的检测谐波间谐波并消除抑制其影响已成为电力领域的重要研究课题之一。目前,谐波和间谐波检测主要通过快速傅里叶变换(Fast Flourier Transform,FFT)来完成,但在非同步采样的情况下,由于栅栏效应和频谱泄漏问题,其检测精度会受到严重的影响,研究寻找新的方法来进行相关测量就变得非常重要。
针对以上问题,国内外学者做了许多研究,现有的方法中,加窗插值FFT是一种应用比较广泛的算法,较早提出的是双谱线加窗插值算法,后又有三谱线加窗插值算法等。在现有的窗函数中,Nuttall窗是近年来研究较多效果较好的一种窗函数。Nuttall窗是一种余弦组合窗,旁瓣峰值电平小且旁瓣渐进衰减速率大,可以很好地抑制临近泄漏和远离泄漏。
近年来,信息处理研究领域提出了一种具有良好相位特性与泄漏抑制功能的信号分析算法,即全相位谱分析。目前全相位谱分析已应用到频率估计、电能质量分析、以及自动准同期并列等多个方面。在谐波分析领域,由于传统加窗插值FFT算法仍存在校正复杂,相位测量不够准确等问题,目前一些研究也将全相位分析引入了谐波分析,这些研究对谐波和间谐波的检测上提供了很好的思路,但在算法的完备性和精度的考量上还有值得进一步提高的地方。
发明内容
本发明的目的在于提供一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法,该算法将旁瓣特性更好的4项3阶Nuttall窗与全相位傅里叶算法进行结合,综合了二者的优势,一方面减小了检测时的频谱泄漏造成的误差,另一方面提高了相位检测的精度;后又结合FFT/apFFT的校正方法对检测结果进行校正,进而获得精确的分析结果;相比于传统加窗插值算法,本算法应用在谐波间谐波检测中精度更高,鲁棒性和可靠性更佳。
为实现上述目的,本发明的技术方案是:一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法,将具有相位不变特性和良好的频谱泄漏抑制功能的全相位谱分析的方法,与旁瓣特性好的Nuttall窗结合,后利用传统FFT算法与全相位傅里叶算法apFFT之间的联系,采用FFT/apFFT相位差校正方法对检测的幅值及频率进行校正,实现电力系统谐波间谐波检测。
在本发明一实施例中,该方法具体实现步骤如下,
步骤S1:从电网采集所要进行分析的信号,设采样得到的含谐波的离散时间信号为:
式中:h为谐波次数,H为最高次谐波,f1为基波频率,fs为采样频率,如采样定理所述:采样频率在取值时要高于信号中所存在的最高频分量的两倍,Ah、θh分别为第h次谐波的有效值和相位角;
步骤S2:对上步采集到的结果,取2N-1个点的初始数据,通过4项3阶Nuttall窗进行初次加权,Nuttall窗作为一种余弦组合窗,其时域表达式为:
式中:M为窗函数的项数;n=0,1,2,…,N-1;bm应满足约束条件, 对于4项3阶Nuttall窗,b0-b3分别取0.338946、0.481973、0.161054、0.018027;Nuttall窗的频谱函数表达式为:
式中WR(w)表示矩形窗的频谱函数,表达式为:
步骤S3:将加单Nuttall窗后的数据序列在原位置进行周期延拓,并将延拓后的数据移位后纵向排列,每个行元素由相邻的N个数据延拓组成,相邻行元素较上一行移一位,共组成N行;
步骤S4:用4项3阶Nuttall窗对进行周期延拓后的序列在竖直方向上再次加权,并进行纵向求和,得到新的N个数据的周期序列,完成全相位预处理过程。得到的新序列作为快速傅里叶变换FFT的输入序列;
步骤S5:对全相位预处理后的N个数据的周期序列进行快速傅里叶变换,得到相应的频率、相位及幅值输出结果,完成Nuttall双窗全相位检测;检测结果中,设主谱线为k,得到主谱线相角为得到主谱线幅值为YN(k);
步骤S6:通过FFT/apFFT相位差校正法对步骤S5所得的检测结果进行校正,得到采样信号实际的相位、幅值及频率信息。
在本发明一实施例中,所述步骤S6具体包括以下步骤,
步骤S61:取步骤S2中2N-1个点的初始数据的前N个点直接做快速傅里叶变换FFT,设主谱线为k,得到主谱线相角为得到主谱线幅值为XN(k);
步骤S62:由于全相位傅里叶算法具有相位不变的优良特性,故相位估计可以直接取其主谱线相角即:
步骤S63:FFT与apFFT算法的主谱线幅值的模值存在如下关系:
式中,Fg(ω)为窗函数的频谱表达式,△ω为数字角频率的分辨率△ω=2π/N;
则幅值估计为:
步骤S64:FFT与apFFT算法的主谱线相角差存在:的关系,式中τ为群延迟系数,上述表明:频偏值dω=f-k△ω与传统FFT和apFFT主谱线上的相角差成比例关系,比例系数τ=(1-1/N)π;则频率估计为:
相较于现有技术,本发明具有以下有益效果:
1、将Nuttall窗与全相位谱分析技术结合,综合二者的优势,不仅进一步减小了检测算法的频谱泄漏,还大大提高了算法对相位检测的精度;
2、利用了传统FFT与apFFT存在的内在联系,通过FFT/apFFT相位差校正法对双Nuttall窗全相位傅里叶算法检测结果进行校正,该方法物理意义清晰,公式推导简单易懂,且校正效果较好,且避免了传统校正算法复杂的公式推导;
3、在电力谐波复杂的情况下,尤其是含有受频谱泄漏影响较大的间谐波时,算法应用也能有较高的测量精度以及可靠性。
附图说明
图1为本发明的方法流程图。
图2为全相位预处理流程图。
图3为4项3阶Nuttall窗Hanning、Blackman窗归一化对数谱比较。
图4为本发明与其他几种算法测量幅值误差比较。
图5为本发明与其他几种算法测量相位误差比较。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
本发明的一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法,将具有相位不变特性和良好的频谱泄漏抑制功能的全相位谱分析的方法,与旁瓣特性好的Nuttall窗结合,后利用传统FFT算法与全相位傅里叶算法apFFT之间的联系,采用FFT/apFFT相位差校正方法对检测的幅值及频率进行校正,实现电力系统谐波间谐波检测;该方法具体实现步骤如下,
步骤S1:从电网采集所要进行分析的信号,设采样得到的含谐波的离散时间信号为:
式中:h为谐波次数,H为最高次谐波,f1为基波频率,fs为采样频率,如采样定理所述:采样频率在取值时要高于信号中所存在的最高频分量的两倍,Ah、θh分别为第h次谐波的有效值和相位角;
步骤S2:对上步采集到的结果,取2N-1个点的初始数据,通过4项3阶Nuttall窗进行初次加权,Nuttall窗作为一种余弦组合窗,其时域表达式为:
式中:M为窗函数的项数;n=0,1,2,…,N-1;bm应满足约束条件, 对于4项3阶Nuttall窗,b0-b3分别取0.338946、0.481973、0.161054、0.018027;Nuttall窗的频谱函数表达式为:
式中WR(w)表示矩形窗的频谱函数,表达式为:
步骤S3:将加单Nuttall窗后的数据序列在原位置进行周期延拓,并将延拓后的数据移位后纵向排列,每个行元素由相邻的N个数据延拓组成,相邻行元素较上一行移一位,共组成N行;
步骤S4:用4项3阶Nuttall窗对进行周期延拓后的序列在竖直方向上再次加权,并进行纵向求和,得到新的N个数据的周期序列,完成全相位预处理过程。得到的新序列作为快速傅里叶变换FFT的输入序列;
步骤S5:对全相位预处理后的N个数据的周期序列进行快速傅里叶变换,得到相应的频率、相位及幅值输出结果,完成Nuttall双窗全相位检测;检测结果中,设主谱线为k,得到主谱线相角为得到主谱线幅值为YN(k);
步骤S6:通过FFT/apFFT相位差校正法对步骤S5所得的检测结果进行校正,得到采样信号实际的相位、幅值及频率信息;具体包括以下步骤,
步骤S61:取步骤S2中2N-1个点的初始数据的前N个点直接做快速傅里叶变换FFT,设主谱线为k,得到主谱线相角为得到主谱线幅值为XN(k);
步骤S62:由于全相位傅里叶算法具有相位不变的优良特性,故相位估计可以直接取其主谱线相角即:
步骤S63:FFT与apFFT算法的主谱线幅值的模值存在如下关系:
式中,Fg(ω)为窗函数的频谱表达式,△ω为数字角频率的分辨率△ω=2π/N;
则幅值估计为:
步骤S64:FFT与apFFT算法的主谱线相角差存在:的关系,式中τ为群延迟系数,上述表明:频偏值dω=f-k△ω与传统FFT和apFFT主谱线上的相角差成比例关系,比例系数τ=(1-1/N)π;则频率估计为:
以下为本发明的具体实施过程。
如图1所示,本发明一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法,包括以下步骤:
步骤S1:从电网采集所要进行分析的信号,设采样得到的含谐波的离散时间信号为:
式中:h为谐波次数,H为最高次谐波,f1为基波频率,fs为采样频率,如采样定理所述:采样频率在取值时要高于信号中所存在的最高频分量的两倍,Ah、θh分别为第h次谐波的有效值和相位角;
如图2所示,进行全相位分析时需要对采样数据进行全相位预处理,包括步骤S2,S3,S4:
步骤S2:对上步采集到的结果,取2N-1个点的初始数据,通过4项3阶Nuttall窗进行初次加权,Nuttall窗作为一种余弦组合窗,其时域表达式为:
式中:M为窗函数的项数;n=0,1,2,…,N-1;bm应满足约束条件, 对于4项3阶Nuttall窗,b0-b3分别取0.338946、0.481973、0.161054、0.018027;Nuttall窗的频谱函数表达式为:
式中WR(w)表示矩形窗的频谱函数,表达式为:
步骤S3:将加单Nuttall窗后的数据序列在原位置进行周期延拓,并将延拓后的数据移位后纵向排列,每个行元素由相邻的N个数据延拓组成,相邻行元素较上一行移一位,共组成N行;
步骤S4:用4项3阶Nuttall窗对进行周期延拓后的序列在竖直方向上再次加权,并进行纵向求和,得到新的N个数据的周期序列,完成全相位预处理过程。得到的新序列作为快速傅里叶变换FFT的输入序列;
步骤S5:对全相位预处理后的N个数据的周期序列进行快速傅里叶变换,得到相应的频率、相位及幅值输出结果,完成Nuttall双窗全相位检测;检测结果中,设主谱线为k,得到主谱线相角为得到主谱线幅值为YN(k);
步骤S6:通过FFT/apFFT相位差校正法对步骤S5所得的检测结果进行校正,得到采样信号实际的相位、幅值及频率信息。
进一步地,所述步骤S6具体包括以下步骤:
步骤S61:取步骤S2中2N-1个点的初始数据的前N个点直接做快速傅里叶变换FFT,设主谱线为k,得到主谱线相角为得到主谱线幅值为XN(k);
步骤S62:由于全相位傅里叶算法具有相位不变的优良特性,故相位估计可以直接取其主谱线相角即:
步骤S63:FFT与apFFT算法的主谱线幅值的模值存在如下关系:
式中,Fg(ω)为窗函数的频谱表达式,△ω为数字角频率的分辨率△ω=2π/N。
则幅值估计为:
步骤S64:FFT与apFFT算法的主谱线相角差存在:的关系,式中τ为群延迟系数,上述表明:频偏值dω=f-k△ω与传统FFT和apFFT主谱线上的相角差成比例关系,比例系数τ=(1-1/N)π。则频率估计为:
图3比较了4项3阶Nuttall窗Hanning、Blackman窗的归一化对数谱,从中可以看出本发明所采用的窗函数旁瓣峰值低,旁瓣衰减速率快,瓣特性有明显优势。图4,图5比较了本发明算法与其他几类传统算法在幅值及相位测量时的误差比较,从中可以看出采用本发明技术方案具有更高的精度与可靠性。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (1)

1.一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法,其特征在于:将具有相位不变特性和良好的频谱泄漏抑制功能的全相位谱分析的方法,与旁瓣特性好的Nuttall窗结合,后利用传统FFT算法与全相位傅里叶算法apFFT之间的联系,采用FFT/apFFT相位差校正方法对检测的幅值及频率进行校正,实现电力系统谐波间谐波检测;该方法具体实现步骤如下:
步骤S1:从电网采集所要进行分析的信号,设采样得到的含谐波的离散时间信号为:
式中:h为谐波次数,H为最高次谐波,f1为基波频率,fs为采样频率,如采样定理所述:采样频率在取值时要高于信号中所存在的最高频分量的两倍,Ah、θh分别为第h次谐波的有效值和相位角;
步骤S2:对上步采集到的结果,取2N-1个点的初始数据,通过4项3阶Nuttall窗进行初次加权,Nuttall窗作为一种余弦组合窗,其时域表达式为:
式中:M为窗函数的项数;n=0,1,2,…,N-1;bm应满足约束条件,对于4项3阶Nuttall窗,b0-b3分别取0.338946、0.481973、0.161054、0.018027;Nuttall窗的频谱函数表达式为:
式中WR(w)表示矩形窗的频谱函数,表达式为:
步骤S3:将加单Nuttall窗后的数据序列在原位置进行周期延拓,并将延拓后的数据移位后纵向排列,每个行元素由相邻的N个数据延拓组成,相邻行元素较上一行移一位,共组成N行;
步骤S4:用4项3阶Nuttall窗对进行周期延拓后的序列在竖直方向上再次加权,并进行纵向求和,得到新的N个数据的周期序列,完成全相位预处理过程, 得到的新序列作为快速傅里叶变换FFT的输入序列;
步骤S5:对全相位预处理后的N个数据的周期序列进行快速傅里叶变换,得到相应的频率、相位及幅值输出结果,完成Nuttall双窗全相位检测;检测结果中,设主谱线为k,得到主谱线相角为得到主谱线幅值为YN(k);
步骤S6:通过FFT/apFFT相位差校正法对步骤S5所得的检测结果进行校正,得到采样信号实际的相位、幅值及频率信息;
步骤S61:取步骤S2中2N-1个点的初始数据的前N个点直接做快速傅里叶变换FFT,设主谱线为k,得到主谱线相角为得到主谱线幅值为XN(k);
步骤S62:由于全相位傅里叶算法具有相位不变的优良特性,故相位估计可以直接取其主谱线相角即:
步骤S63:FFT与apFFT算法的主谱线幅值的模值存在如下关系:
式中,Fg(ω)为窗函数的频谱表达式,Δω为数字角频率的分辨率Δω=2π/N;
则幅值估计为:
步骤S64:FFT与apFFT算法的主谱线相角差存在:的关系,式中τ为群延迟系数,上述表明:频偏值dω=f-kΔω与传统FFT和apFFT主谱线上的相角差成比例关系,比例系数τ=(1-1/N)π;则频率估计为:
CN201610852535.0A 2016-09-27 2016-09-27 一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法 Active CN106483374B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610852535.0A CN106483374B (zh) 2016-09-27 2016-09-27 一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610852535.0A CN106483374B (zh) 2016-09-27 2016-09-27 一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法

Publications (2)

Publication Number Publication Date
CN106483374A CN106483374A (zh) 2017-03-08
CN106483374B true CN106483374B (zh) 2019-01-22

Family

ID=58267674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610852535.0A Active CN106483374B (zh) 2016-09-27 2016-09-27 一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法

Country Status (1)

Country Link
CN (1) CN106483374B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271774B (zh) * 2017-07-10 2019-06-14 河南理工大学 一种基于频谱泄漏校正算法的apf谐波检测方法
CN107505505A (zh) * 2017-08-18 2017-12-22 国家电网公司 一种适用于现场多种负荷的数字化电能表及其计量方法
CN107727733A (zh) * 2017-11-02 2018-02-23 上海市特种设备监督检验技术研究院 一种基于脉冲涡流的电导率仪
CN108107393B (zh) * 2017-12-06 2019-11-05 中国矿业大学 一种谐波分析中谱峰可信度判断方法
CN108107269B (zh) * 2017-12-07 2019-11-05 中国矿业大学 一种谐波分析中幅值求解方法
CN108710123A (zh) * 2018-05-19 2018-10-26 南京理工大学 一种三角波调频近程探测系统测速测距方法
CN109346054B (zh) * 2018-10-23 2021-11-02 超越科技股份有限公司 一种主动降噪方法与装置
CN109655665A (zh) * 2018-12-29 2019-04-19 国网安徽省电力有限公司 基于布莱克曼窗的全相位傅里叶谐波分析方法
CN109900959B (zh) * 2019-04-17 2020-10-02 贵州电网有限责任公司 一种动态正弦畸变信号中谐波成分的提取方法
CN110376497B (zh) * 2019-08-12 2022-05-13 国网四川电力服务有限公司 基于全相位深度学习的低压配电系统串联故障电弧识别法
CN112034285B (zh) * 2020-08-28 2021-06-29 浙江大学 一种计及幅值谱和相位谱的高频阻抗参数提取方法
CN111984920B (zh) * 2020-08-31 2022-03-18 广东电网有限责任公司广州供电局 次/超同步谐波参数识别方法、装置、设备和介质
CN112485522B (zh) * 2020-12-09 2023-05-16 国网四川省电力公司电力科学研究院 基于电能数据感知的平顶窗函数同步相量测量方法及装置
CN113567789A (zh) * 2021-07-30 2021-10-29 高渊 一种具备环境防护效果的三相多功能电力仪表
CN113358930B (zh) * 2021-08-09 2021-10-29 南京派格测控科技有限公司 一种基于信号偏移的谐波测试系统、装置及方法
CN113985116A (zh) * 2021-09-14 2022-01-28 合肥工业大学 氧化锌避雷器泄漏电流的全相位fft时移相位差校正方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Nuttall窗加权谐波分析算法及其在电能计量中的应用;温和等;《仪器仪表学报》;20090930;第30卷(第9期);1823-1828页
基于Nutall窗的时移综合相位差谐波分析法;刘海升等;《电工电能新技术》;20151231;第34卷(第12期);第2-5节
基于全相位FFT的高精度频率计系统研究;任丽棉;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20111215(第S2期);第2.1.3、3.3.3、5.4节
基于全相位FFT的高精度频率计设计;任丽棉等;《唐山学院学报》;20100531;第23卷(第3期);42-43、46页
基于全相位频谱分析的相位差频谱校正法;黄翔东等;《电子与信息学报》;20080229;第30卷(第2期);293-297页
基于最快衰减余弦窗全相位FFT的电力谐波分析;蔡晓峰等;《河南工程学院学报》;20150630;第27卷(第2期);51-55页
改进的全相位时移相位差频谱分析算法;张涛等;《系统工程与电子技术》;20110731;第33卷(第7期);1468-1472页
电力系统谐波检测全相位频谱分析研究;张万新等;《电子设计工程》;20121130;第20卷(第21期);162-165页

Also Published As

Publication number Publication date
CN106483374A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
CN106483374B (zh) 一种基于Nuttall双窗全相位FFT的谐波间谐波检测方法
CN106443178B (zh) 一种基于IQuinn-Rife综合的正弦信号频率估计方法
Wang et al. Integrated cubic phase function for linear FM signal analysis
CN103454497B (zh) 基于改进加窗离散傅立叶变换的相位差测量方法
Su et al. Power harmonic and interharmonic detection method in renewable power based on Nuttall double‐window all‐phase FFT algorithm
CN101701984B (zh) 基于三项系数Nuttall窗插值FFT的基波与谐波检测方法
CN101603985B (zh) 高准确度正弦信号测量方法
Wen et al. Novel three-point interpolation DFT method for frequency measurement of sine-wave
CN104391178A (zh) 一种基于Nuttall窗的时移相位差稳态谐波信号校正方法
CN104360305A (zh) 联合压缩感知和信号循环平稳特性的辐射源测向定位方法
CN105137180A (zh) 基于六项余弦窗四谱线插值的高精度谐波分析方法
CN109541312A (zh) 一种新能源汇集地区次同步谐波检测方法
Selva ML estimation and detection of multiple frequencies through periodogram estimate refinement
CN101718816B (zh) 基于四项系数Nuttall窗插值FFT的基波与谐波检测方法
Lu et al. Patterns and frequencies of the East Asian winter monsoon variations during the past million years revealed by wavelet and spectral analyses
Yan et al. Feature extraction by enhanced time–frequency analysis method based on Vold-Kalman filter
CN109541304A (zh) 基于六项最小旁瓣窗插值的电网高次弱幅值谐波检测方法
Chen et al. Statistical synchrosqueezing transform and its application to seismic thin interbed analysis
Novotny et al. The influence of window sidelobes on DFT-based multifrequency signal measurement
Belega et al. Amplitude estimation by a multipoint interpolated DFT approach
CN105738698B (zh) 一种基于中心频移的谐波参数估计算法
Zhu et al. Estimation of multi-frequency signal parameters by frequency domain non-linear least squares
Wang et al. Fast and adaptive method for SAR superresolution imaging based on point scattering model and optimal basis selection
Xu et al. Parameter estimation of underwater moving sources by using matched Wigner transform
Wang et al. Parameters estimation algorithm for the exponential signal by the interpolated all-phase DFT approach

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant