CN106407590A - 基于膜计算的质子交换膜燃料电池模型优化方法 - Google Patents

基于膜计算的质子交换膜燃料电池模型优化方法 Download PDF

Info

Publication number
CN106407590A
CN106407590A CN201610870791.2A CN201610870791A CN106407590A CN 106407590 A CN106407590 A CN 106407590A CN 201610870791 A CN201610870791 A CN 201610870791A CN 106407590 A CN106407590 A CN 106407590A
Authority
CN
China
Prior art keywords
proton exchange
exchange membrane
film
parameter
fuel cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610870791.2A
Other languages
English (en)
Inventor
潘林强
吴庭芳
何成
王延峰
姜素霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Light Industry
Original Assignee
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Light Industry filed Critical Zhengzhou University of Light Industry
Priority to CN201610870791.2A priority Critical patent/CN106407590A/zh
Publication of CN106407590A publication Critical patent/CN106407590A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种基于膜计算的质子交换膜燃料电池模型优化方法,步骤如下:步骤S1,建立质子交换膜燃料电池的动态参数仿真模型;步骤S2,采集若干组质子交换膜燃料电池输出电压和电流数据;步骤S3,构造适应度函数;步骤S4,初始化基于膜计算模型算法的结构,并确定遗传膜算法的策略参数;步骤S5,计算优化拟合参数的候选解,并计算每个个体的适应度,进而对每个膜区域内的候选解进行评价;步骤S6,各个膜区域内的候选解在相邻膜之间进行移动,实现膜与膜区域之间的信息交流;步骤S7,重复步骤S5和步骤S6,当达到收敛条件时,将嵌套膜结构中最内层膜的最优解作为拟合参数的最优参数解;步骤S8,将最优参数解代入仿真模型中,得到优化后的仿真模型。

Description

基于膜计算的质子交换膜燃料电池模型优化方法
技术领域
本发明属于质子交换膜燃料电池的技术领域,具体涉及一种基于膜计算的质子交换膜燃料电池模型优化方法,进一步对质子交换膜燃料电池建模的优化。
背景技术
燃料电池是21世纪对人类社会产生重大影响的高新技术之一,也是人类步入氢能时代的一个重要里程碑。燃料电池是高效、环保的发电装置,它直接将贮存在燃料与氧化剂中的化学能转化为电能。质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)具有能量密度高、结构简单安全、启动速度快、工作温度低等优势,很适于作为便携式电子产品及家用设备的能源。为实现对质子交换膜燃料电池的控制与优化,有必要建立质子交换膜燃料电池的模型并进行仿真分析,模拟其稳态和动态特性。
质子交换膜燃料电池的模型主要有基于机理模型和基于经验模型。基于机理模型虽然能从基本的化学反应过程描述的特性和工作情况,但计算过于复杂,而且在建模时作了许多理想假设,影响模型的准确性。基于经验公式构建的经验模型不考虑电池内部结构参数,只根据伏安特性曲线拟合得到相应方程来为电池系统的模拟和优化提供依据,不足之处在于参数值仅针对电池某一特定工作范围,模型自适应性差。在已经建立的多种质子交换膜燃料电池模型中,都存在很多难以确定的参数,多种优化算法如模拟退火算法、粒子群算法等已经对这些参数进行了优化,起到了一定的效果,但是仍存在一些不足,如存在可能陷入局部极值的问题。
发明内容
针对上述现有技术中描述的不足,本发明的目的是提供一种具备良好的全局和局部寻优能力的质子交换膜燃料电池模型优化方法,利用膜计算模型的并行性和分布式特点,在膜系统的环境中实现进化算法;利用膜系统固有的离散型对系统进行建模,连续数学只能对少数局部过程建模,而膜计算在这方面具有优势;利用膜系统的非确定性,从而有助于加速算法的计算速度。
为实现上述技术目的,本发明所采用的技术方案如下:一种基于膜计算的质子交换膜燃料电池模型优化方法,步骤如下:步骤S1,根据基于机理的质子交换膜燃料电池模型,建立质子交换膜燃料电池的动态参数仿真模型;质子交换膜燃料电池的动态参数仿真模型具体为:
Vcell=ENernst-Vact-Vohmic-Vcon (1);
其中,Vcell是膜燃料电池输出电压;ENernst是质子交换膜燃料电池理论电动,Vact是活化过电位,Vohmic是欧姆过电位,Vcon是浓度差过电位。
所述质子交换膜燃料电池理论电动ENernst的具体计算公式如下,
式中:Tcell表示质子交换膜燃料电池的工作温度;Tref表示标准温度,为298.15K;是分别表示氢气和氧气的分压。
所述活化过电位Vact,具体计算公式如下:
式中:为阴极催化剂界面溶解氧气浓度;I表示输出电流;ξ1~ξ4表示拟合系数。
所述欧姆过电位Vohmic,具体计算公式如下,
Vohmic=I·(RM+Rc) (4);
式中:RM为质子流过电极;Rc为电子流过交换膜的电阻。
质子流过电极RM的计算公式如下:
式中:Am为薄膜的面积,lm为薄膜的厚度,λ是可调参数。
用经验公式来拟合欧姆过电位Vohmic,表示如下:
Vohmic=I·(ξ56Tcell7I) (7);
其中,I表示输出电流,ξ5~ξ7表示拟合系数,Tcell表示质子交换膜燃料电池的工作温度。
所述浓度差过电位Vcon,具体计算公式如下;
式中:b表示电池运行系数,ξ8~ξ10分别表示拟合系数,Imax表示极限电流,prc表示阴极入口压力。
步骤S2,利用质子交换膜燃料电池测试系统,采集若干组质子交换膜燃料电池输出电压Vcell和电流数据I。
步骤S3,利用步骤S2中采集的数据,对步骤S1中的拟合参数建立约束条件,并构造适应度函数。
具体步骤为:S3.1,构造适应度函数,所述适应度函数为平方误差eMSE,具体公式如下:
其中:N为实验数据的总数;
Vi是利用质子交换膜燃料电池测试系统采集得到的电压实验数据值;
Vcell是通过建立的仿真模型计算的输出电压值;
S3.2,根据质子交换膜燃料电池机理模型中各参数的限制,对拟合参数进行约束优化,约束条件如下:
y=min eMSE (10);
其中,拟合参数ξ1~ξ10的参数范围表1所示;
表1质子交换膜燃料电池机理模型拟合参数范围
步骤S4,初始化基于膜计算模型算法的结构,该算法结构用于优化质子交换膜燃料电池模型动态参数,构建由m个膜构成的嵌套膜结构,初始化N个编码质子交换膜燃料电池的动态参数的二进制个体,将N个个体平均分配到m个膜中,构成每个膜区域内的初始种群;并确定遗传膜算法的策略参数。每个膜中的个体数为Pi(t),其中i=1,2,...m,t表示进化代数;所述遗传膜算法的策略参数,包括交叉概率pc、变异概率pm、最大迭代次数itermax
步骤S5,将步骤S4中得到的遗传膜算法的策略参数和步骤S2得到的质子交换膜燃料电池输出电压Vcell和电流数据I,输入到嵌套膜结构的每个膜计算单元中,每个膜计算单元利用启发式搜索算法-遗传算法来得到优化拟合参数的候选解;并利用步骤S3中的适应度函数计算每个个体的适应度,进而对每个膜区域内的候选解进行评价。
步骤S6,各个膜区域内的候选解在相邻膜之间进行移动,实现膜与膜区域之间的信息交流,某一个膜区域将最优个体发送至内层膜,最差个体发送至外层膜。
步骤S7,重复步骤S5和步骤S6,当达到收敛条件时,将嵌套膜结构中最内层膜的最优解作为拟合参数的最优参数解。所述收敛条件为达到最大迭代次数itermax或者最优解连续保持不变的最大允许代数iterav
步骤S8,将步骤S7中得到的最优参数解代入步骤S1构件的仿真模型中,得到优化后的仿真模型。
本发明的有益效果是:本发明基于膜计算模型的框架,利用膜计算模型的并行性,能够具备良好的全局和局部寻优能力,同时通过膜与膜之间的通信,增强了模型参数的全局搜索性能,使得参数能够有效减少到局部峰值的可能,最终能够实现质子交换膜燃料电池的模型较优的参数估计。
附图说明
图1为本发明设计的控制流程图。
图2为本发明设计的膜算法框架图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并用非用于限定本发明。
如图1所示,一种基于膜计算的质子交换膜燃料电池模型优化方法,步骤如下:步骤S1,根据基于机理的质子交换膜燃料电池模型,建立质子交换膜燃料电池的动态参数仿真模型;仿真模型具体为:
Vcell=EN ernst-Vact-Vohmic-Vcon (1);
其中,Vcell是膜燃料电池输出电压;EN ernst是质子交换膜燃料电池理论电动,Vact是活化过电位,Vohmic是欧姆过电位,Vcon是浓度差过电位。
所述质子交换膜燃料电池理论电动EN ernst的具体计算公式如下,
式中:Tcell表示质子交换膜燃料电池的工作温度;Tref表示标准温度,为298.15K;是分别表示氢气和氧气的分压。
所述活化过电位Vact,具体计算公式如下:
式中:为阴极催化剂界面溶解氧气浓度;I表示输出电流;ξ1~ξ4表示拟合系数。
所述欧姆过电位Vohmic,具体计算公式如下,
Vohmic=I·(RM+Rc) (4);
式中:RM为质子流过电极;Rc为电子流过交换膜的电阻。
质子流过电极RM的计算公式如下:
式中:Am为薄膜的面积,lm为薄膜的厚度,λ是可调参数。
用经验公式来拟合欧姆过电位Vohmic,表示如下:
Vohmic=I·(ξ56Tcell7I) (7);
其中,I表示输出电流,ξ5~ξ7表示拟合系数,Tcell表示质子交换膜燃料电池的工作温度。
所述浓度差过电位Vcon,具体计算公式如下;
式中:b表示电池运行系数,ξ8~ξ10分别表示拟合系数,Imax表示极限电流,prc表示阴极入口压力。
步骤S2,利用质子交换膜燃料电池测试系统,采集若干组质子交换膜燃料电池输出电压Vcell和电流数据I。
步骤S3,利用步骤S2中采集的数据,对步骤S1中的拟合参数建立约束条件,并构造适应度函数。
具体步骤为:S3.1,构造适应度函数,所述适应度函数为平方误差eMSE,具体公式如下:
其中:N为实验数据的总数;
Vi是利用质子交换膜燃料电池测试系统采集得到的电压实验数据值;
Vcell是通过建立的仿真模型计算的输出电压值;
S3.2,根据质子交换膜燃料电池机理模型中各参数的限制,对拟合参数进行约束优化,约束条件如下:
y=min eMSE (10);
其中,拟合参数ξ1~ξ10的参数范围表1所示;
表1质子交换膜燃料电池机理模型拟合参数范围
步骤S4,初始化基于膜计算模型算法的结构,该算法结构用于优化质子交换膜燃料电池模型动态参数,构建由m个膜构成的嵌套膜结构,如图2所示,初始化N个编码质子交换膜燃料电池的动态参数的二进制个体,将N个个体平均分配到m个膜中,构成每个膜区域内的初始种群;并确定遗传膜算法的策略参数。每个膜中的个体数为Pi(t),其中i=1,2,...m,t表示进化代数;所述遗传膜算法的策略参数,包括交叉概率pc、变异概率pm、最大迭代次数itermax
步骤S5,将步骤S4中得到的遗传膜算法的策略参数和步骤S2得到的质子交换膜燃料电池输出电压Vcell和电流数据I,输入到嵌套膜结构的每个膜计算单元中,每个膜计算单元利用启发式搜索算法-遗传算法来得到优化拟合参数的候选解;并利用步骤S3中的适应度函数计算每个个体的适应度,进而对每个膜区域内的候选解进行评价。
步骤S6,各个膜区域内的候选解在相邻膜之间进行移动,实现膜与膜区域之间的信息交流,某一个膜区域将最优个体发送至内层膜,最差个体发送至外层膜。
步骤S7,重复步骤S5和步骤S6,当达到收敛条件时,将嵌套膜结构中最内层膜的最优解作为拟合参数的最优参数解。所述收敛条件为达到最大迭代次数itermax或者最优解连续保持不变的最大允许代数iterav
步骤S8,将步骤S7中得到的最优参数解代入步骤S1构件的仿真模型中,得到优化后的仿真模型。
下面以一个具体事例进行说明本发明。
首先,利用质子交换膜燃料电池测试系统,采集100组质子交换膜燃料电池输出电压Vcell和电流数据I。
然后,根据质子交换膜燃料电池机理模型中各拟合参数的限制,该拟合参数估计问题可以表述为如下带约束的优化问题:
y=min eMSE
其中拟合参数ξ1~ξ10的参数范围如表1所示:
表1质子交换膜燃料电池机理模型参数范围
接着,初始化基于膜计算模型算法的结构,该算法结构用于优化质子交换膜燃料电池模型动态参数,构建由m个膜构成的嵌套膜结构,如图2所示,初始化N个编码质子交换膜燃料电池的动态参数的二进制个体,将N个个体平均分配到m个膜中,构成每个膜区域内的初始种群;并确定遗传膜算法的策略参数。每个膜中的个体数为Pi(t),其中i=1,2,...m,t表示进化代数;所述遗传膜算法的策略参数,包括交叉概率pc、变异概率pm、最大迭代次数itermax。所述交叉概率pc=0.8、变异概率pm=0.05、最大迭代次数itermax=1000。
再者,对每个膜区域内的种群Pi(t),采用遗传算法中的选择、交叉和变异算子产生相应的子代种群,其中交叉概率pc=0.8、变异概率pm=0.05;同时为保留精英种群,每个膜区域内最好适应度的前30%个体直接进入下一种群,不参与交叉和变异操作,而剩余的个体进行交叉和变异操作来产生子代种群。
再者,对每个膜区域内的新的种群Pi(t)进行个体适应度的计算;膜区域与膜区域之间进行信息交流,将种群Pi(t)的最优个体和最差个体分别发送到种群Pi+1(t)和种群Pi-1(t)。
再者:重复上述的步骤,寻找最优的解,直至达到停止条件,即达到最大迭代次数itermax=1000。
最后,将最内层膜中的最优解作为质子交换膜燃料电池机理模型的拟合参数的最优参数解,并将得到的最优参数解代入仿真模型,得到优化后的仿真模型,并绘制出拟合曲线。
如图2所示,在本发明中,嵌套膜中包含多个膜,每个膜中都含有初始种群,每个膜区域中的种群并行地进化,通过多种群的同时寻优,提高了全局搜索和局部搜索的能力,加快了收敛速度;并且膜区域与膜区域之间的通信交流,能够获得不同膜中的更优解。
以上所述仅为本发明的较佳实现例,并不用以限制本发明,凡在本发明的精神和原则内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于膜计算的质子交换膜燃料电池模型优化方法,其特征在于:步骤如下:步骤S1,根据基于机理的质子交换膜燃料电池模型,建立质子交换膜燃料电池的动态参数仿真模型;质子交换膜燃料电池的动态参数仿真模型具体为:
Vcell=ENernst-Vact-Vohmic-Vcon (1);
其中,Vcell是膜燃料电池输出电压;ENernst是质子交换膜燃料电池理论电动,Vacr是活化过电位,Vohmic是欧姆过电位,Vcon是浓度差过电位;
步骤S2,利用质子交换膜燃料电池测试系统,采集若干组质子交换膜燃料电池输出电压Vcell和电流数据I;
步骤S3,利用步骤S2中采集的数据,对步骤S1中的拟合参数建立约束条件,并构造适应度函数;
步骤S4,初始化基于膜计算模型算法的结构,该算法结构用于优化质子交换膜燃料电池模型动态参数,构建由m个膜构成的嵌套膜结构,初始化N个编码质子交换膜燃料电池的动态参数的二进制个体,将N个个体平均分配到m个膜中,构成每个膜区域内的初始种群;并确定遗传膜算法的策略参数;
步骤S5,将步骤S4中得到的遗传膜算法的策略参数和步骤S2得到的质子交换膜燃料电池输出电压Vcell和电流数据I,输入到嵌套膜结构的每个膜计算单元中,每个膜计算单元利用启发式搜索算法-遗传算法来得到优化拟合参数的候选解;并利用步骤S3中的适应度函数计算每个个体的适应度,进而对每个膜区域内的候选解进行评价。
步骤S6,各个膜区域内的候选解在相邻膜之间进行移动,实现膜与膜区域之间的信息交流,某一个膜区域将最优个体发送至内层膜,最差个体发送至外层膜;
步骤S7,重复步骤S5和步骤S6,当达到收敛条件时,将嵌套膜结构中最内层膜的最优解作为拟合参数的最优参数解;
步骤S8,将步骤S7中得到的最优参数解代入步骤S1构件的仿真模型中,得到优化后的仿真模型。
2.根据权利要求1所述的基于膜计算的质子交换膜燃料电池模型优化方法,其特征在于:在步骤S1中,所述质子交换膜燃料电池理论电动ENernst的具 体计算公式如下,
式中:Tcell表示质子交换膜燃料电池的工作温度;Tref表示标准温度,为298.15K;是分别表示氢气和氧气的分压;
所述活化过电位Vact,具体计算公式如下:
式中:为阴极催化剂界面溶解氧气浓度;I表示输出电流;ξ1~ξ4表示拟合系数;
所述欧姆过电位Vohmic,具体计算公式如下,
Vohmic=I·(RM+Rc) (4);
式中:RM为质子流过电极;Rc为电子流过交换膜的电阻;
质子流过电极RM的计算公式如下:
式中:Am为薄膜的面积,lm为薄膜的厚度,λ是可调参数;
用经验公式来拟合欧姆过电位Vohmic,表示如下:
Vohmic=I·(ξ56Tcell7I) (7);
其中,I表示输出电流,ξ5~ξ7表示拟合系数,Tcell表示质子交换膜燃料电池的工作温度;
所述浓度差过电位Vcon,具体计算公式如下;
式中:b表示电池运行系数,ξ8~ξ10分别表示拟合系数,Imax表示极限电流,prc表示阴极入口压力。
3.根据权利要求1所述的基于膜计算的质子交换膜燃料电池模型优化方法,其特征在于:在步骤S3中,具体步骤为:S3.1,构造适应度函数,所述适应度函数为平方误差eMSE,具体公式如下:
其中:N为实验数据的总数;
Vi是利用质子交换膜燃料电池测试系统采集得到的电压实验数据值;
Vcell是通过建立的仿真模型计算的输出电压值;
S3.2,根据质子交换膜燃料电池机理模型中各参数的限制,对拟合参数进行约束优化,约束条件如下:
y=min eMSE (10);
其中,拟合参数ξ1~ξ10的参数范围表1所示;
表1质子交换膜燃料电池机理模型拟合参数范围
4.根据权利要求1所述的基于膜计算的质子交换膜燃料电池模型优化方法,其特征在于:在步骤S4中,每个膜中的个体数为Pi(t),其中i=1,2,...m,t表示进化代数;所述遗传膜算法的策略参数,包括交叉概率pc、变异概率pm、最大迭代次数itermax
5.根据权利要求1所述的基于膜计算的质子交换膜燃料电池模型优化方法,其特征在于:在步骤S7中,所述收敛条件为达到最大迭代次数itermax或者最优解连续保持不变的最大允许代数iterav
CN201610870791.2A 2016-09-30 2016-09-30 基于膜计算的质子交换膜燃料电池模型优化方法 Pending CN106407590A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610870791.2A CN106407590A (zh) 2016-09-30 2016-09-30 基于膜计算的质子交换膜燃料电池模型优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610870791.2A CN106407590A (zh) 2016-09-30 2016-09-30 基于膜计算的质子交换膜燃料电池模型优化方法

Publications (1)

Publication Number Publication Date
CN106407590A true CN106407590A (zh) 2017-02-15

Family

ID=59228570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610870791.2A Pending CN106407590A (zh) 2016-09-30 2016-09-30 基于膜计算的质子交换膜燃料电池模型优化方法

Country Status (1)

Country Link
CN (1) CN106407590A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106951677A (zh) * 2017-02-20 2017-07-14 天津大学 质子交换膜燃料电池瞬态过程模型建立的方法
CN107590436A (zh) * 2017-08-10 2018-01-16 云南财经大学 基于膜粒子群多目标算法的雷达辐射源信号特征选择方法
CN107944072A (zh) * 2017-10-11 2018-04-20 天津大学 质子交换膜燃料电池参数敏感性的确定方法
CN108171004A (zh) * 2017-12-27 2018-06-15 苏州创腾软件有限公司 质子交换膜的仿真评价、仿真参数优化方法及设备、介质
CN109657348A (zh) * 2018-12-18 2019-04-19 安徽江淮汽车集团股份有限公司 一种质子交换膜燃料电池建模方法
CN110162810A (zh) * 2018-03-08 2019-08-23 华北电力大学 一种质子交换膜燃料电池电压模型的建模方法
CN113036185A (zh) * 2021-03-02 2021-06-25 武汉理工大学 一种基于萤火虫算法的氢氧燃料电池模型优化方法
CN114089210A (zh) * 2022-01-24 2022-02-25 北京理工大学 一种质子交换膜燃料电池健康状态估计方法及系统
CN114824373A (zh) * 2022-06-27 2022-07-29 中汽研新能源汽车检验中心(天津)有限公司 一种仿真试验联合的燃料电池性能优化方法、装置及设备
CN115392139A (zh) * 2022-10-27 2022-11-25 西北工业大学 一种燃料电池参数辨识方法
CN116646568A (zh) * 2023-06-02 2023-08-25 陕西旭氢时代科技有限公司 一种基于元启发式的燃料电池电堆参数寻优方法
WO2024008496A1 (de) * 2022-07-04 2024-01-11 Robert Bosch Gmbh Verfahren zur ermittlung zumindest eines kalibrationsparameters für eine systemkomponente eines zellensystems, ein zellensystem und ein computerprogramm

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521523A (zh) * 2011-12-27 2012-06-27 浙江大学 一种自噬膜计算的燃料电池优化建模方法
CN102663219A (zh) * 2011-12-21 2012-09-12 北京理工大学 基于混合模型的燃料电池输出预测方法和系统
CN103336867A (zh) * 2013-06-28 2013-10-02 西南交通大学 质子交换膜燃料电池模型优化处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102663219A (zh) * 2011-12-21 2012-09-12 北京理工大学 基于混合模型的燃料电池输出预测方法和系统
CN102521523A (zh) * 2011-12-27 2012-06-27 浙江大学 一种自噬膜计算的燃料电池优化建模方法
CN103336867A (zh) * 2013-06-28 2013-10-02 西南交通大学 质子交换膜燃料电池模型优化处理方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ZHI-JUN MO 等: "Parameter optimization for a PEMFC modelwith a hybrid genetic algorithm", 《INTERNATIONAL JOURNAL OF ENERGY RESEARCH》 *
凌骁洲: "基于膜计算的输电网扩展规划研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
张葛祥 等: "自然计算的新分支——膜计算", 《计算机学报》 *
徐敏 等: "质子交换膜燃料电池经验模型", 《太阳能学报》 *
杨世品: "P系统优化算法及应用研究", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106951677B (zh) * 2017-02-20 2019-09-03 天津大学 质子交换膜燃料电池瞬态过程模型建立的方法
CN106951677A (zh) * 2017-02-20 2017-07-14 天津大学 质子交换膜燃料电池瞬态过程模型建立的方法
CN107590436A (zh) * 2017-08-10 2018-01-16 云南财经大学 基于膜粒子群多目标算法的雷达辐射源信号特征选择方法
CN107944072A (zh) * 2017-10-11 2018-04-20 天津大学 质子交换膜燃料电池参数敏感性的确定方法
CN107944072B (zh) * 2017-10-11 2019-11-05 天津大学 质子交换膜燃料电池参数敏感性的确定方法
CN108171004A (zh) * 2017-12-27 2018-06-15 苏州创腾软件有限公司 质子交换膜的仿真评价、仿真参数优化方法及设备、介质
CN108171004B (zh) * 2017-12-27 2021-07-02 苏州创腾软件有限公司 质子交换膜的仿真评价、仿真参数优化方法及设备、介质
CN110162810A (zh) * 2018-03-08 2019-08-23 华北电力大学 一种质子交换膜燃料电池电压模型的建模方法
CN109657348B (zh) * 2018-12-18 2023-08-08 安徽江淮汽车集团股份有限公司 一种质子交换膜燃料电池建模方法
CN109657348A (zh) * 2018-12-18 2019-04-19 安徽江淮汽车集团股份有限公司 一种质子交换膜燃料电池建模方法
CN113036185A (zh) * 2021-03-02 2021-06-25 武汉理工大学 一种基于萤火虫算法的氢氧燃料电池模型优化方法
CN114089210A (zh) * 2022-01-24 2022-02-25 北京理工大学 一种质子交换膜燃料电池健康状态估计方法及系统
CN114089210B (zh) * 2022-01-24 2022-04-01 北京理工大学 一种质子交换膜燃料电池健康状态估计方法及系统
CN114824373A (zh) * 2022-06-27 2022-07-29 中汽研新能源汽车检验中心(天津)有限公司 一种仿真试验联合的燃料电池性能优化方法、装置及设备
CN114824373B (zh) * 2022-06-27 2022-09-06 中汽研新能源汽车检验中心(天津)有限公司 一种仿真试验联合的燃料电池性能优化方法、装置及设备
WO2024008496A1 (de) * 2022-07-04 2024-01-11 Robert Bosch Gmbh Verfahren zur ermittlung zumindest eines kalibrationsparameters für eine systemkomponente eines zellensystems, ein zellensystem und ein computerprogramm
CN115392139A (zh) * 2022-10-27 2022-11-25 西北工业大学 一种燃料电池参数辨识方法
CN115392139B (zh) * 2022-10-27 2023-02-07 西北工业大学 一种燃料电池参数辨识方法
CN116646568A (zh) * 2023-06-02 2023-08-25 陕西旭氢时代科技有限公司 一种基于元启发式的燃料电池电堆参数寻优方法
CN116646568B (zh) * 2023-06-02 2024-02-02 陕西旭氢时代科技有限公司 一种基于元启发式的燃料电池电堆参数寻优方法

Similar Documents

Publication Publication Date Title
CN106407590A (zh) 基于膜计算的质子交换膜燃料电池模型优化方法
Yuan et al. A new technique for optimal estimation of the circuit-based PEMFCs using developed sunflower optimization algorithm
Niu et al. An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
Rizk-Allah et al. Artificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells model
Mo et al. Parameter optimization for a PEMFC model with a hybrid genetic algorithm
Li et al. Performance prediction and power density maximization of a proton exchange membrane fuel cell based on deep belief network
Askarzadeh et al. Artificial immune system-based parameter extraction of proton exchange membrane fuel cell
Wu et al. Modeling a SOFC stack based on GA-RBF neural networks identification
CN102663219B (zh) 基于混合模型的燃料电池输出预测方法和系统
CN106654319B (zh) 一种基于变异粒子群和差分进化混合算法的pemfc系统温度建模方法
Yang et al. Channel geometry optimization using a 2D fuel cell model and its verification for a polymer electrolyte membrane fuel cell
CN110210071B (zh) 一种基于遗传算法的全钒液流电池储能系统运行优化方法
CN103336867B (zh) 质子交换膜燃料电池模型优化处理方法
Miao et al. Metamodel based design optimization approach in promoting the performance of proton exchange membrane fuel cells
Tafaoli-Masoule et al. Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm
CN106709131A (zh) 一种适用于质子交换膜燃料电池模型的参数智能优化方法
Chen et al. Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm
CN114447378B (zh) 一种质子交换膜燃料电池的参数优化方法
CN112733417A (zh) 一种基于模型优化的异常负荷数据检测与修正方法和系统
Zhu et al. Parameter study of high-temperature proton exchange membrane fuel cell using data-driven models
Garg et al. Framework based on number of basis functions complexity measure in investigation of the power characteristics of direct methanol fuel cell
Yang et al. Levenberg‐Marquardt backpropagation algorithm for parameter identification of solid oxide fuel cells
Liu et al. Multi-objective optimization of proton exchange membrane fuel cell geometry and operating parameters based on three new performance evaluation indexes
Zhang et al. Degradation prediction model of PEMFC based on multi-reservoir echo state network with mini reservoir
CN104778315B (zh) 融合磷虾行为人工蜂群算法的燃料电池优化建模方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170215