CN106443610A - Mimo雷达收发阵列互耦误差自校正方法 - Google Patents

Mimo雷达收发阵列互耦误差自校正方法 Download PDF

Info

Publication number
CN106443610A
CN106443610A CN201611026575.6A CN201611026575A CN106443610A CN 106443610 A CN106443610 A CN 106443610A CN 201611026575 A CN201611026575 A CN 201611026575A CN 106443610 A CN106443610 A CN 106443610A
Authority
CN
China
Prior art keywords
mutual coupling
matrix
coupling error
transmitting
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611026575.6A
Other languages
English (en)
Other versions
CN106443610B (zh
Inventor
纠博
刘源
王凤莲
刘宏伟
王鹏辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201611026575.6A priority Critical patent/CN106443610B/zh
Publication of CN106443610A publication Critical patent/CN106443610A/zh
Application granted granted Critical
Publication of CN106443610B publication Critical patent/CN106443610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提出了一种MIMO雷达收发阵列互耦误差自校正方法,主要解决传统方法在进行收发阵列互耦误差校正时对样本需求大和无法在线实时校正发射互耦误差的问题。其技术方案是:1.对MIMO雷达回波数据进行脉冲压缩得到数据矩阵Y;2.利用空间平滑算法构造伪协方差矩阵R;3.根据伪协方差矩阵R估计强杂波方位信息;4.利用数据矩阵Y与强杂波的方位信息构造代价函数,通过该代价函数计算接收互耦误差矩阵Cr,实现对接收互耦误差的估计;5.利用接收互耦矩阵Cr求解发射互耦误差矩阵Ct,实现对发射互耦误差的估计。本发明使用MIMO雷达的单次快拍回波数据,能分别准确估计接收与发射阵列互耦误差,从而实现了收发互耦阵列自校正,可用于提高MIMO雷达探测性能。

Description

MIMO雷达收发阵列互耦误差自校正方法
技术领域
本发明属于雷达技术领域,特别涉及雷达收发阵列互耦误差的校正方法,可用于MIMO雷达探测。
背景技术
多输入多输出MIMO雷达作为一种新体制雷达,可以通过多个发射天线发射不同信号,多个接收天线同时接收回波并进行信号处理。理论研究表明,MIMO雷达在自由度、抗杂波、多目标检测与跟踪、角度分辨率等方面的性能相比传统雷达均有明显地改进。但以上优良性能的取得都是以精确已知的阵列流形为前提的,在实际的工程应用中,由于互耦误差的存在,实际的阵列流形会出现一定的偏差。阵列流形失配会严重恶化MIMO雷达方向图赋形的能力,波形分集带来的优势也将大打折扣。因此阵列互耦误差的校正具有重要的现实意义,也是实际工程应用中一个亟待解决的问题。
现有阵列误差校正分为有源和自校正两大类。考虑阵列互耦误差是时变的,基于回波数据的自校正方法不受场地环境等因素的限制,工作方式更灵活,具有更强的实用性。传统自校正方法基于相控阵体制,主要关注接收端误差特性,没有考虑发射端互耦误差问题,且往往基于大量独立同分布样本数据,而实际环境复杂多变,样本资源相对稀缺,因此传统自校正方法不能很好的发挥作用。
发明内容
本发明的目的在于针对上述现有技术的不足,提出一种基于单快拍MIMO雷达回波数据的收发互耦误差校正方法,以解决传统方法无法在线实时校正发射端互耦误差及对样本需求大的问题。
为实现上述目的,本发明的技术方案如下:
(1)MIMO雷达发射正交信号,经某方位稀疏的杂波散射体反射后得到回波数据X,对该回波数据进行脉冲压缩得到数据矩阵Y;
(2)对数据矩阵Y进行取列操作,得到数据矩阵第m列的数据Ym,根据接收阵列互耦自由度pr截取数据Ym的中间有效孔径数据,再利用空间平滑算法构造l×2q维伪协方差矩阵R,其中q为划分的子阵个数,l为子阵阵元数;
(3)根据伪协方差矩阵R估计强杂波方位信息:
(3a)对伪协方差矩阵R进行奇异值分解,得到J个大奇异值及由大奇异值对应的奇异向量张成的信号子空间Us和l-J个小奇异值及由小奇异对应的奇异向量张成的噪声子空间Un,J为强杂波点的个数;
(3b)利用信号子空间Us与噪声子空间Un的正交性,计算强杂波方位估计值θj
(4)利用步骤(2)得到的数据矩阵Ym与步骤(3)估计的强杂波的方位估计值θj,构造代价函数并采用交替迭代的方法估计等效杂波散射系数β′j与接收互耦误差矩阵Cr
(4a)以最小化重构误差为准则,构建包含接收互耦误差的代价函数为:
其中arj)为θj方向的接收导向矢量,J为强杂波点的个数;
(4b)初始化交替迭代算法的参数,假设初始不存在互耦误差,即Cr=I;
(4c)将Cr的估计值带入代价函数,用最小二乘法得到等效杂波散射系数β′j的估计值;
(4d)将(4c)得到的等效杂波散射系数β′j的估计值带入代价函数,得到接收互耦误差矩阵Cr的估计值;
(4e)重复步骤(4c)-(4d),直至代价函数不再减小;
(5)利用步骤(4)估计的接收互耦矩阵Cr与步骤(3)的强杂波方位估计值θj求解发射互耦误差矩阵Ct
(5a)用Cr的逆矩阵补偿回波数据矩阵Y,得到补偿后的回波矩阵:对Y′进行取行操作得到第n行的数据Yn′;
(5b)结合步骤(3)估计的强杂波的方位值θj,以最小化重构误差为准则构建包含发射互耦误差的代价函数:
其中β″j是估计发射互耦误差时的等效杂波散射系数,Ct为发射互耦误差矩阵,atj)为θj方向的发射导向矢量;
(5c)采用步骤(4)中的交替迭代算法,求解包含发射互耦误差的代价函数,得到发射互耦矩阵Ct
本发明具有如下优点:
1.本发明使用MIMO雷达的单次快拍回波数据,实现接收互耦误差和发射互耦误差的估计,有效解决了传统方法估计阵列互耦误差时对样本需求量大的问题。
2.本发明利用MIMO雷达波形的正交性,用接收互耦误差矩阵补偿回波数据,实现发射互耦误差自校正,解决了传统方法无法在线实时估计发射互耦误差的问题。
附图说明
图1为本发明的实现流程图;
图2为本发明接收阵列互耦误差向量的实部真值与估计值的比较;
图3为本发明接收阵列互耦误差向量的虚部真值与估计值的比较;
图4为本发明发射阵列互耦误差向量的实部真值与估计值的比较;
图5为本发明发射阵列互耦误差向量的虚部真值与估计值的比较。
具体实施方式
以下结合附图对本发明的实施例及效果做进一步详细描述。
参照图1,本发明MIMO雷达收发阵列互耦误差自校正方法,其实现步骤如下:
步骤1,获取杂波回波数据。
(1a)设MIMO雷达发射和接收阵列的阵元数分别为Nt和Nr,接收互耦误差矩阵为Cr,发射互耦误差矩阵为Ct,对于均匀线阵而言,将Cr和Ct建模为如下对称带状Toeplitz矩阵:
接收互耦误差矩阵Cr中的元素由构成,且满足其中crw表示接收互耦误差矩阵Cr第一行的第w个元素,w=1,2,...,pr,其中pr为接收互耦自由度,发射互耦误差矩阵Ct中的元素由构成,且满足其中ctv表示发射互耦误差矩阵Ct第一行的第v个元素,v=1,2,...,pt,其中pt为发射互耦自由度;
(1b)设MIMO雷达发射的正交信号为s=[s1 s2…sL],其中L为码元长度,将某距离单元的J个静止不动杂波散射体回波基带信号表示为:
其中θj为第j个杂波散射体的方位,βj为θj方向杂波散射体的散射系数,arj)为θj方向的接收导向矢量,atj)为θj方向的发射导向矢量,j=1,2,...,J,Cr为接收互耦误差矩阵,Ct为发射互耦误差矩阵为,W为加性高斯白噪声;
(1c)对MIMO雷达回波数据X进行脉冲压缩,得到数据矩阵Y:
其中,(·)H表示共轭转置,(·)T表示转置,N=WSH为脉冲压缩后的回波噪声矩阵。
步骤2,构造伪协方差矩阵。
(2a)对数据矩阵Y进行取列操作,得到数据矩阵Y的第m列数据Ym
Ym=YΓ,
其中表示取第m列的数据;
(2b)根据接收互耦自由度pr截取数据Ym的中间有效孔径数据向量
其中Yk,m表示数据Ym的第k个元素,k=pr,pr+1,...,Nr-pr+1,Nr表示接收阵元的个数;
(2c)利用空间平滑算法,按照如下公式构造伪协方差矩阵:
其中yi为数据向量的第i个元素,i=1,2,...,nr,nr=Nr-2(pr-1)为接收阵列中间有效孔径阵元个数,pr为接收阵列互耦自由度,Nr为接收阵元个数,*表示取共轭,q为划分的子阵个数,l为子阵阵元数。
步骤3,估计杂波散射体的方位信息。
(3a)对伪协方差矩阵R进行奇异值分解,得到J个大奇异值及由大奇异值对应的奇异向量张成的信号子空间Us和l-J个小奇异值及由小奇异对应的奇异向量张成的噪声子空间Un,J为杂波散射体个数,l为子阵阵元数;
(3b)利用信号子空间Us与噪声子空间Un的正交性,按照如下公式构造空间谱函数P(θj):
其中,amj)是接收导向矢量arj)的前m行,ari)为θj方向的接收导向矢量,θj为第j个杂波散射体的方位,(·)H表示共轭转置;
(3c)对空间谱函数P(θi)进行一维谱峰搜索,即可得到杂波散射体方位θj
步骤4,交替迭代估计接收互耦误差矩阵Cr
(4a)由步骤1得到的数据矩阵Ym与步骤3估计的杂波散射体的方位θj,根据最小化重构误差准则,构造估计接收互耦误差的代价函数为:
其中,β′j为θj方向杂波散射体的等效散射系数,Cr为接收互耦误差矩阵,arj)为θj方向的接收导向矢量,J为杂波散射体个数;
(4b)初始化:假设初始不存在互耦误差,即
(4c)计算第i次迭代中的等效散射系数将第i迭代得到的接收互耦误差矩阵带入接收互耦误差代价函数,采用最小二乘法计算第i次迭代中的等效散射系数
其中Ar=[ar1)ar2)...arj)...arJ)],arj)为θj方向的接收导向矢量,(·)H表示共轭转置,(·)-1表示矩阵求逆;
(4d)更新接收互耦误差矩阵
(4d1)将接收互耦误差代价函数中的表示为:
其中是以互耦误差向量为变量的函数,互耦误差向量为接收互耦误差矩阵的第一列;
(4d2)将上述函数表示为:
其中,T(θj)是以θj为变量的函数矩阵,T(θj)=T1j)+T2j),
T1j)为Nr×Nr维的第一函数矩阵,该矩阵的第b行第d列元素为:b=1,2,...,Nr,d=1,2,...,Nr,Nr为接收阵列阵元个数,ab+d-1表示接收导向矢量arj)的第b+d-1个元素;
T2j)为Nr×Nr维的第二函数矩阵,该矩阵的第b行第d列元素为:ab-d+1表示接收导向矢量arj)的第b-d+1个元素;
(4d3)采用一阶Taylor展开对函数进行近似,得到以下近似式:
其中为第i次迭代得到的接收互耦误差向量,为接收互耦误差向量增量,将代回接收阵列互耦误差代价函数,即可得到接收互耦误差向量增量
(4d4)由第i次迭代得到的接收互耦误差向量和接收互耦误差向量增量得到接收互耦误差向量的初步更新值即:
(4d5)按的第一个元素对进行归一化,得到更新后的接收互耦误差向量再由构成更新后的接收互耦误差矩阵
(4e)重复步骤(4c)-(4d),直至接收互耦误差代价函数不再减小,此时的接收互耦误差矩阵即为所求接收互耦误差矩阵Cr
步骤5,估计发射互耦误差矩阵Ct
(5a)对接收互耦误差矩阵Cr求逆并补偿回波数据矩阵Y,得到补偿后的回波矩阵Y′:
(5b)对Y′进行取行操作,得到第n行的数据Yn′:
Y′n=ΛY′
其中表示取行操作;
(5c)以最小化重构误差为准则构建发射互耦误差的代价函数:
其中βj″是θj方向发射互耦误差的等效杂波散射系数,Ct为发射互耦误差矩阵,atj)为θj方向的发射导向矢量,J为杂波散射体个数;
(5d)采用步骤(4)中的交替迭代算法,求解发射互耦误差的代价函数,得到发射互耦矩阵Ct
本发明效果可以通过以下实验进一步证实:
1.实验场景:
设收发分置MIMO雷达接收阵元和发射阵元个数均为15,阵元间距为半波长,接收互耦误差向量为cr=[1-0.35+0.1j 0.2-0.16j 0.1+0.05j 0.01+0.01j],发射互耦误差向量为ct=[1-0.3+0.1j 0.15-0.12j 0.05+0.02j 0.01-0.01j],两个强杂波点分别位于40°和-20°方向,信噪比为50dB。
2.实验内容与结果
仿真一,在上述的实验场景下,采用本发明的方法对MIMO雷达接收阵列互耦误差进行估计,得到接收阵列互耦误差的实部的估计值与真实值的比较,结果如附图2所示;
仿真二,在上述的实验场景下,采用本发明的方法对MIMO雷达接收阵列互耦误差进行估计,得到接收阵列互耦误差的虚部的估计值与真实值的比较,结果如附图3所示;
从图2和图3中可以看出,本发明可以准确估计接收阵列互耦误差。
仿真三,在上述的实验场景下,采用本发明对MIMO雷达发射阵列互耦误差进行估计,得到接收阵列互耦误差的实部的估计值与真实值的比较,结果如附图4所示;
仿真四,在上述的实验场景下,采用本发明对MIMO雷达发射阵列互耦误差进行估计,得到接收阵列互耦误差的虚部的估计值与真实值的比较,结果如附图5所示。
从图4和图5中可以看出,本发明可以准确估计发射阵列互耦误差。
综上,本发明能够使用MIMO雷达的单次快拍回波数据,利用MIMO雷达波形的正交性,准确估计接收阵列互耦误差和发射阵列互耦误差,从而实现收发阵列互耦误差自校正。

Claims (7)

1.一种MIMO雷达收发阵列互耦误差自校正方法,包括如下步骤:
(1)MIMO雷达发射正交信号,经某方位稀疏的杂波散射体反射后得到回波数据X,对该回波数据进行脉冲压缩得到数据矩阵Y;
(2)对数据矩阵Y进行取列操作,得到数据矩阵第m列的数据Ym,根据接收阵列互耦自由度pr截取数据Ym的中间有效孔径数据,再利用空间平滑算法构造l×2q维伪协方差矩阵R,其中q为划分的子阵个数,l为子阵阵元数;
(3)根据伪协方差矩阵R估计强杂波方位信息:
(3a)对伪协方差矩阵R进行奇异值分解,得到J个大奇异值及由大奇异值对应的奇异向量张成的信号子空间Us和l-J个小奇异值及由小奇异对应的奇异向量张成的噪声子空间Un,J为强杂波点的个数;
(3b)利用信号子空间Us与噪声子空间Un的正交性,计算强杂波方位估计值θj
(4)利用步骤(2)得到的数据矩阵Ym与步骤(3)估计的强杂波的方位估计值θj,构造代价函数并采用交替迭代的方法估计等效杂波散射系数β′j与接收互耦误差矩阵Cr
(4a)以最小化重构误差为准则,构建接收互耦误差的代价函数为:
其中arj)为θj方向的接收导向矢量,J为强杂波点的个数;
(4b)初始化交替迭代算法的参数,假设初始不存在互耦误差,即Cr=I;
(4c)将Cr的估计值带入代价函数,用最小二乘法得到等效杂波散射系数β′j的估计值;
(4d)将(4c)得到的等效杂波散射系数β′j的估计值带入代价函数,得到接收互耦误差矩阵Cr的估计值;
(4e)重复步骤(4c)-(4d),直至代价函数不再减小;
(5)利用步骤(4)估计的接收互耦矩阵Cr与步骤(3)的强杂波方位估计值θj求解发射互耦误差矩阵Ct
(5a)用Cr的逆矩阵补偿回波数据矩阵Y,得到补偿后的回波矩阵:对Y′进行取行操作得到第n行的数据Yn′;
(5b)结合步骤(3)估计的强杂波的方位值θj,以最小化重构误差为准则构建包含发射互耦误差的代价函数:
其中βj″是估计发射互耦误差时的等效杂波散射系数,Ct为发射互耦误差矩阵,atj)为θj方向的发射导向矢量;
(5c)采用步骤(4)中的交替迭代算法,求解包含发射互耦误差的代价函数,得到发射互耦矩阵Ct
2.根据权利要求书1所述的方法,其中步骤1中构造MIMO雷达回波数据X,按如下步骤进行:
(1a)设MIMO雷达发射和接收阵列的阵元数分别为Nt和Nr,接收互耦误差矩阵为Cr,发射互耦误差矩阵为Ct,对于均匀线阵而言,将Cr和Ct建模为对称带状Toeplitz矩阵:
接收互耦误差矩阵Cr中的元素由构成,且满足其中crw表示接收互耦误差矩阵Cr第一行的第w个元素,w=1,2,...,pr,其中pr为接收互耦自由度,发射互耦误差矩阵Ct中的元素由构成,且满足其中ctv表示发射互耦误差矩阵Ct第一行的第v个元素,v=1,2,...,pt,其中pt为发射互耦自由度;
(1b)设MIMO雷达发射的正交信号为S=[s1 s2 … sL],其中L为码元长度,某距离单元的J个静止不动散射体回波基带信号表示为:
其中θj为第j个杂波散射体的方位,βj为θj方向杂波散射体的散射系数,arj)为θj方向的接收导向矢量,atj)为θj方向的发射导向矢量,j=1,2,...,J,Cr为接收互耦误差矩阵,Ct为发射互耦误差矩阵,W为加性高斯白噪声。
3.根据权利要求书1所述的方法,其中步骤1中对MIMO雷达回波数据X进行脉冲压缩后得到的数据矩阵Y,表示如下:
其中,S是MIMO雷达发射的正交信号,(·)H表示共轭转置,βj为θj方向散射体的反射系数,arj)为接收导向矢量,atj)为发射导向矢量,(·)T表示转置,Cr为接收互耦误差矩阵,Ct为发射互耦误差矩阵,N=WSH为脉冲压缩后的回波噪声矩阵,W为加性高斯白噪声。
4.根据权利要求书1所述的方法,其中步骤2中计算回波数据伪协方差矩阵,按照如下步骤进行:
(2a)对数据矩阵Y进行取列操作:
Ym=YΓ,
其中表示取第m列的数据;
(2b)根据接收阵列互耦自由度pr截取数据Ym的中间有效孔径数据向量
其中Yk,m表示数据Ym的第k个元素,k=pr,pr+1,...,Nr-pr+1,Nr表示发射阵元的个数;
(2c)利用空间平滑算法,按照如下公式构造伪协方差矩阵:
其中yi为数据向量的第i个元素,i=1,2,...,nr,nr=Nr-2(pr-1)为接收阵列中间有效孔径阵元个数,pr为接收阵列互耦自由度,Nr为接收阵元个数,(·)*表示取共轭,q为划分的子阵个数,l为子阵阵元数。
5.根据权利要求书1所述的方法,其中步骤(3b)计算强杂波方位估计值θj,按照如下步骤进行:
(3b1)利用信号子空间Us与噪声子空间Un的正交性,按照如下公式构造空间谱函数P(θj):
其中,amj)是接收导向矢量arj)的前m行,arj)为θj方向的接收导向矢量,θj为第j个杂波散射体的方位,(·)H表示共轭转置;
(3b2)对空间谱函数P(θj)进行一维谱峰搜索,得到杂波散射体方位θj
6.根据权利要求书1所述的方法,其中步骤(4c)将Cr的估计值带入代价函数,用最小二乘法得到等效杂波散射系数β′j的估计值,按照如下公式进行:
其中,Ar=[ar1) ar2) ... arJ)],(·)H表示共轭转置,(·)-1表示矩阵求逆。
7.根据权利要求书1所述的方法,其中步骤(4d)中求解接收互耦误差矩阵Cr的估计值,按照如下步骤进行:
(4d1)将接收互耦误差代价函数中的Crarj)表示为:
其中是以互耦误差向量为变量的函数,互耦误差向量为接收互耦误差矩阵Cr的第一列;
(4d2)将上述函数表示为:
其中T(θj)是以θj为变量的函数矩阵,T(θj)=T1j)+T2j),
T1j)为Nr×Nr维的第一函数矩阵,该矩阵的第b行第d列元素为:b=1,2,...,Nr,d=1,2,...,Nr,Nr为接收阵列阵元个数,ab+d-1表示接收导向矢量arj)的第b+d-1个元素;
T2j)为Nr×Nr维的第二函数矩阵,该矩阵的第b行第d列元素为:ab-d+1表示接收导向矢量arj)的第b-d+1个元素;
(4d3)采用一阶Taylor展开对函数进行近似,得到以下近似式:
其中为第i次迭代得到的接收互耦误差向量,为接收互耦误差向量增量,将代回接收阵列互耦误差代价函数,即可得到接收互耦误差向量增量
(4d4)由第i次迭代得到的接收互耦误差向量和接收互耦误差向量增量得到接收互耦误差向量的初步更新值即:
(4d5)按的第一个元素对进行归一化,得到更新后的接收互耦误差向量再由构成更新后的接收互耦误差矩阵
CN201611026575.6A 2016-11-16 2016-11-16 Mimo雷达收发阵列互耦误差自校正方法 Active CN106443610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611026575.6A CN106443610B (zh) 2016-11-16 2016-11-16 Mimo雷达收发阵列互耦误差自校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611026575.6A CN106443610B (zh) 2016-11-16 2016-11-16 Mimo雷达收发阵列互耦误差自校正方法

Publications (2)

Publication Number Publication Date
CN106443610A true CN106443610A (zh) 2017-02-22
CN106443610B CN106443610B (zh) 2018-11-16

Family

ID=58221414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611026575.6A Active CN106443610B (zh) 2016-11-16 2016-11-16 Mimo雷达收发阵列互耦误差自校正方法

Country Status (1)

Country Link
CN (1) CN106443610B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106980106A (zh) * 2017-04-21 2017-07-25 天津大学 阵元互耦下的稀疏doa估计方法
CN108459307A (zh) * 2018-02-05 2018-08-28 西安电子科技大学 基于杂波的mimo雷达收发阵列幅相误差校正方法
CN109358312A (zh) * 2018-11-13 2019-02-19 内蒙古科技大学 确定入射信号来波方向的方法、装置、介质及设备
CN110133594A (zh) * 2018-02-09 2019-08-16 北京搜狗科技发展有限公司 一种声源定位方法、装置和用于声源定位的装置
CN110208762A (zh) * 2019-07-05 2019-09-06 西安电子科技大学 基于杂波的多输入多输出雷达阵列误差校正方法
CN111656212A (zh) * 2018-01-24 2020-09-11 株式会社电装 雷达装置
CN115494447A (zh) * 2022-09-21 2022-12-20 哈尔滨理工大学 一种基于互耦误差和幅相误差的联合校准的doa估计方法
EP4293382A1 (en) * 2022-06-17 2023-12-20 Volkswagen Ag Method and control unit for intrinsic calibration of a radar device for a vehicle
CN117805749A (zh) * 2023-12-29 2024-04-02 上海保隆汽车科技股份有限公司 毫米波雷达阵元间距误差测量方法和校准方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801161B2 (en) * 2001-12-05 2004-10-05 Lockheed Martin Corporation System and method for auto calibrated reduced rank adaptive processor
CN103760547A (zh) * 2014-01-24 2014-04-30 西安电子科技大学 基于互相关矩阵的双基mimo雷达角度估计方法
CN103983952A (zh) * 2014-05-16 2014-08-13 哈尔滨工程大学 一种非圆信号双基地mimo雷达低复杂度收发角度联合估计方法
CN105403871A (zh) * 2015-10-28 2016-03-16 江苏大学 一种双基地mimo雷达阵列目标角度估计和互耦误差校准方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801161B2 (en) * 2001-12-05 2004-10-05 Lockheed Martin Corporation System and method for auto calibrated reduced rank adaptive processor
CN103760547A (zh) * 2014-01-24 2014-04-30 西安电子科技大学 基于互相关矩阵的双基mimo雷达角度估计方法
CN103983952A (zh) * 2014-05-16 2014-08-13 哈尔滨工程大学 一种非圆信号双基地mimo雷达低复杂度收发角度联合估计方法
CN105403871A (zh) * 2015-10-28 2016-03-16 江苏大学 一种双基地mimo雷达阵列目标角度估计和互耦误差校准方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘源 等: "基于杂波的收发分置MIMO雷达阵列位置误差联合校正方法", 《电子与信息学报》 *
刘源 等: "阵列天线阵元互耦的一种校正方法", 《哈尔滨工业大学学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106980106A (zh) * 2017-04-21 2017-07-25 天津大学 阵元互耦下的稀疏doa估计方法
CN106980106B (zh) * 2017-04-21 2020-03-17 天津大学 阵元互耦下的稀疏doa估计方法
CN111656212A (zh) * 2018-01-24 2020-09-11 株式会社电装 雷达装置
CN111656212B (zh) * 2018-01-24 2024-01-12 株式会社电装 雷达装置
CN108459307A (zh) * 2018-02-05 2018-08-28 西安电子科技大学 基于杂波的mimo雷达收发阵列幅相误差校正方法
CN108459307B (zh) * 2018-02-05 2021-07-20 西安电子科技大学 基于杂波的mimo雷达收发阵列幅相误差校正方法
CN110133594A (zh) * 2018-02-09 2019-08-16 北京搜狗科技发展有限公司 一种声源定位方法、装置和用于声源定位的装置
CN109358312A (zh) * 2018-11-13 2019-02-19 内蒙古科技大学 确定入射信号来波方向的方法、装置、介质及设备
CN110208762A (zh) * 2019-07-05 2019-09-06 西安电子科技大学 基于杂波的多输入多输出雷达阵列误差校正方法
CN110208762B (zh) * 2019-07-05 2023-06-16 西安电子科技大学 基于杂波的多输入多输出雷达阵列误差校正方法
EP4293382A1 (en) * 2022-06-17 2023-12-20 Volkswagen Ag Method and control unit for intrinsic calibration of a radar device for a vehicle
CN115494447A (zh) * 2022-09-21 2022-12-20 哈尔滨理工大学 一种基于互耦误差和幅相误差的联合校准的doa估计方法
CN117805749A (zh) * 2023-12-29 2024-04-02 上海保隆汽车科技股份有限公司 毫米波雷达阵元间距误差测量方法和校准方法

Also Published As

Publication number Publication date
CN106443610B (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
CN106443610A (zh) Mimo雷达收发阵列互耦误差自校正方法
CN108459307B (zh) 基于杂波的mimo雷达收发阵列幅相误差校正方法
CN101251597B (zh) 一种多输入多输出雷达系统阵列误差自校正的方法
CN101369014B (zh) 应用于多输入多输出雷达的双边约束自适应波束形成方法
CN103901395B (zh) 一种冲击噪声环境下相干信号波达方向动态跟踪方法
CN103076596B (zh) 基于先验信息的mimo雷达发射方向图设计方法
CN108462521A (zh) 自适应阵列天线的抗干扰实现方法
CN108303683B (zh) 单基地mimo雷达实值esprit非圆信号角度估计方法
CN109738854A (zh) 一种天线阵列来波方向的到达角估计方法
CN103983952A (zh) 一种非圆信号双基地mimo雷达低复杂度收发角度联合估计方法
CN105717496A (zh) 一种基于矩阵填充的频控阵mimo雷达系统的实现方法
CN105158756A (zh) 集中式mimo雷达射频隐身时多目标跟踪波束指向方法
CN104215947B (zh) 一种双基地mimo雷达角度的估计方法
CN109633591A (zh) 一种观测站位置误差下外辐射源雷达双基距定位方法
CN107576940A (zh) 一种低复杂度单基地mimo雷达非圆信号角度估计方法
CN105044684A (zh) 基于射频隐身的mimo跟踪雷达发射波束的形成方法
CN109254272B (zh) 一种共点式极化mimo雷达的两维角度估计方法
CN107315162A (zh) 基于内插变换和波束形成的远场相干信号doa估计方法
CN107390197A (zh) 基于特征空间的雷达自适应和差波束测角方法
CN103777197A (zh) 单基地mimo雷达中降维传播算子的方位估计方法
CN106646388A (zh) 基于嵌套阵列的mimo雷达抗干扰方法
CN105403871A (zh) 一种双基地mimo雷达阵列目标角度估计和互耦误差校准方法
CN110426670A (zh) 基于tls-cs的外辐射源雷达超分辨doa估计方法
CN103217671B (zh) 色噪声环境下的多输入多输出雷达收发角度快速估计方法
CN107290732A (zh) 一种量子大爆炸的单基地mimo雷达测向方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant