CN106460143A - 卷对卷金属衬底的硒化或硫化方法 - Google Patents

卷对卷金属衬底的硒化或硫化方法 Download PDF

Info

Publication number
CN106460143A
CN106460143A CN201580030452.7A CN201580030452A CN106460143A CN 106460143 A CN106460143 A CN 106460143A CN 201580030452 A CN201580030452 A CN 201580030452A CN 106460143 A CN106460143 A CN 106460143A
Authority
CN
China
Prior art keywords
area
precursor material
substrate
vacuum chamber
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580030452.7A
Other languages
English (en)
Inventor
A·C·沃尔
J·K·金姆
E·贝科夫
S·高
江祥忠
B·D·赫克特曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NuvoSun Inc
Original Assignee
NuvoSun Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NuvoSun Inc filed Critical NuvoSun Inc
Publication of CN106460143A publication Critical patent/CN106460143A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明披露用于加工前体材料的方法和系统。所述方法包括将衬底引入到真空腔室的第一区域中,所述衬底的表面上沉积有前体材料。所述前体材料包含铜;铟;以及镓、硒、硫、钠、锑、硼、铝和银中的至少一种。所述方法进一步包括在所述第一区域内,将所述前体材料加热到在约270℃到约490℃范围内的目标反应温度。所述方法进一步包括使硒蒸气维持在所述真空腔室的第二区域中,并且在将所述前体材料加热到所述目标反应温度后,将所述前体材料和所述衬底引入到所述真空腔室的所述第二区域中。

Description

卷对卷金属衬底的硒化或硫化方法
相关申请交叉参考
本申请案主张2014年6月17日申请的美国临时申请第No.62/013,065号的优先权,所述美国临时申请的披露内容特此以全文引用的方式并入本文中。
背景技术
除非在此另有说明,否则这部分中描述的材料不是本申请案中的权利要求书的先前技术,并且并不因为包含在这部分中就被承认为先前技术。
不同于单晶硅,当沉积于柔性衬底上的薄层(例如1到5μm)中时,二硒化铜铟(CuInSe2或CIS)是有效的光吸收材料。在一些应用中,如镓或铝的元素可按比例取代CIS内的铟原子以形成如CuIn1-xGaxSe2(CIGS)或CuIn1-xAlxSe2(CIAS)的材料。通过置换CIS内的铟而形成的前述材料群可通常称为CIGS,但出于本文的目的应理解为包括如CIAS的这类材料。举例来说,铝或镓取代铟可用于增加材料的电子带隙,其视应用而定可引起由所述材料制成的太阳能电池的较高输出电压。
在衬底上形成CIGS膜的一种方式是经由共蒸发真空腔室内的成分材料。共蒸发包括加热铜、铟、镓、铝、硫或硒源材料,以使其在真空腔室内蒸发、在加热衬底上冷凝并反应以形成CIGS。共蒸发工艺可产生具有光滑表面的高效CIGS装置,但可能难以大规模制造。
另一工艺包括在衬底上溅镀或共沉积前体膜,并随后在高温下将前体膜暴露于硒和/或硫蒸气下。然而由这种工艺所产生的CIGS膜通常比共蒸发膜表面粗糙。这些粗糙表面可使完成太阳能电池或模块的额外材料层的后续沉积复杂化。
发明内容
例示性实施例提供被配置成产生沉积于衬底上的CuInGaSe2(CIGS)膜的方法。例示性方法可有利地产生具有光滑表面的CIGS膜,能够沉积例如厚度约50nm到约80nm的CdS薄层和/或沉积例如厚度约200nm到约400nm的薄透明导电氧化物。举例来说,具有光滑表面的CIGS膜可通过将如铜/铟/镓合金或混合物的前体材料加热到目标反应温度,随后暴露于如硒的反应性蒸气而形成。例示性方法可有利地产生较高效率太阳能电池。
因此,一方面,提供一种包括以下步骤的方法:(a)将具有沉积于衬底表面上的前体材料的衬底引入到真空腔室的第一区域中,其中前体材料包括铜;铟;以及镓、硒、硫、钠、锑、硼、铝和银中的至少一种;(b)在第一区域内,将前体材料加热到在约270℃到约490℃范围内的目标反应温度;(c)将硒蒸气维持在真空腔室的第二区域中;和(d)将前体材料加热到目标反应温度后,将前体材料和衬底引入到真空腔室的第二区域中。
在另一方面,提供非暂时性计算机可读媒体。非暂时性计算机可读媒体存储指令,当由控制系统执行所述指令时,使控制系统执行功能。功能包括将具有沉积于衬底表面上的前体材料的衬底引入到真空腔室的第一区域中。前体材料包括铜;铟;以及镓、硒、硫、钠、锑、硼、铝和银中的至少一种。功能还包括在第一区域内,将前体材料加热到在约270℃到约490℃范围内的目标反应温度。功能进一步包括使硒蒸气维持在真空腔室的第二区域中,并且在将前体材料加热到目标反应温度后,将前体材料和衬底引入到真空腔室的第二区域中。
本领域普通技术人员通过适当地参考附图阅读以下详细描述将明白这些以及其它方面、优点和替代方案。
附图说明
图1是根据本发明的一个实施例包括前体层的衬底幅材的说明。
图2A是根据一个实施例用于加工前体材料的系统的说明。
图2B描绘(i)衬底幅材温度与(ii)衬底幅材所经过的加工时间之间的例示性关系。
图2C描绘CIGS膜粗糙度与初始反应温度之间的例示性关系。
图3是根据本发明的一个实施例通过硒化前体层而形成的CIGS材料的说明。
图4是根据一个实施例的方法的流程图。
具体实施方式
本文中描述例示性方法和系统。本文所述的任何例示性实施例或特征未必应解释为比其它实施例或特征优选或有利。本文所述的例示性实施例不打算为限制性的。将易于理解的是,所披露的系统和方法的某些方面可以多种不同配置来布置和组合,本文中涵盖所有所述配置。
此外,图中示出的特定布置不应视为限制性的。应理解,其它实施例可大体上包括给定图中示出的每一元件。另外,可组合或省略一些所说明的元件。又另外,例示性实施例可包括图中未说明的元件。
图1显示沉积于电极层104上的适合前体层106,其又沉积于衬底层102上。衬底层102和电极层104共同构成复合衬底108。另外,当前体层106沉积于复合衬底上时,所得结构可称为衬底幅材110。
在一个实施例中,衬底层102可包括不锈钢、铝或钛以及其它可能性。在另一实施例中,衬底层102可具有柔性并且被配置成用于卷对卷加工,其厚度范围例如在约20μm到约250μm之间。衬底层102可具有已抛光的或粗糙度为约20nm到约100nm的未抛光顶表面。如电极层104的其它材料可作为工艺的一部分沉积于衬底层102的顶表面上以形成太阳能电池或模块。衬底层102可被配置成耐受与本文所披露的材料加工技术相关的高温和高温度改变速率。在沉积额外层之前,衬底层102可经历从衬底层102顶表面去除可能降低太阳能电池性能的污染物的各种化学冲洗或干燥方法。
在一个实施例中,电极层104可包括厚度在约50nm到约1500nm范围内的钼(Mo)膜。或者,电极层104可包括其它导电金属,如Cr、Ti、W、Ta或Nb。另一/其它导电金属可包括于电极层104的邻近前体层106的子层中。在一些实例中,衬底层102和电极层104可变为太阳能电池或太阳能模块的一部分,并且电极层104可充当用于利用由太阳能电池或模块产生的电能的导电路径(例如正极或负极端)。在一个实施例中,电极层104可包括具有光滑表面的溅镀沉积Mo,其被配置成在太阳能电池或模块的电极层104与光吸收层之间形成电接触。
前体层106可包括铜;铟;以及镓、硒、硫、钠、锑、硼、铝、银中的至少一种或其某一组合。在一个实施例中,如图1所示,前体层106可包括铜(Cu)、铟(In)和镓(Ga),并且厚度可在约400nm到约1000nm范围内。前体层106可以是均质的,因为前体层106的区域可具有与前体层106的其它区域基本上一致的化学计量。在前体层106内,(i)铜与(ii)铟和镓的比率可在约0.7到约0.96范围内,并且(i)镓与(ii)镓和铟的比率可在约0.2到约0.4范围内。
图2A显示用于加工前体材料的系统。材料加工系统200可包括第一区域202A和第二区域202B。第一区域202A和第二区域202B可安置在单个真空腔室中或可以是独立真空腔室。在一个实施例中,第一和第二区域202A和202B可具有独立温度、压力和氛围控制能力。举例来说,控制系统可被配置成监测并维持(i)衬底幅材218的温度,(ii)气压或(iii)第一区域202A或第二区域202B内的常压内容物。在一个实施例中,控制系统可被配置成控制第一区域加热器216A和第二区域加热器216B以控制第一区域202A或第二区域202B内的衬底幅材218的各别温度。在另一实施例中,控制系统可控制泵204A,其可被配置成将第一区域202A和第二区域202B分别抽空到约10-5托的压力。(在一些实施例中,可使用与第一区域202A和第二区域202B中的每个对应的泵。)范围在10-6托与10-2托之间的其它压力条件是可能的。泵204A可包括一种或多种机械泵、涡轮分子泵、扩散泵、离子泵或低温泵以及其它可能性。控制系统还可被配置成维持加工气体,如氩气、硒、硫或氮气进入第一区域202A或第二区域202B的流速。
在一个实施例中,衬底幅材218可包括(i)柔性不锈钢衬底层与(ii)沉积于衬底层顶表面上的钼电极层和(iii)沉积于电极层上的CuInGa前体层(参见图1和上文相关描述)。在对衬底幅材218进行进一步材料加工前,衬底幅材218的至少一部分可在馈入卷轴212上卷起。衬底幅材218可通过馈入卷轴212打开,并且进一步通过收集卷轴214推进,使得衬底幅材218可首先通过第一区域202A且随后通过第二区域202B馈入。
可通过控制系统,例如在第一区域插入点220A处将衬底幅材218引入到第一区域202A中,所述第一区域插入点可包括被配置成将衬底幅材218馈入到第一区域202A中,同时维持第一区域202A与周围气氛之间的差压的馈通(feed-through)。同移动通过第一区域202A时,衬底幅材218可通过第一区域加热器216A加热。在一个实施例中,第一区域加热器216A可包括卤素灯加热器或电阻加热元件,其被配置成将衬底幅材218加热到在约270℃到约490℃范围内,并且优选地在约360℃到约380℃范围内的反应温度。收集卷轴214和馈入卷轴212可被配置成使衬底幅材218以允许衬底幅材218达到目标反应温度的速率移动通过第一区域202A,随后从第一区域202A中移出衬底幅材218。在一个实施例中,衬底幅材218可维持在目标反应温度下约三分钟到约三十分钟,以便完成形成CIGS的反应。第一区域202A可基本上不含可在第二区域202B中蒸发的硒、硫或其它材料,允许衬底幅材218在暴露于引入到第二区域202B中的蒸气之前达到目标反应温度。
到达第一区域移出点222A后,将衬底幅材218引入到第二区域202B中。在一个实施例中,第一区域202A和第二区域202B可经由缝隙耦接,所述缝隙被配置成将衬底幅材218从第一区域202A转移到第二区域202B,其中衬底幅材218在进入第二区域202B之前未实质性暴露于周围气氛或蒸气下。衬底幅材218可在第二区域插入点220B处引入到第二区域202B中,所述第二区域插入点可包括类似于第一区域插入点220A或第一区域移出点222A的馈通。
一旦在第二区域202B内,衬底幅材218可暴露于由蒸气源,例如226B、228B、230B释放的蒸气。在各种实施例中,第二区域202B内可存在多于或少于三种蒸气源。另外,蒸气源226B、228B、230B可如图2A中显示位于第二区域202B内,或可位于第二区域202B外。在蒸气源226B、228B和230B位于第二区域202B外的实例中,蒸气源226B、228B、230B可经由例如由控制系统所控制的管道和阀门连接到第二区域202B。在另一实施例中,由蒸气源226B、228B、230B释放的蒸气可以是硒或硫以及其它可能性,并且优选地是硒。蒸气源226B、228B、230B可以是含有硒丸粒的加热容器,所述硒丸粒经过加热而使硒蒸发并扩散在第二区域202B中。在一个实例中,容器内硒的温度可加热到约335℃并维持在所述温度下。一旦衬底幅材218达到在约270℃到约490℃范围内,并且优选地在约360℃到约380℃范围内的目标反应温度,即可将衬底幅材218插入到第二区域202B中。在一个实施例中,当衬底幅材218处于目标反应温度时,衬底幅材218可首先与第二区域202B中的蒸气接触。随后,在衬底幅材218与由蒸气源226B、228和230B释放的蒸气接触后,可经由第二区域加热器216B将第二区域202B内的衬底幅材218的温度提高到至少约520℃。所得CIGS膜可具有约65nm的平均粗糙度。
衬底幅材218可在第二区域移出点222B处从第二区域202B中移出,所述第二区域移出点可包括类似于第二区域插入点220B的缝隙。在一个实例中,在衬底幅材218的一部分从第二区域202B中移出后,可将其冷却到环境温度或约20℃到约150℃的低温,随后在收集卷轴214上卷起。在另一个实例中,系统200可包括第三区域(未图示),其中可在真空下和第二区域202B中不存在蒸气的情况下将衬底幅材218冷却到环境温度。
图2B描绘(i)衬底幅材温度与(ii)衬底幅材所经过的加工时间之间的例示性关系。点262描绘当衬底幅材218低于目标反应温度时,可将反应性蒸气引入到衬底幅材218中的情形。举例来说,当衬底幅材218处于200℃的温度时,可引入蒸气。这可导致粗糙CIGS膜的形成。点264描绘当衬底幅材218处于或高于目标反应温度时,可将反应性蒸气引入到衬底幅材218中的情形。在一个实施例中,例如当衬底幅材218的温度为375℃时,可引入蒸气。这一实施例可导致光滑CIGS膜的形成。
图2C描绘CIGS膜粗糙度与初始反应温度之间的例示性关系。点282表示将衬底幅材加热到约375℃后,通过使衬底幅材与硒蒸气接触而产生的CIGS膜。这类膜具有大致65nm的平均粗糙度。点284表示将衬底幅材加热到约300℃后,通过使衬底幅材与硒蒸气接触而产生的CIGS膜。这类膜具有大致85nm的平均粗糙度。点286表示将衬底幅材加热到约225℃后,通过使衬底幅材与硒蒸气接触而产生的CIGS膜。这类膜具有大致145nm的平均粗糙度。点288提供比较点,因为使用已知蒸发技术产生的CIGS膜通常具有在大致65nm到95nm范围内的粗糙度。因此,图2C显示,将CIGS衬底幅材的温度升高到约375℃,随后将衬底幅材暴露于硒蒸气下,会产生至少与经由共蒸发所产生的膜同样光滑的CIGS膜。
图3显示通过硒化前体层而形成的CIGS材料。图3包括衬底层302、电极层304和反应产物层306,其共同构成衬底幅材310。
衬底层302和电极层304可分别类似于如上文所述的图1的衬底层102和电极层104。衬底层302和电极层304可已暴露于上文关于图2A所描述的加工环境或方法下,但典型地通过加工环境或方法基本上保持不变。在一些实施例中,电极层304的一部分可与Se蒸气反应而例如形成MoSe2。因此,在某些条件下,图1的前体层106可与蒸气反应,由此实质上消耗前体层106并形成反应产物层306。举例来说,CuInGa前体层可与Se蒸气反应而形成CuInGaSe2反应产物层306。
在一个实施例中,反应产物层306可以是通过硒化图1的前体层106而形成的CuInGaSe2(CIGS)层。也就是说,包含Cu、In和Ga的前体层106可通过关于上文图2A所描述的反应性工艺而基本上转化以形成CIGS。在这种情况下,反应产物层306(CIGS)的所得厚度可大致比图1的前体层106的厚度大两倍。在其它实施例中,反应产物层306可包括如铝或硼而不是镓的材料,以及如硫而不是硒的材料。
包含衬底层302(例如不锈钢)、电极层304(例如钼)和反应产物层306(例如CIGS光吸收层)的衬底幅材310可被配置成用于额外功能层的进一步加工或沉积,如硫化镉缓冲层;如铝掺杂氧化锌的透明导电氧化物层;或如镍、铝、银或铜的金属触点网格层以用于使钼电极层与金属触点网格层之间的电路形成通路。
图4是表示用于加工前体材料的例示性方法的流程图。方法400可包括一或多种如由方框402到408所说明的功能。尽管方框以顺序次序示出,但这些方框可在一些情况下以并行和/或不同于本文所述的那些次序来进行。另外,基于所要实施方案,各种方框可合并成较少方框、分成额外方框和/或去除。
此外,对于方法400和本文所披露的其它工艺和方法,图4显示当前实施例的一种可能实施方案的功能和操作。在此方面,每个方框可表示模块、片段或程序代码的一部分,其包括可由处理器执行的一种或多种指令以实施工艺中的特定逻辑功能或步骤。程序代码可存储在任何类型的计算机可读媒体上,例如,包括磁盘或硬盘驱动器的存储装置。计算机可读媒体可包括非暂时性计算机可读媒体,例如短时间段内存储数据的计算机可读媒体,如寄存器存储器、处理器高速缓冲存储器和随机存取存储器(RAM)。计算机可读媒体还可包括非暂时性媒体,如二级或持久性长期存储装置,例如只读存储器(ROM)、光盘或磁盘或压缩光盘只读存储器(CD-ROM)。计算机可读媒体还可以是任何其它易失性或非易失性存储器系统。计算机可读媒体可视为例如计算机可读存储媒体、有形存储装置或其它制品。
此外,对于方法400和本文所披露的其它工艺和方法,图4中的每个方框可表示被配置成执行方法400的特定逻辑功能的电路。在方框402处,方法400包括将具有沉积于衬底表面上的前体材料的衬底引入到真空腔室的第一区域中。前体材料可包括铜;铟;以及镓、硒、硫、钠、锑、硼、铝、银中的至少一种;或其某一组合。真空腔室的第一区域可以是具有独立衬底温度控制的真空系统的一部分。随后,在方框404处,方法400进一步包括在第一区域内,将前体材料加热到在约270℃到约490℃范围内的目标反应温度。在一个实施例中,目标反应温度可在约360℃到约380℃范围内,优选地为约370℃。在一个实施例中,前体材料可通过上文关于图2A所述的第一区域加热器216A加热到目标反应温度。随后,在方框406处,方法400包括将硒蒸气或硫蒸气维持在真空腔室的第二区域中。硒蒸气可以是Se或H2Se,并且硫蒸气可以是S或H2S。硒蒸气可通过例如图2A的蒸气源226B、228B和230B维持在第二区域202B内。在方框408处,方法400另外包括将前体材料加热到目标反应温度后,将前体材料和衬底引入到真空腔室的第二区域中。
在一个实施例中,方法400可进一步包括当衬底在第二区域内时,将衬底(即衬底层、电极层、反应产物层或任何剩余前体层)温度提高到约520℃或更高。举例来说,衬底温度可通过第二区域加热器216B来提高。一旦引入真空腔室的第二区域中,前体材料可与硒蒸气或硫蒸气反应。
上文具体实施方式参考附图描述所披露系统和方法的各种特征和功能。虽然本文中已经披露各种方面和实施例,但本领域的普通技术人员将明白其它方面和实施例。除非上下文明确指示,否则可结合处于本发明的不同方面内以及之间的所有实施例。本文所披露的各种方面和实施例是出于说明的目的,并且不打算为限制性的,其中真实的范围和精神由以下权利要求书指示。

Claims (15)

1.一种方法,包含:
将衬底引入到真空腔室的第一区域中,所述衬底的表面上沉积有前体材料,其中所述前体材料包含铜;铟;以及镓、钠、硒、硫、锑、硼、铝和银中的至少一种;
在所述第一区域内,将所述前体材料加热到在约270℃到约490℃范围内的目标反应温度;
使硒蒸气或硫蒸气中的一个维持在所述真空腔室的第二区域中;以及
将所述前体材料加热到所述目标反应温度后,将所述前体材料和所述衬底引入到所述真空腔室的所述第二区域中。
2.根据权利要求1所述的方法,进一步包含使所述前体材料与所述真空腔室的所述第二区域中的所述硒蒸气或所述硫蒸气反应。
3.根据权利要求1到2中任一权利要求所述的方法,其中所述目标反应温度在约360℃到约380℃范围内。
4.根据权利要求1到3中任一权利要求所述的方法,其中在所述第二区域内,将所述衬底的温度提高到至少约520℃。
5.根据权利要求1到4中任一权利要求所述的方法,其中所述真空腔室被配置成用于卷对卷加工,并且所述衬底包含不锈钢、非不锈钢、铝或其它金属膜。
6.根据权利要求1到5中任一权利要求所述的方法,其中所述目标反应温度在约350℃到约490℃范围内。
7.根据权利要求1到6中任一权利要求所述的方法,其中所述目标反应温度为约370℃。
8.根据权利要求1到7中任一权利要求所述的方法,进一步包含经由与所述真空腔室的所述第二区域并且与含有硒或硫熔融形式的容器连通的阀门来控制所述第二区域中硒蒸气或硫蒸气的量。
9.根据权利要求8所述的方法,进一步包含使所述容器的温度维持在约335℃。
10.根据权利要求1所述的方法,其中所述硒蒸气包括H2Se,或所述硫蒸气包括H2S。
11.一种存储指令的非暂时性计算机可读媒体,所述指令当由控制系统执行时引起所述控制系统执行功能,所述功能包含:
将衬底引入到真空腔室的第一区域中,所述衬底的表面上沉积有前体材料,其中所述前体材料包含铜;铟;以及镓、硒、硫、钠、锑、硼、铝和银中的至少一种;
在所述第一区域内,将所述前体材料加热到在约270℃到约490℃范围内的目标反应温度;
使硒蒸气或硫蒸气中的一个维持在所述真空腔室的第二区域中;以及
将所述前体材料加热到所述目标反应温度后,将所述前体材料和所述衬底引入到所述真空腔室的所述第二区域中。
12.根据权利要求11所述的非暂时性计算机可读媒体,其中所述目标反应温度在约360℃到约380℃范围内。
13.根据权利要求11到12中任一权利要求所述的非暂时性计算机可读媒体,其中在所述第二区域内,将所述衬底的温度提高到约520℃。
14.根据权利要求11到13中任一权利要求所述的非暂时性计算机可读媒体,其中所述目标反应温度在约350℃到约490℃范围内。
15.根据权利要求11到14中任一权利要求所述的非暂时性计算机可读媒体,其中所述功能进一步包含使所述前体材料与所述真空腔室的所述第二区域中的所述硒蒸气或所述硫蒸气反应。
CN201580030452.7A 2014-06-17 2015-06-08 卷对卷金属衬底的硒化或硫化方法 Pending CN106460143A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462013065P 2014-06-17 2014-06-17
US62/013065 2014-06-17
PCT/US2015/034639 WO2015195388A1 (en) 2014-06-17 2015-06-08 Selenization or sufurization method of roll to roll metal substrates

Publications (1)

Publication Number Publication Date
CN106460143A true CN106460143A (zh) 2017-02-22

Family

ID=53396632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580030452.7A Pending CN106460143A (zh) 2014-06-17 2015-06-08 卷对卷金属衬底的硒化或硫化方法

Country Status (4)

Country Link
US (1) US20170167028A1 (zh)
CN (1) CN106460143A (zh)
TW (1) TW201602390A (zh)
WO (1) WO2015195388A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686836B (zh) * 2022-03-28 2023-08-22 尚越光电科技股份有限公司 一种卷对卷铜铟镓硒蒸镀的xrf检测结构

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982567A (zh) * 2010-09-10 2011-03-02 上海太阳能电池研究与发展中心 一种用于太阳能电池的铜铟硒硫薄膜的制备方法
CN102024870A (zh) * 2010-04-19 2011-04-20 福建欧德生光电科技有限公司 半导体薄膜太阳能电池的制造系统和方法
CN102024878A (zh) * 2010-11-03 2011-04-20 上海联孚新能源科技有限公司 一种太阳能电池用铜铟镓硫薄膜的制备方法
CN102194925A (zh) * 2010-02-26 2011-09-21 韩国电子通信研究院 制造薄膜光吸收层的方法及使用其制造薄膜太阳能电池的方法
CN102694068A (zh) * 2012-05-23 2012-09-26 中南大学 一种铜铟镓硒薄膜表面修饰的方法
US20120270363A1 (en) * 2011-01-05 2012-10-25 David Jackrel Multi-nary group ib and via based semiconductor
CN103318851A (zh) * 2013-05-24 2013-09-25 深圳市亚太兴实业有限公司 铜铟镓硫硒太阳能电池、薄膜吸收层及其制备方法
CN103346206A (zh) * 2013-06-09 2013-10-09 深圳市亚太兴实业有限公司 一种表面富硫的铜铟镓硒薄膜的制备方法
CN103602982A (zh) * 2013-11-21 2014-02-26 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的非真空制备方法
CN103700725A (zh) * 2013-12-27 2014-04-02 渤海大学 一种用于太阳能电池的基于纳米粒子铜铟硫硒薄膜的制备方法
CN103715281A (zh) * 2013-12-03 2014-04-09 李�远 Cigs原位掺杂方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070111367A1 (en) * 2005-10-19 2007-05-17 Basol Bulent M Method and apparatus for converting precursor layers into photovoltaic absorbers
US20090183675A1 (en) * 2006-10-13 2009-07-23 Mustafa Pinarbasi Reactor to form solar cell absorbers
US20120031604A1 (en) * 2010-08-05 2012-02-09 Aventa Technologies Llc System and method for fabricating thin-film photovoltaic devices

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194925A (zh) * 2010-02-26 2011-09-21 韩国电子通信研究院 制造薄膜光吸收层的方法及使用其制造薄膜太阳能电池的方法
CN102024870A (zh) * 2010-04-19 2011-04-20 福建欧德生光电科技有限公司 半导体薄膜太阳能电池的制造系统和方法
CN101982567A (zh) * 2010-09-10 2011-03-02 上海太阳能电池研究与发展中心 一种用于太阳能电池的铜铟硒硫薄膜的制备方法
CN102024878A (zh) * 2010-11-03 2011-04-20 上海联孚新能源科技有限公司 一种太阳能电池用铜铟镓硫薄膜的制备方法
US20120270363A1 (en) * 2011-01-05 2012-10-25 David Jackrel Multi-nary group ib and via based semiconductor
CN102694068A (zh) * 2012-05-23 2012-09-26 中南大学 一种铜铟镓硒薄膜表面修饰的方法
CN103318851A (zh) * 2013-05-24 2013-09-25 深圳市亚太兴实业有限公司 铜铟镓硫硒太阳能电池、薄膜吸收层及其制备方法
CN103346206A (zh) * 2013-06-09 2013-10-09 深圳市亚太兴实业有限公司 一种表面富硫的铜铟镓硒薄膜的制备方法
CN103602982A (zh) * 2013-11-21 2014-02-26 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的非真空制备方法
CN103715281A (zh) * 2013-12-03 2014-04-09 李�远 Cigs原位掺杂方法
CN103700725A (zh) * 2013-12-27 2014-04-02 渤海大学 一种用于太阳能电池的基于纳米粒子铜铟硫硒薄膜的制备方法

Also Published As

Publication number Publication date
US20170167028A1 (en) 2017-06-15
WO2015195388A1 (en) 2015-12-23
TW201602390A (zh) 2016-01-16

Similar Documents

Publication Publication Date Title
McLeod et al. Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks
US8053274B2 (en) Self cleaning large scale method and furnace system for selenization of thin film photovoltaic materials
US20100297835A1 (en) Methods for fabricating copper indium gallium diselenide (cigs) compound thin films
JP4919710B2 (ja) 薄膜太陽電池
US20120122304A1 (en) System and Method for Transferring Substrates in Large Scale Processing of CIGS and/or CIS Devices
TW201250020A (en) Sodium sputtering doping method for large scale cigs based thin film photovoltaic materials
JP2014513413A (ja) 五元化合物半導体CZTSSeおよび薄膜太陽電池の製造方法
JP2011513990A (ja) 太陽電池の製造方法
TW201128793A (en) In chamber sodium doping process and system for large scale CIGS based thin film photovoltaic materials
JP4110515B2 (ja) 薄膜太陽電池およびその製造方法
JP2011109052A (ja) 薄膜型光吸収層製造方法、これを用いた薄膜太陽電池製造方法、および薄膜太陽電池
JP6313428B2 (ja) 光電池又は光電池モジュール用のバックコンタクト基材
KR20130044850A (ko) 태양전지 및 이의 제조방법
US8241943B1 (en) Sodium doping method and system for shaped CIGS/CIS based thin film solar cells
JP2015509290A (ja) ナトリウムドープ五元化合物半導体CZTSSeの製造方法
CN106460143A (zh) 卷对卷金属衬底的硒化或硫化方法
Gao et al. Preparation of Cu2ZnSnSe4 solar cells by low-temperature co-evaporation and following selenization
TW201442262A (zh) Cigs系化合物太陽電池
EP2551921A1 (en) Method of forming optoelectronic conversion layer
Basol et al. CuInSe2 films and solar cells obtained by selenization of evaporated Cu‐In layers
JP2014135486A (ja) 太陽電池の製造方法
Peng et al. Flexible CZTS solar cells on flexible Corning® Willow® Glass substrates
KR102227799B1 (ko) Cigs 박막 태양전지 제조방법
WO2014174953A1 (ja) 光電変換素子の製造方法
CN110581074A (zh) 薄膜太阳能电池的组合蒸发和溅射工具

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222

WD01 Invention patent application deemed withdrawn after publication