CN106367717B - 一维碳纳米管和三维石墨烯复合材料图形化生长方法 - Google Patents

一维碳纳米管和三维石墨烯复合材料图形化生长方法 Download PDF

Info

Publication number
CN106367717B
CN106367717B CN201610695734.5A CN201610695734A CN106367717B CN 106367717 B CN106367717 B CN 106367717B CN 201610695734 A CN201610695734 A CN 201610695734A CN 106367717 B CN106367717 B CN 106367717B
Authority
CN
China
Prior art keywords
dimensional
growth substrate
carbon nanotube
growth
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610695734.5A
Other languages
English (en)
Other versions
CN106367717A (zh
Inventor
于乐泳
胡云
孙泰
杨俊�
魏大鹏
史浩飞
杜春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing Institute of Green and Intelligent Technology of CAS
Priority to CN201610695734.5A priority Critical patent/CN106367717B/zh
Publication of CN106367717A publication Critical patent/CN106367717A/zh
Application granted granted Critical
Publication of CN106367717B publication Critical patent/CN106367717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种一维碳纳米管和三维石墨烯复合材料图形化生长方法,隶属微纳制造领域。该方法先对生长基底进行图形化处理,再对图形化后的生长基底进行制绒处理,然后采用磁控溅射方法在生长基底上沉积催化剂,再复合生长一维碳纳米管和三维石墨烯,最后将一维碳纳米管和三维石墨烯复合材料从生长基底上剥离。该方法解决了传统工艺中程序复杂,且不能直接从生长基底剥离的问题,此方法可以直接把图形化后的石墨烯复合材料应用于柔性器件等领域。

Description

一维碳纳米管和三维石墨烯复合材料图形化生长方法
技术领域
本发明涉及一种纳米复合材料的图形化生长方法,具体为一种一维碳纳米管和三维石墨烯复合材料图形化生长方法,隶属微纳制造领域。
背景技术
石墨烯,一个杂化的SP2六角型薄膜,它是目前发现最薄的二维材料。石墨烯具有很多优异的特性,它具有很好的柔韧性和透光性,石墨烯中的载流子迁移率远高于传统的硅材料,室温下本征载流子迁移率高达2.0×105cm2/(V.S)。另外,它具有高的热导率(约5000W/m.k)、极高的杨氏模量(1.06TPa)和巨大的比表面积2630m2/g。这些性质使石墨烯受到人们广泛的关注,它在高性能复合材料、柔性显示、光通信、光电探测和传感器件等诸多领域都具有广阔的应用前景。
碳纳米管是由单层或多层石墨烯片围绕同一中心轴按一定的螺旋角卷曲而成的无缝纳米级管结构,两端通常被由五元环和七元环参与形成的半球形大富勒烯分子封住,由于碳纳米管管壁中的碳原子采用的是SP2杂化,因此碳纳米管沿轴向具有高模量和高强度,另外其特殊的结构也赋予碳纳米管特异的光、电、磁、热、化学和力学特性,具有极其广泛的应用。
石墨烯和碳纳米管都是纳米尺寸的碳材料,具有极大的比表面积、良好的导电性以及优秀的机械性能等特性,它们之间可以产生一种协同效应,使其各种物理化学性能得到增强,因而这种复合材料在很多领域有着极大的应用前景,这也使得石墨烯/碳纳米管复合材料的制备得到了广泛的关注。
目前单层石墨烯薄膜跟碳纳米管的复合材料制备方法已经得到了广泛研究,但是对三维石墨烯跟碳纳米管复合的研究还非常少。目前常用的石墨烯/碳纳米管复合材料的制备方法有:化学气相沉积法(CVD),一般步骤为首先在铜箔上沉积石墨烯薄膜,然后在石墨烯薄膜涂上一层催化剂,然后再次利用CVD法在催化剂表面沉积碳纳米管,最后出去铜箔。此方法,工艺流程繁多,不利用产业化生产。
发明内容
针对传统石墨烯复合材料生长流程复杂且不能直接图形化应用到器件上,本发明提出了一种图形化生长一维碳纳米管和三维石墨烯复合材料的方法,该方法包括如下步骤:
(1)对生长基底进行图形化:先采用微纳米加工技术在掩模板上制作掩模板图形,再利用掩模板对生长基底进行图形化处理,掩模板图形可为任意形状;
(2)对图形化后的生长基底进行制绒处理:将图形化后的生长基底浸泡于浓度为2-10%氢氟酸溶液中,然后取出生长基底,用无水乙醇、去离子水分别超声5-10分钟,最后将生长基底吹干;
(3)采用磁控溅射方法在生长基底上沉积催化剂:将掩模板对齐图形化并制绒的生长基底上,采用磁控溅射方法,在生长基底上沉积不连续的2-6nm的金属粒子,作为生长一维碳纳米管的催化剂;
(4)复合生长一维碳纳米管和三维石墨烯:保持掩模板与生长基底对齐,将沉积完催化剂的生长基底放置于微波CVD反应炉中,通入碳源和辅助气体,温度为200-600℃,生长时间10-60分钟,最后冷却;
(5)剥离一维碳纳米管和三维石墨烯复合材料:将复合生长完一维碳纳米管和三维石墨烯的生长基底从反应炉中取出,从生长基底表面取掉掩模板,再在生长基底表面涂覆一层柔性材料,厚度为50-100um,并将其烘干,最后将一维碳纳米管和三维石墨烯复合材料从生长基底上剥离。
所述生长基底可以为硅基底、石英基底或泡沫镍。
所述图形化处理的方法为反应等离子体刻蚀。
所述催化剂可以为铁、钴或镍金属粒子。
所述碳源为同时含有SP3和SP2碳原子的有机化合物。
进一步,所述碳源为甲烷或乙烯。
所述辅助气体可以为氢气或氩气。
所述柔性材料为聚氨酯弹性体。
本发明提供了一种图形化生长一维碳纳米管和三维石墨烯复合材料的方法,解决了传统工艺中程序复杂,且不能直接从生长基底剥离的问题,此方法可以直接把图形化后的石墨烯复合材料应用于柔性器件等领域。
附图说明
图1为本发明所提供的一维碳纳米管和三维石墨烯复合材料图形化生长方法的流程图。
图2为实施例1中图形化后硅基底的俯视图。
图3为实施例1中图形化后硅基底的截面图。
图4为实施例1中一维碳纳米管和三维石墨烯复合材料图形化生长完成并从生长基底上剥离后的示意图。
具体实施方式
下面结合附图和实施例详细介绍本发明,但以下实施例仅限于解释本发明,本发明的保护范围应包括权利要求的全部内容。
实施例一
本实施例提供一种一维碳纳米管和三维石墨烯复合材料图形化生长方法,该方法的流程图如附图1所示,具体步骤如下:
(1)对生长基底进行图形化:选用6cm×6cm尺寸大小铜板作为掩模板基材,,利用微纳米加工技术在铜板板上制作出掩模板图形,掩模板图形为5mm×5mm尺寸大小的正方形,掩模板图形以阵列方式排列;同时选取一块尺寸大小同样为6cm×6cm的硅衬底,厚度为2mm,在硅衬底表面涂覆一层az1500光刻胶,胶厚2um,然后将掩模板覆盖于涂有光刻胶的硅衬底之上,掩模板的边缘与硅衬底对齐,在365nm紫外曝光机下,采用接触式曝光方法,曝光剂量100mJ/cm2,显影30s,将光刻胶复制成掩模板图形,曝光完毕后,用酒精将未固化的光刻胶显影掉;然后将带有光刻胶的硅衬底放置于等离子体刻蚀机中,采用六氟化硫进行干法刻蚀,气体流量为6sccm,刻蚀功率100w,刻蚀时间5h,刻蚀深度为10um,刻蚀完毕后得到的图形化硅衬底即为一维碳纳米管和三维石墨烯复合材料的生长基底,图形化后的生长基底俯视图和截面示意图如附图2和附图3所示;
(2)对图形化后的生长基底进行制绒处理:将图形化后的硅基底放置于浓度为2%的氢氟酸溶液中浸泡8分钟,对硅基底进行制绒处理,然后取出硅基底,用无水乙醇、去离子水分别超声10分钟,最后将硅基底吹干;
(3)采用磁控溅射方法在生长基底上沉积催化剂:将掩模板放置于图形化后并经过制绒处理的硅基底上,并保持掩模板图形和硅基底上的图形对齐,将其一同放置于磁控溅射设备中,采用直流溅射,功率为100W,溅射气体为氩气,流量为10sccm,溅射压强为2Pa,溅射时间2秒,在硅基底的孔洞内沉积不连续的2-6nm的Fe粒子,作为生长一维碳纳米管的催化剂;
(4)复合生长一维碳纳米管和三维石墨烯:将沉积完催化剂的硅基底放置于微波CVD反应炉中,碳源为甲烷,甲烷流量为2sccm,辅助气体为氢气,氢气流量为10sccm,温度为600℃,微波功率600W,压强10毫巴,生长时间90分钟,最后冷却;
(5)剥离一维碳纳米管和三维石墨烯复合材料:将复合生长完一维碳纳米管和三维石墨烯的硅基底从反应炉中取出,从硅基底表面取掉掩模板,再在硅基底表面涂覆一层聚氨酯弹性体,厚度为100um,并将其烘干,最后将一维碳纳米管和三维石墨烯复合材料从硅基底上剥离,得到的复合材料如附图4所示。
实施例二
本实施例提供一种一维碳纳米管和三维石墨烯复合材料图形化生长方法,该方法的流程图如附图1所示,具体步骤如下:
(1)对生长基底进行图形化:选用5cm×5cm尺寸大小铜板作为掩模板基材,,利用微纳米加工技术在铜板板上制作出掩模板图形,掩模板图形为4mm×3mm尺寸大小的长方形,掩模板图形以阵列方式排列;同时选取一块尺寸大小同样为5cm×5cm的石英衬底,厚度为2mm,在石英衬底表面涂覆一层az1500光刻胶,胶厚2um,然后将掩模板覆盖于涂有光刻胶的石英衬底之上,掩模板的边缘与石英衬底对齐,在365nm紫外曝光机下,采用接触式曝光方法,曝光剂量100mJ/cm2,显影30s,将光刻胶复制成掩模板图形,曝光完毕后,用酒精将未固化的光刻胶显影掉;然后将带有光刻胶的石英衬底放置于等离子体刻蚀机中,采用六氟化硫进行干法刻蚀,气体流量为6sccm,刻蚀功率100w,刻蚀时间5h,刻蚀深度为10um,刻蚀完毕后得到的图形化石英衬底即为一维碳纳米管和三维石墨烯复合材料的生长基底;
(2)对图形化后的生长基底进行制绒处理:将图形化后的石英基底放置于浓度为6%的氢氟酸溶液中浸泡2分钟,对石英基底进行制绒处理,然后取出石英基底,用无水乙醇、去离子水分别超声5分钟,最后将石英基底吹干;
(3)采用磁控溅射方法在生长基底上沉积催化剂:将掩模板放置于图形化后并经过制绒处理的石英基底上,并保持掩模板图形和石英基底上的图形对齐,将其一同放置于磁控溅射设备中,采用直流溅射,功率为100W,溅射气体为氩气,流量为10sccm,溅射压强为2Pa,溅射时间5秒,在石英基底的孔洞内沉积不连续的2-6nm的钴粒子,作为生长一维碳纳米管的催化剂;
(4)复合生长一维碳纳米管和三维石墨烯:将沉积完催化剂的石英基底放置于PECVD反应炉中,原料气体为乙烯,乙烯流量为7sccm,辅助气体为氩气,流量为40sccm,温度为400℃,射频功率100-W,气压为50Pa,生长时间60分钟,最后冷却;
(5)剥离一维碳纳米管和三维石墨烯复合材料:将复合生长完一维碳纳米管和三维石墨烯的石英基底从反应炉中取出,从石英基底表面取掉掩模板,再在石英基底表面涂覆一层聚氨酯弹性体,厚度为80um,并将其烘干,最后将一维碳纳米管和三维石墨烯复合材料从石英基底上剥离。
实施例三
本实施例提供一种一维碳纳米管和三维石墨烯复合材料图形化生长方法,该方法的流程图如附图1所示,具体步骤如下:
(1)对生长基底进行图形化:选用4cm×4cm尺寸大小铜板作为掩模板基材,,利用微纳米加工技术在铜板板上制作出掩模板图形,掩模板图形为直径为2mm尺寸大小的圆形,掩模板图形以阵列方式排列;同时选取一块尺寸大小同样为4cm×4cm的泡沫镍衬底,厚度为2mm,在泡沫镍衬底表面涂覆一层az1500光刻胶,胶厚2um,然后将掩模板覆盖于涂有光刻胶的泡沫镍衬底之上,掩模板的边缘与泡沫镍衬底对齐,在365nm紫外曝光机下,采用接触式曝光方法,曝光剂量100mJ/cm2,显影30s,将光刻胶复制成掩模板图形,曝光完毕后,用酒精将未固化的光刻胶显影掉;然后将带有光刻胶的泡沫镍衬底放置于等离子体刻蚀机中,采用六氟化硫进行干法刻蚀,气体流量为6sccm,刻蚀功率100w,刻蚀时间5h,刻蚀深度为10um,刻蚀完毕后得到的图形化泡沫镍衬底即为一维碳纳米管和三维石墨烯复合材料的生长基底;
(2)对图形化后的生长基底进行制绒处理:将图形化后的泡沫镍基底放置于浓度为10%的氢氟酸溶液中浸泡30秒,对泡沫镍基底进行制绒处理,然后取出泡沫镍基底,用无水乙醇、去离子水分别超声8分钟,最后将泡沫镍基底吹干;
(3)采用磁控溅射方法在生长基底上沉积催化剂:将掩模板放置于图形化后并经过制绒处理的泡沫镍基底上,并保持掩模板图形和泡沫镍基底上的图形对齐,将其一同放置于磁控溅射设备中,采用直流溅射,功率为100W,溅射气体为氩气,流量为100sccm,溅射压强为2Pa,溅射时间10秒,在泡沫镍基底的孔洞内沉积不连续的2-6nm的镍粒子,作为生长一维碳纳米管的催化剂;
(4)复合生长一维碳纳米管和三维石墨烯:将沉积完催化剂的泡沫镍基底放置于PECVD反应炉中,原料气体为乙烯,乙烯流量为10sccm,辅助气体为氩气,流量为60sccm,温度为600℃,射频功率100W,气压为100Pa,生长时间30分钟,最后冷却;
(5)剥离一维碳纳米管和三维石墨烯复合材料:将复合生长完一维碳纳米管和三维石墨烯的泡沫镍基底从反应炉中取出,从泡沫镍基底表面取掉掩模板,再在泡沫镍基底表面涂覆一层聚氨酯弹性体,厚度为50um,并将其烘干,最后将一维碳纳米管和三维石墨烯复合材料从泡沫镍基底上剥离。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (4)

1.一种一维碳纳米管和三维石墨烯复合材料图形化生长方法,其特征在于,该方法包括如下步骤:
(1)对生长基底进行图形化:先采用微纳米加工技术在掩模板上制作掩模板图形,再利用掩模板对生长基底进行图形化处理,掩模板图形可为任意形状;
(2)对图形化后的生长基底进行制绒处理:将图形化后的生长基底浸泡于浓度为2-10%氢氟酸溶液中,然后取出生长基底,用无水乙醇、去离子水分别超声5-10分钟,最后将生长基底吹干;
(3)采用磁控溅射方法在生长基底上沉积催化剂:将掩模板对齐图形化并制绒的生长基底上,采用磁控溅射方法,在生长基底上沉积不连续的2-6nm的铁、钴或镍金属粒子,作为生长一维碳纳米管的催化剂;
(4)复合生长一维碳纳米管和三维石墨烯:保持掩模板与生长基底对齐,将沉积完催化剂的生长基底放置于微波CVD反应炉中,通入甲烷或乙烯作为碳源,同时通入辅助气体氢气或氩气,温度为200-600℃,生长时间10-60分钟,最后冷却;
(5)剥离一维碳纳米管和三维石墨烯复合材料:将复合生长完一维碳纳米管和三维石墨烯的生长基底从反应炉中取出,从生长基底表面取掉掩模板,再在生长基底表面涂覆一层柔性材料,厚度为50-100um,并将其烘干,最后将一维碳纳米管和三维石墨烯复合材料从生长基底上剥离。
2.根据权利要求1所述的一种一维碳纳米管和三维石墨烯复合材料图形化生长方法,其特征在于,所述生长基底为硅基底、石英基底或泡沫镍。
3.根据权利要求1所述的一种一维碳纳米管和三维石墨烯复合材料图形化生长方法,其特征在于,所述图形化处理的方法为反应等离子体刻蚀。
4.根据权利要求1所述的一种一维碳纳米管和三维石墨烯复合材料图形化生长方法,其特征在于,所述柔性材料为聚氨酯弹性体。
CN201610695734.5A 2016-08-19 2016-08-19 一维碳纳米管和三维石墨烯复合材料图形化生长方法 Active CN106367717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610695734.5A CN106367717B (zh) 2016-08-19 2016-08-19 一维碳纳米管和三维石墨烯复合材料图形化生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610695734.5A CN106367717B (zh) 2016-08-19 2016-08-19 一维碳纳米管和三维石墨烯复合材料图形化生长方法

Publications (2)

Publication Number Publication Date
CN106367717A CN106367717A (zh) 2017-02-01
CN106367717B true CN106367717B (zh) 2018-07-13

Family

ID=57878514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610695734.5A Active CN106367717B (zh) 2016-08-19 2016-08-19 一维碳纳米管和三维石墨烯复合材料图形化生长方法

Country Status (1)

Country Link
CN (1) CN106367717B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106976861B (zh) * 2017-04-07 2019-03-05 西南科技大学 一种薄壁泡沫炭-碳纳米管复合材料的制备方法
CN109618428B (zh) * 2018-10-12 2021-07-06 重庆墨希科技有限公司 一种基于石墨烯的高发射率的红外发射膜及其制备方法
CN110359088A (zh) * 2019-08-07 2019-10-22 中国电子科技集团公司第四十六研究所 一种大面积单晶石墨烯生长方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696491A (zh) * 2009-10-22 2010-04-21 清华大学 石墨烯/碳纳米管复合薄膜的原位制备方法
CN103103492A (zh) * 2013-01-24 2013-05-15 天津工业大学 一种石墨烯/碳纳米管复合导电薄膜的制备方法
CN103436854A (zh) * 2013-09-05 2013-12-11 吉林大学 一种石墨烯和碳纳米管复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150318120A1 (en) * 2013-01-30 2015-11-05 Empire Technology Development Llc. Carbon nanotube-graphene composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696491A (zh) * 2009-10-22 2010-04-21 清华大学 石墨烯/碳纳米管复合薄膜的原位制备方法
CN103103492A (zh) * 2013-01-24 2013-05-15 天津工业大学 一种石墨烯/碳纳米管复合导电薄膜的制备方法
CN103436854A (zh) * 2013-09-05 2013-12-11 吉林大学 一种石墨烯和碳纳米管复合材料的制备方法

Also Published As

Publication number Publication date
CN106367717A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
TWI503440B (zh) 石墨烯導電膜結構的製備方法
CN106367717B (zh) 一维碳纳米管和三维石墨烯复合材料图形化生长方法
CN106601382B (zh) 一种柔性透明导电膜的制备方法
Zhang et al. Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams
CN105803420B (zh) 石墨烯和/或碳纳米管包覆金刚石复合材料及其制备方法及应用
JP5134120B2 (ja) 熱音響装置の製造方法
CN105036106B (zh) 一种超高定向导热碳基复合材料的制备方法
TW201444763A (zh) 奈米級微結構的製備方法
CN104328389B (zh) 石墨烯纳米网的制备方法
CN104112777B (zh) 薄膜晶体管及其制备方法
CN102311681A (zh) Uv固化型银纳米线墨水及其制备方法和使用方法
CN105152125A (zh) 一种基于微沟道结构的微纳米材料有序自组装图形化方法
CN102709399B (zh) 一种纳米天线太阳能电池的制作方法
CN105420689B (zh) 一种取向碳纳米管-氧化铝杂化纤维及其制备方法
CN107765511A (zh) 石墨烯与银纳米线复合透明导电薄膜的图形化方法
CN101110308A (zh) 场发射阴极的制造方法
CN104944412B (zh) 一种半导体性单壁碳纳米管的制备方法
TWI504556B (zh) 三維奈米結構陣列的製備方法
CN101104509A (zh) 一种在孔洞结构中制作单个纳米材料的方法
CN106904599B (zh) 一种在绝缘衬底上制备图形石墨烯的方法
CN102328925A (zh) 高密度碳纳米管束的制备工艺
CN108735561A (zh) 高场发射电流密度碳纳米管阵列冷阴极及其制备方法
CN104393027B (zh) 一种全碳石墨烯器件及其制备方法
CN103630574B (zh) 一种石墨烯dna传感器的制备方法
CN102275906B (zh) 一种常温制备石墨烯的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant