CN106435723A - 外延生长碳化硅‑石墨烯薄膜的制备方法 - Google Patents

外延生长碳化硅‑石墨烯薄膜的制备方法 Download PDF

Info

Publication number
CN106435723A
CN106435723A CN201611008474.6A CN201611008474A CN106435723A CN 106435723 A CN106435723 A CN 106435723A CN 201611008474 A CN201611008474 A CN 201611008474A CN 106435723 A CN106435723 A CN 106435723A
Authority
CN
China
Prior art keywords
sic
graphene
epitaxial growth
carbide
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611008474.6A
Other languages
English (en)
Inventor
李长英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Jujiehan Chemical Co Ltd
Original Assignee
Shaanxi Jujiehan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Jujiehan Chemical Co Ltd filed Critical Shaanxi Jujiehan Chemical Co Ltd
Priority to CN201611008474.6A priority Critical patent/CN106435723A/zh
Publication of CN106435723A publication Critical patent/CN106435723A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • C30B25/205Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer the substrate being of insulating material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及功能材料技术领域,具体涉及一种外延生长碳化硅‑石墨烯薄膜的制备方法。外延生长碳化硅‑石墨烯薄膜的制备方法,包括如下步骤:(1)碳化硅‑石墨烯制备;(2)碳化硅‑石墨烯薄膜外延生长。本发明实现碳化硅‑石墨烯的连续生长,从而省去了目前常用在碳化硅上生长石墨烯所需的氢气刻蚀及重新制造富硅集的步骤,减少氢气刻蚀带来的晶格缺陷和表面硅富集严重削减现象。并且石墨烯具有较少的缺陷,层数在4层左右且均匀分布,具有较好的晶体质量。

Description

外延生长碳化硅-石墨烯薄膜的制备方法
技术领域
本发明涉及功能材料技术领域,具体涉及一种外延生长碳化硅-石墨烯薄膜的制备方法。
背景技术
石墨烯是一种由单层碳原子紧密堆积成二维蜂窝状结构的碳材料,因具有独特的晶体和电子能带结构而拥有非常优异的力学、热学、光学、电学及化学性能,
如超高的载流子迁移率、超大的比表面积、完美的量子隧道效应、半整数量子霍尔效应等。2004年英国曼切斯特大学A.K.Geim 和K.S.Novoselov 首次发现石墨烯后,石墨烯迅速成为当前材料、物理、化学、半导体、微电子、生物、新能源等研究领域的国际前沿与热点。碳化硅具有层状结构,其基本构成单元为硅原子和碳原子组成的硅碳双原子层。在制作碳化硅晶圆过程中,由于切刀不能做到完全的精细,导致不能完全沿层与层之间Si—C 结合键较弱的方向解理,而是与解理面有个夹角,以致于进行解理操作后,碳化硅沿某一方向上呈台阶状。也正因为如此,在其台阶上生长高品质的石墨烯才成为可能。
制备石墨烯有很多种方法,如机械剥离法、液相或气相解离法、氧化还原法、裁剪纳米管法、化学气相沉积法、单晶金属外延法和SiC 外延生长法等。SiC外延生长法是在一定的真空下,将SiC 加热到一定温度,致使硅原子蒸发,剩下的碳原子进行重构形成石墨烯。由于这样生长石墨烯的衬底SiC 是半绝缘的,生长后的样品无需进行衬底腐蚀、样品迁移等繁琐的工作,直接可以进行电学测试。这样就降低了在转移过程中引入的缺陷、掺杂等因素的影响。这也使得SiC衬底上外延生长石墨烯成为实现石墨烯在微电子领域应用的最有效途径之一。
目前SiC 外延生长石墨烯都是采用单晶SiC 衬底,而传统的单晶制备法得到的SiC 材料缺陷较多,难以控制厚度和掺杂,往往达不到制造器件的要求。并且在外延生长石墨烯之前需要对衬底进行氢气刻蚀的步骤,因为碳化硅经过化学机械抛光(CMP)工艺处理之后表面会存留很多划痕,直接用其来生长制备的石墨形貌品质都较差,而在均匀的台阶上生长得到的样品形貌及品质会好很多,氢气刻蚀就是一种公认的可以除去样品表面的划痕等缺陷的可行的方案。但是不当的氢气刻蚀反而会使SiC 衬底表面形成晶格缺陷,并且会产生硅的化合物沉积现象,过度削减SiC 表面硅富集。通常要用SiO、SiH4等气体来恢复SiC 表面平衡。而CVD 法得到的外延SiC 薄膜质量往往较高,并且能够保证较快的生长速率,非常适合于高质量SiC 薄膜的生长。
发明内容
本发明旨在提出一种外延生长碳化硅-石墨烯薄膜的制备方法。
本发明的技术方案在于:
外延生长碳化硅-石墨烯薄膜的制备方法,包括如下步骤:
(1)碳化硅-石墨烯制备
对碳化硅衬底进行清洗预处理,清洗完成后直接把SiC衬底硅面朝上,放入设备中准备外延生长,
(2)碳化硅-石墨烯薄膜外延生长
第一步,首先进行4H-SiC的同质外延生长:将腔室真空度降至8×10-4Pa 以下,持续通入7L/min 的H2,将腔室温度从室温逐步升至1600℃;在1600℃下保持10min 作为预生长阶段,然后通入9~15mL/min 的SiH4和2~6mL/min 的C3H8生长60min,此时衬底表面的划痕、缺陷被填平覆盖,形成性能优异的新SiC表面;最后将设备温度降至1000℃同时继续通Ar保护,使SiC 形成3×3SiC的稳定结构,并且朝上的面仍然为Si面;
第二步,进行在4H-SiC上的石墨烯外延生长:腔体持续通入1L/min的Ar,压力保持在133Pa,这样可以抑制SiC中Si 原子的过快升华,提过石墨烯的生成质量;先将腔体温度从1000℃上升到1100℃,稳定10min,随着温度的上升,SiC由3×3SiC 结构逐渐转变为1×1SiC结构,最终在1100℃稳定为3×3SiC 结构;随后将温度升至1200℃形成63×63R30°的过渡缓冲层结构;再将温度升至1300~1600℃并保持30~50min,表面结构逐渐从63×63R30°转变为1×1grphene 结构,最后降温至室温得到稳定的石墨烯。
所述的外延生长设备为CVD 炉。
本发明的技术效果在于:
本发明利用感应加热的高温CVD 设备,先在4H-SiC 衬底上外延生长一层2~10 μm 厚的碳化硅,然后直接再在碳化硅上原位异质外延生长石墨烯,得到了缺陷较少质量较好的石墨烯薄膜。实现碳化硅-石墨烯的连续生长,从而省去了目前常用在碳化硅上生长石墨烯所需的氢气刻蚀及重新制造富硅集的步骤,减少氢气刻蚀带来的晶格缺陷和表面硅富集严重削减现象。并且石墨烯具有较少的缺陷,层数在4层左右且均匀分布,具有较好的晶体质量。
具体实施方式
外延生长碳化硅-石墨烯薄膜的制备方法,包括如下步骤:
(1)碳化硅-石墨烯制备
对碳化硅衬底进行清洗预处理,清洗完成后直接把SiC衬底硅面朝上,放入设备中准备外延生长,
(2)碳化硅-石墨烯薄膜外延生长
第一步,首先进行4H-SiC的同质外延生长:将腔室真空度降至8×10-4Pa 以下,持续通入7L/min 的H2,将腔室温度从室温逐步升至1600℃;在1600℃下保持10min 作为预生长阶段,然后通入9~15mL/min 的SiH4和2~6mL/min 的C3H8生长60min,此时衬底表面的划痕、缺陷被填平覆盖,形成性能优异的新SiC表面;最后将设备温度降至1000℃同时继续通Ar保护,使SiC 形成3×3SiC的稳定结构,并且朝上的面仍然为Si面;
第二步,进行在4H-SiC上的石墨烯外延生长:腔体持续通入1L/min的Ar,压力保持在133Pa,这样可以抑制SiC中Si 原子的过快升华,提过石墨烯的生成质量;先将腔体温度从1000℃上升到1100℃,稳定10min,随着温度的上升,SiC由3×3SiC 结构逐渐转变为1×1SiC结构,最终在1100℃稳定为3×3SiC 结构;随后将温度升至1200℃形成63×63R30°的过渡缓冲层结构;再将温度升至1300~1600℃并保持30~50min,表面结构逐渐从63×63R30°转变为1×1grphene 结构,最后降温至室温得到稳定的石墨烯。
所述的外延生长设备为CVD 炉。
本发明实现碳化硅-石墨烯的连续生长,从而省去了目前常用在碳化硅上生长石墨烯所需的氢气刻蚀及重新制造富硅集的步骤,减少氢气刻蚀带来的晶格缺陷和表面硅富集严重削减现象。并且石墨烯具有较少的缺陷,层数在4层左右且均匀分布,具有较好的晶体质量。

Claims (2)

1.外延生长碳化硅-石墨烯薄膜的制备方法,其特征在于:包括如下步骤:
(1)碳化硅-石墨烯制备
对碳化硅衬底进行清洗预处理,清洗完成后直接把SiC衬底硅面朝上,放入设备中准备外延生长,
(2)碳化硅-石墨烯薄膜外延生长
第一步,首先进行4H-SiC的同质外延生长:将腔室真空度降至8×10-4Pa 以下,持续通入7L/min 的H2,将腔室温度从室温逐步升至1600℃;在1600℃下保持10min 作为预生长阶段,然后通入9~15mL/min 的SiH4和2~6mL/min 的C3H8生长60min,此时衬底表面的划痕、缺陷被填平覆盖,形成性能优异的新SiC表面;最后将设备温度降至1000℃同时继续通Ar保护,使SiC 形成3×3SiC的稳定结构,并且朝上的面仍然为Si面;
第二步,进行在4H-SiC上的石墨烯外延生长:腔体持续通入1L/min的Ar,压力保持在133Pa,这样可以抑制SiC中Si 原子的过快升华,提过石墨烯的生成质量;先将腔体温度从1000℃上升到1100℃,稳定10min,随着温度的上升,SiC由3×3SiC 结构逐渐转变为1×1SiC结构,最终在1100℃稳定为3×3SiC 结构;随后将温度升至1200℃形成63×63R30°的过渡缓冲层结构;再将温度升至1300~1600℃并保持30~50min,表面结构逐渐从63×63R30°转变为1×1grphene 结构,最后降温至室温得到稳定的石墨烯。
2.根据权利要求1所述的外延生长碳化硅-石墨烯薄膜的制备方法,其特征在于:所述的外延生长设备为CVD 炉。
CN201611008474.6A 2016-11-16 2016-11-16 外延生长碳化硅‑石墨烯薄膜的制备方法 Pending CN106435723A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611008474.6A CN106435723A (zh) 2016-11-16 2016-11-16 外延生长碳化硅‑石墨烯薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611008474.6A CN106435723A (zh) 2016-11-16 2016-11-16 外延生长碳化硅‑石墨烯薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN106435723A true CN106435723A (zh) 2017-02-22

Family

ID=58208304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611008474.6A Pending CN106435723A (zh) 2016-11-16 2016-11-16 外延生长碳化硅‑石墨烯薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106435723A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003752A (zh) * 2019-12-10 2020-04-14 陕西理工大学 一种基于加强换热效果提高海水淡化处理效率的石墨烯结构
CN112919456A (zh) * 2021-02-23 2021-06-08 南京大学 一种具有均一层厚的平整石墨烯生长方法及单层或双层石墨烯薄膜
CN113897059A (zh) * 2021-09-28 2022-01-07 广州特种承压设备检测研究院 一种石墨烯@碳化硅核壳复合聚酰亚胺渗透膜及其制备方法
CN115159512A (zh) * 2022-07-11 2022-10-11 陕西科技大学 一种基于碳化硅三维泡沫制备石墨烯阵列的方法及石墨烯阵列

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003752A (zh) * 2019-12-10 2020-04-14 陕西理工大学 一种基于加强换热效果提高海水淡化处理效率的石墨烯结构
CN112919456A (zh) * 2021-02-23 2021-06-08 南京大学 一种具有均一层厚的平整石墨烯生长方法及单层或双层石墨烯薄膜
CN112919456B (zh) * 2021-02-23 2023-09-22 南京大学 一种具有均一层厚的平整石墨烯生长方法及单层或双层石墨烯薄膜
CN113897059A (zh) * 2021-09-28 2022-01-07 广州特种承压设备检测研究院 一种石墨烯@碳化硅核壳复合聚酰亚胺渗透膜及其制备方法
CN113897059B (zh) * 2021-09-28 2023-06-27 广州特种承压设备检测研究院 一种石墨烯@碳化硅核壳复合聚酰亚胺渗透膜及其制备方法
CN115159512A (zh) * 2022-07-11 2022-10-11 陕西科技大学 一种基于碳化硅三维泡沫制备石墨烯阵列的方法及石墨烯阵列
CN115159512B (zh) * 2022-07-11 2023-10-13 陕西科技大学 一种基于碳化硅三维泡沫制备石墨烯阵列的方法及石墨烯阵列

Similar Documents

Publication Publication Date Title
KR101632947B1 (ko) Sic 에피택셜 필름을 갖는 sic 기판
KR102373323B1 (ko) 승화에 의한 대직경 탄화규소 결정을 제조하는 방법 및 관련 반도체 sic 웨이퍼
CN106435723A (zh) 外延生长碳化硅‑石墨烯薄膜的制备方法
CN102102220B (zh) 金刚石(111)面上的石墨烯制备方法
CN105441902B (zh) 一种外延碳化硅‑石墨烯复合薄膜的制备方法
EP2851457B1 (en) Method for manufacturing a single crystal diamond
JP4585359B2 (ja) 炭化珪素単結晶の製造方法
WO2013013419A1 (zh) 一种在绝缘基底上制备石墨烯纳米带的方法
CN104561926B (zh) 一种在硅衬底上制备β‑碳化硅薄膜的方法
CN105140102A (zh) 一种优化的在硅衬底上外延生长β-碳化硅薄膜的方法
JP6239490B2 (ja) バルク炭化珪素単結晶
CN113668052B (zh) 非平衡条件下化学势调控生长单体的SiC台阶流快速生长方法
CN102502592A (zh) 在4H/6H-SiC碳面外延生长晶圆级石墨烯的方法
CN104867818B (zh) 一种减少碳化硅外延材料缺陷的方法
CN108101028A (zh) 一种在6H/4H-SiC硅面上利用复合金属辅助生长石墨烯的方法
CN106517165B (zh) 一种在6H/4H-SiC硅面上用金属辅助内外碳源结合方式生长石墨烯的方法
CN104947184A (zh) 一种基于原位Si气氛作用在大直径4H/6H-SiC硅面衬底外延生长石墨烯的方法
CN106756871A (zh) 一种过渡金属硫族化合物二维材料—石墨烯异质结构及其原位生长方法
Liu et al. Chemical vapor deposition graphene of high mobility by gradient growth method on an 4H-SiC (0 0 0 1) substrate
CN106637393B (zh) 一种利用金属辅助在6H/4H-SiC碳面上外延生长石墨烯的方法
JP7235318B2 (ja) 少量のバナジウムをドーピングした半絶縁炭化ケイ素単結晶、基板、製造方法
JP5263900B2 (ja) 単結晶SiCの成長方法
JPS63224225A (ja) 薄膜単結晶ダイヤモンド基板
JP4894780B2 (ja) 半導体基板の製造方法
JP2009256159A (ja) 結晶炭化珪素基板の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222