CN106654319B - 一种基于变异粒子群和差分进化混合算法的pemfc系统温度建模方法 - Google Patents

一种基于变异粒子群和差分进化混合算法的pemfc系统温度建模方法 Download PDF

Info

Publication number
CN106654319B
CN106654319B CN201611222635.1A CN201611222635A CN106654319B CN 106654319 B CN106654319 B CN 106654319B CN 201611222635 A CN201611222635 A CN 201611222635A CN 106654319 B CN106654319 B CN 106654319B
Authority
CN
China
Prior art keywords
particle
temperature
optimal solution
differential evolution
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611222635.1A
Other languages
English (en)
Other versions
CN106654319A (zh
Inventor
赵立业
沈翔
李宏生
黄丽斌
刘锡祥
李坤宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201611222635.1A priority Critical patent/CN106654319B/zh
Publication of CN106654319A publication Critical patent/CN106654319A/zh
Application granted granted Critical
Publication of CN106654319B publication Critical patent/CN106654319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种基于变异粒子群和差分进化混合算法的质子交换膜燃料电池(PEMFC)系统温度建模方法。PEMFC电堆输出性能受到运行系统各模块控制温度的影响,本发明基于一种变异粒子群和差分进化混合算法,结合PEMFC电堆模型,提出电化学性能最佳时,电堆各模块最优温度运行参数算法解算步骤。该混合算法具有良好的全局和局部的搜索、优化能力,能够高精度地辨识和实时控制PEMFC系统各模块的温度控制参数,从而提升燃料电池系统的电化学性能。

Description

一种基于变异粒子群和差分进化混合算法的PEMFC系统温度 建模方法
技术领域
本发明涉及一种基于变异粒子群和差分进化混合算法的质子交换膜燃料电池(PEMFC)系统温度建模方法。
背景技术
能源危机和环境污染问题不断的当今时代,燃料电池作为一种能效高、零污染的洁净能源备受青睐并得到了广泛研究。其中,质子交换膜燃料电池是在一定条件下氢气和空气中的氧气发生化学反应,从而将化学能直接转变为电能的装置。质子交换膜燃料电池由于无污染、能量转化率高、启动快等优点,具有非常好的应用前景。
热管理和水管理是优化PEMFC系统性能的两个重要指标,在高功率密度情况下,增湿水与电池内部化学反应产生过量的水,将会导致电极孔隙的“水淹”现象,限制反应气体的扩散速度,增加浓差极化,降低电池的电化学性能。一般情况下电池的运行温度范围在0-100℃,温度的升高有利于增加电化学反应速率,减少膜的欧姆极化,改善电池性能,但温度过高会加速膜中水分的损失,导致水蒸气分压增加,严重时引起膜收缩破裂,造成电池性能下降。相反,过低温度又会引起电堆内传质受限和电化学反应速度降低,同样造成电池性能下降。
基于单电池与电堆的稳态、动态热传输模型,均建立在多相流流动过程、膜电极内的传质过程、电化学反应传质过程和传热过程的基础之上,其中有些过程变量之间相互强耦合,且容易受到外负载(电流密度)扰动;电堆模型中还存在大量的实验参数,使得模型通用性和一般性变差,非线性特性较强,并且系统解析建模过程中大量的简化和假设,导致模型的精度大大下降;同时建立的模型表达式非常复杂,难以用于系统的控制的设计。因此,合适的工作温度范围是提高电池运行性能和延长使用寿命的关键。
发明内容
发明目的:为了能够高精度地辨识和优化PEMFC系统各模块的温度参数,有效提升燃料电池系统的电化学性能,本发明提供一种基于变异粒子群和差分进化的混合算法;该算法发明具有良好的全局和局部的搜索、优化能力,能够高精度地辨识和优化PEMFC系统各模块的温度参数;该算法能够大大降低PEMFC的建模难度,并对PEMFC系统进行实时控制,有助于PEMFC系统的实时控制和发挥其最佳性能。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种基于变异粒子群和差分进化混合算法的PEMFC系统温度建模方法,包括如下步骤:
(1)定义PEMFC系统各模块温度:燃料气体温度t1,氧化气体温度t2,冷却水温度t3,阳极温度t4,阴极温度t5,质子膜温度t6,阳极侧双极板温度t7,阴极侧双极板温度t8,定义温度向量p=(t1,t2,t3,t4,t5,t6,t7,t8);
(2)建立一个包含m个粒子的粒子群,设置种群规模m=8,n为粒子号,n∈[1~m]最大进化代数Amax;个体n温度向量tn=(tn1,tn2,…,tnD,),d=1,2,…,D,tnd为个体n的第d维向量,D表示温度观察次数,d表示观察号;第n个粒子记为 表示第n个粒子第a次迭代时的温度向量,初始时第n个粒子的温度增量记为 表示第n个粒子第a次迭代时的温度增量,初始时
(3)计算第n个粒子自身最优解和全局最优解:
情况一:迭代次数a=0
第n个粒子在第0次迭代时的解记为第n个粒子在第0次迭代时的自身最优解记为其中,f(X)为适应值函数,X=(x1,x1,…,xD);
在第0次迭代时的全局最优解记为flocal=f(plocal),
情况二:迭代次数a≠0
第n个粒子在第a次迭代时的解记为则更新第n个粒子在第a次迭代时的自身最优解否则,维持第n个粒子的自身最优解
则更新第a次迭代时的全局最优解flocal=f(plocal),否则,维持全局最优解flocal=f(plocal);
(4)判断是否满足a≥Amax:若满足,则进入步骤(7);否则,进入步骤(5);
(5)更新个体n,
(51)判断rand≥α(a)是否成立:若成立,进入步骤(52);否则,进入步骤(53);其中:rand为区间[0,1]上均匀分布的随机数,为交替概率函数。
(52)采用变异粒子群算法对第n个粒子更新:
根据下式对第n个粒子的增量更新
根据下式对个体n的值进行更新:
其中:w为惯性权重,c1和c2为非负加速因子,r1和r2为区间(0,1)上均匀分布的随机数;
(53)采用差分进化算法对第n个粒子进行更新:
①采用差分进化算法的变异操作,设个体n变异后的值为则:
其中:ra和rb为区间[1,d]上互不相同的随机整数,缩放因子F为区间[0,2]上的一个常数;
②对个体n变异后的值采用差分进化算法的交叉操作
其中:CR为交叉概率,为个体n变异前、变异后和交叉后值的第d维分量,
③对个体n变异前的值和交叉后的值采用差分进化算法的选择操作,选择适应值小的作为下一代:
(6)a=a+1,返回步骤(3);
(7)输出全局最优值pglobal
有益效果:本发明提供的一种基于变异粒子群和差分进化混合算法的PEMFC系统温度建模方法具有良好的全局和局部的搜索、优化能力,能够高精度地辨识和优化PEMFC系统各模块的温度参数;该算法能够大大降低PEMFC的建模难度,有助于PEMFC系统的实时控制和发挥其最佳性能;该算法能够有效地对PEMFC系统进行实时控制,从而提升燃料电池系统的电化学性能。
附图说明
图1为本发明实施例的实施流程图;
图2为本发明实施例中最优温度参数下PEMFC单电池电压—电流实验极化曲线;
图3为本发明实施例中变异粒子群和差分进化混合算法Schwefel’s2.22函数下的平均最优函数值随进化代数收殓仿真曲线。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示为一种基于变异粒子群和差分进化的PEMFC温控算法流程图,该流程图包括如下步骤:
(1)定义PEMFC系统各模块温度:燃料气体温度t1,氧化气体温度t2,冷却水温度t3,阳极温度t4,阴极温度t5,质子膜温度t6,阳极侧双极板温度t7,阴极侧双极板温度t8,定义温度向量p=(t1,t2,t3,t4,t5,t6,t7,t8);
(2)建立一个包含m个粒子的粒子群,设置种群规模m=8,n为粒子号,n∈[1~m]最大进化代数Amax;个体n温度向量tn=(tn1,tn2,…,tnD,),d=1,2,…,D,tnd为个体n的第d维向量,D表示温度观察次数,d表示观察号;第n个粒子记为 表示第n个粒子第a次迭代时的温度向量,初始时第n个粒子的温度增量记为 表示第n个粒子第a次迭代时的温度增量,初始时
(3)计算第n个粒子自身最优解和全局最优解:
情况一:迭代次数a=0
第n个粒子在第0次迭代时的解记为第n个粒子在第0次迭代时的自身最优解记为其中,f(X)为适应值函数,X=(x1,x1,…,xD);
在第0次迭代时的全局最优解记为flocal=f(plocal),
情况二:迭代次数a≠0
第n个粒子在第a次迭代时的解记为则更新第n个粒子在第a次迭代时的自身最优解否则,维持第n个粒子的自身最优解
则更新第a次迭代时的全局最优解flocal=f(plocal),否则,维持全局最优解flocal=f(plocal);
(4)判断是否满足a≥Amax:若满足,则进入步骤(7);否则,进入步骤(5);
(5)更新个体n,
(51)判断rand≥α(a)是否成立:若成立,进入步骤(52);否则,进入步骤(53);其中:rand为区间[0,1]上均匀分布的随机数,为交替概率函数;
(52)采用变异粒子群算法对第n个粒子更新:
根据下式对第n个粒子的增量更新
根据下式对个体n的值进行更新:
其中:w为惯性权重,c1和c2为非负加速因子,r1和r2为区间(0,1)上均匀分布的随机数;
(53)采用差分进化算法对第n个粒子进行更新:
①采用差分进化算法的变异操作,设个体n变异后的值为则:
其中:ra和rb为区间[1,d]上互不相同的随机整数,缩放因子F为区间[0,2]上的一个常数;
②对个体n变异后的值采用差分进化算法的交叉操作
其中:CR为交叉概率,为个体n变异前、变异后和交叉后值的第d维分量,
③对个体n变异前的值和交叉后的值采用差分进化算法的选择操作,选择适应值小的作为下一代:
(6)a=a+1,返回步骤(3);
(7)输出全局最优值pglobal
如图2所示为T=pglobal时PEMFC单电池电压-电流极化曲线,操作参数如表1所示,可以看出PEMFC单电池最大电流密度可达1387mA/cm2,PEMFC电化学性能良好。
如图3所示为该变异粒子群和差分进化混合算法Schwefel’s2.22函数下的平均最优函数值随进化代数收殓仿真曲线,可以看出该算法在初期和后期收殓速度都很快,经过两次收殓即达到所需精度,说明该算法能够快速地高精度辨识和优化PEMFC系统各模块的温度参数,从而有效地对PEMFC系统进行实时控制。
表1 操作参数
性能评价
本发明提供一种基于变异粒子群和差分进化混合算法的PEMFC系统温度建模方法,从图1,图2和图3中可以看出,该方法发明具有良好的全局和局部的搜索、优化能力,能够高精度地辨识和优化PEMFC系统各模块的温度参数,有效地对PEMFC系统进行实时控制,从而提升燃料电池系统的电化学性能。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

1.一种基于变异粒子群和差分进化混合算法的PEMFC系统温度建模方法,其特征在于:包括如下步骤:
(1)定义PEMFC系统各模块温度:燃料气体温度t1,氧化气体温度t2,冷却水温度t3,阳极温度t4,阴极温度t5,质子膜温度t6,阳极侧双极板温度t7,阴极侧双极板温度t8,定义温度向量p=(t1,t2,t3,t4,t5,t6,t7,t8);
(2)建立一个包含m个粒子的粒子群,设置种群规模m=8,n为粒子号,n∈[1~m],最大进化代数Amax;个体n温度向量tn=(tn1,tn2,…,tnD),d=1,2,…,D,tnd为个体n的第d维向量,D表示温度观察次数,d表示观察号;第n个粒子记为 表示第n个粒子第a次迭代时的温度向量,初始时第n个粒子的温度增量记为 表示第n个粒子第a次迭代时的温度增量,初始时
(3)计算第n个粒子自身最优解和全局最优解:
情况一:迭代次数a=0
第n个粒子在第0次迭代时的解记为第n个粒子在第0次迭代时的自身最优解记为其中,f(X)为适应值函数,
在第0次迭代时的全局最优解记为flocal=f(plocal),
情况二:迭代次数a≠0
第n个粒子在第a次迭代时的解记为则更新第n个粒子在第a次迭代时的自身最优解 否则,维持第n个粒子的自身最优解
若minfn (a)<fglobal,则更新第a次迭代时的全局最优解flocal=f(plocal),否则,维持全局最优解flocal=f(plocal);
(4)判断是否满足a≥Amax:若满足,则进入步骤(7);否则,进入步骤(5);
(5)更新个体n,具体包括如下步骤:
(51)判断rand≥α(a)是否成立:若成立,进入步骤(52);否则,进入步骤(53);其中:rand为区间[0,1]上均匀分布的随机数,为交替概率函数;
(52)采用变异粒子群算法对第n个粒子更新:
根据下式对第n个粒子的增量更新
根据下式对第n个粒子的值进行更新:
其中:w为惯性权重,c1和c2为非负加速因子,r1和r2为区间(0,1)上均匀分布的随机数;
(53)采用差分进化算法对第n个粒子进行更新:
①采用差分进化算法的变异操作,设个体n变异后的值为则:
其中:ra和rb为区间[1,d]上互不相同的随机整数,缩放因子F为区间[0,2]上的一个常数;
②对第n个粒子变异后的值采用差分进化算法的交叉操作
其中:CR为交叉概率,为第n个粒子变异前、变异后和交叉后值的第d维分量,
③对第n个粒子变异前的值和交叉后的值采用差分进化算法的选择操作,选择适应值小的作为下一代:
(6)a=a+1,返回步骤(3);
(7)输出全局最优解pglobal
CN201611222635.1A 2016-12-27 2016-12-27 一种基于变异粒子群和差分进化混合算法的pemfc系统温度建模方法 Active CN106654319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611222635.1A CN106654319B (zh) 2016-12-27 2016-12-27 一种基于变异粒子群和差分进化混合算法的pemfc系统温度建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611222635.1A CN106654319B (zh) 2016-12-27 2016-12-27 一种基于变异粒子群和差分进化混合算法的pemfc系统温度建模方法

Publications (2)

Publication Number Publication Date
CN106654319A CN106654319A (zh) 2017-05-10
CN106654319B true CN106654319B (zh) 2019-03-19

Family

ID=58832682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611222635.1A Active CN106654319B (zh) 2016-12-27 2016-12-27 一种基于变异粒子群和差分进化混合算法的pemfc系统温度建模方法

Country Status (1)

Country Link
CN (1) CN106654319B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107220597B (zh) * 2017-05-11 2020-07-24 北京化工大学 一种基于局部特征和词袋模型人体动作识别过程的关键帧选取方法
CN107632522B (zh) * 2017-08-31 2020-06-19 南京理工大学 一种质子交换膜燃料电池非线性状态空间模型辨识方法
CN108428915B (zh) * 2018-03-26 2021-04-27 东南大学 一种基于迭代学习的燃料电池排气过程阳极压力控制方法
CN110867597B (zh) * 2019-11-21 2022-06-14 电子科技大学 一种质子交换膜燃料电池一致性的热电水协同控制方法
CN112635785A (zh) * 2020-12-18 2021-04-09 广东国鸿氢能科技有限公司 一种风冷电堆双极板
CN114815938B (zh) * 2022-06-14 2023-07-25 上海工程技术大学 一种基于改进射箭算法pid的家庭温湿度调节控制方法
CN115954504A (zh) * 2022-12-17 2023-04-11 福州大学 一种基于cgsasa算法的pemfc模型参数优化方法
CN115832374B (zh) * 2023-02-17 2023-05-02 江苏重塑能源科技有限公司 燃料电池的温度计算方法、装置及具有存储功能的装置
CN116520155B (zh) * 2023-06-21 2023-09-15 北京重理能源科技有限公司 一种燃料电池可逆衰减的识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336867A (zh) * 2013-06-28 2013-10-02 西南交通大学 质子交换膜燃料电池模型优化处理方法
CN103853881A (zh) * 2014-02-12 2014-06-11 四川大学 基于自适应混沌和差分进化粒子群算法的水轮机参数辨识方法
CN104751176A (zh) * 2015-03-24 2015-07-01 河海大学 一种高光谱遥感影像波段选择方法
CN106033887A (zh) * 2015-03-18 2016-10-19 南京理工大学 一种基于改进pso-de混合算法的配电网重构方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336867A (zh) * 2013-06-28 2013-10-02 西南交通大学 质子交换膜燃料电池模型优化处理方法
CN103853881A (zh) * 2014-02-12 2014-06-11 四川大学 基于自适应混沌和差分进化粒子群算法的水轮机参数辨识方法
CN106033887A (zh) * 2015-03-18 2016-10-19 南京理工大学 一种基于改进pso-de混合算法的配电网重构方法
CN104751176A (zh) * 2015-03-24 2015-07-01 河海大学 一种高光谱遥感影像波段选择方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"A Hybrid Differential Evolution for Optimum Modeling of PEM Fule Cells";Wu Zhu 等;《Arab J Sci Eng》;20140215;第39卷;第2869-2885页
"Hybrid Differential Evolution Particle Swarm Optimization (DE-PSO) algorithm for optimization of Unified Power flow controller parameters";Ranjan Kumar Mallick 等;《2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON)》;20161211;第635-640页
"PEM fuel cell model parameters optimization using modified particle swarm optimization algorithm";Zainuddin Mat Isa 等;《2013 IEEE Conference on Clean Energy and Technology (CEAT)》;20131231;第442-445页

Also Published As

Publication number Publication date
CN106654319A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106654319B (zh) 一种基于变异粒子群和差分进化混合算法的pemfc系统温度建模方法
CN105680071B (zh) 基于分数阶滑模变结构sofc系统热电协同控制方法
Chang et al. Performance analysis of a micro-combined heating and power system with PEM fuel cell as a prime mover for a typical household in North China
Maxoulis et al. Modeling of automotive fuel cell operation in driving cycles
Karrech et al. Vanadium flow batteries at variable flow rates
CN112736268A (zh) 一种提高sofc系统寿命的控制优化方法和系统
Yang et al. Levenberg‐Marquardt backpropagation algorithm for parameter identification of solid oxide fuel cells
Liu et al. Multi-objective optimization of proton exchange membrane fuel cell geometry and operating parameters based on three new performance evaluation indexes
Wang et al. Fuzzy control based on IQPSO in proton-exchange membrane fuel-cell temperature system
Yang et al. Extended criterion for robustness evaluations of energy conversion efficiency in DMFCs
CN113839065A (zh) 一种燃料电池冷却水回路热补偿温度控制系统及控制方法
CN102386429B (zh) 一种单室无膜微生物燃料电池的空气阴极催化剂层制作方法
Xu et al. Multi-criteria evaluation and optimization of PEM fuel cell degradation system
Deb et al. Design and Analysis of a Fuel Cell and Batteries in Energy Production for Electric Vehicle
CN108682885B (zh) 一种微流体燃料电池多孔电极几何尺寸的设计方法
Zhang et al. Parameter identification of proton exchange membrane fuel cell based on swarm intelligence algorithm
CN1909276A (zh) 一种质子交换膜燃料电池阳极水的管理办法
CN115911468A (zh) 一种提高燃料电池发电效率的操作条件寻优方法
CN114530618A (zh) 基于随机优化算法的燃料电池与空压机匹配建模方法
Li et al. Fuzzy Adaptive Algorithm Controls Oxygen Excess Coefficient of Air Blower and System Net Power of Proton Exchange Membrane Fuel Cell
Xu et al. Research on Voltage Stability Control Method of SOFC Based on Fuzzy PI Algorithm
Ma et al. Research on Control Strategy of Combined Heat and Power System Based on PEMFC
Yao et al. Modeling and Control Research of High Temperature Fuel Cell Based on Fuzzy Clustering Algorithm
Zambri et al. Performance comparison of PEMFC hydrogen reformer with different controllers
Tianyi et al. Performance Conversion Rate of Proton Exchange Membrane Fuel Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant