CN106345319B - 一种无支撑活性炭全碳膜及其制备方法和应用 - Google Patents

一种无支撑活性炭全碳膜及其制备方法和应用 Download PDF

Info

Publication number
CN106345319B
CN106345319B CN201610734288.4A CN201610734288A CN106345319B CN 106345319 B CN106345319 B CN 106345319B CN 201610734288 A CN201610734288 A CN 201610734288A CN 106345319 B CN106345319 B CN 106345319B
Authority
CN
China
Prior art keywords
active carbon
graphene
carbon film
film
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610734288.4A
Other languages
English (en)
Other versions
CN106345319A (zh
Inventor
陈宝梁
杨凯杰
朱小萤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610734288.4A priority Critical patent/CN106345319B/zh
Publication of CN106345319A publication Critical patent/CN106345319A/zh
Priority to PCT/CN2017/098964 priority patent/WO2018036553A1/zh
Priority to CN201780003007.0A priority patent/CN108136340A/zh
Priority to US16/328,205 priority patent/US20190176096A1/en
Application granted granted Critical
Publication of CN106345319B publication Critical patent/CN106345319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00416Inorganic membrane manufacture by agglomeration of particles in the dry state by deposition by filtration through a support or base layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0044Inorganic membrane manufacture by chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种无支撑活性炭全碳膜及其制备方法和应用。由石墨烯作为交联剂连接形成的活性炭全碳膜,该膜可以独立于基底稳定存在,同时具有很高的耐化学耐腐蚀性与热稳定性。这种多功能全碳膜具备可控的孔隙结构,同时对于污染物具有超强的吸附性能,其孔隙大小可以在交联剂添加量的调控下实现从微米级调控至纳米级的调节。根据上述性质,该多功能独立全碳膜可实现一步去除颗粒污染物与小分子污染物的效果,可用于环境污染水体处理,饮用水净化以及空气净化等领域。

Description

一种无支撑活性炭全碳膜及其制备方法和应用
技术领域
本发明属于材料制备领域,尤其涉及一种无支撑活性炭全碳膜及其制备方法和应用。
背景技术
活性炭是应用最为广泛的吸附材料,由于其巨大比表面及丰富孔隙结构而被广泛应用于水体、气体净化,化学催化,能源储存等领域。现对于活性炭的应用往往是以颗粒态形式直接投加入污染水体中进行吸附,但是这种应用往往会造成活性炭的流失,同时涉及后期的费时费力的固液分离过程。也有应用是将活性炭填充于容器当中,或者镶嵌于多聚物中进行使用。但是活性炭填充柱在使用过程中容易被污染堵塞,而多聚物的镶嵌会阻塞活性炭孔隙结构与遮蔽表面结构,影响其吸附性能。同时,填装的容器或者物理固定活性炭的多聚物往往不能抵挡化学物质的侵蚀与高温操作,限制了其应用领域,所以,研究并开发新型的活性炭器件对于活性炭的应用具有十分重要的意义。
发明内容
本发明的目的在于解决现有技术中存在的问题,并提供一种无支撑活性炭全碳膜及其制备方法和应用,既保证了其超强吸附性能的同时,又使其具备了颗粒物截留的能力,为活性炭的应用提供了广泛的空间。
由于活性炭具备巨大的比表面积以及丰富的孔隙结构,对于水中溶解态污染物具有超强的吸附性能,活性炭在不同的领域都有很大的应用潜力。但是由于活性炭颗粒较大尺寸以及不规则表面的限制,活性炭颗粒之间难以相互作用并进一步器件化。为了解决单纯活性炭颗粒相互作用弱,器件化难的问题,同时不引入高分子聚合物,本发明采用了一种全新的思路:利用活性炭表面的的π电子结构,运用具有芳香性表面的石墨烯作为碳质交联剂,通过活性炭与碳质交联剂表面的π-π相互作用力使颗粒态活性炭成膜,在保证其吸附能力的同时赋予其颗粒截留的能力。这种多功能全碳膜具备可控的孔隙结构,同时对于污染物具有超强的吸附性能,其孔隙大小可以在交联剂添加量的调控下实现从微米级调控至纳米级 的调节。
本发明的目的具体是通过以下技术方案实现的:
无支撑活性炭全碳膜,由活性炭为基本材料,石墨烯作为交联剂连接形成活性炭全碳膜。活性炭与碳质交联剂表面的π-π相互作用力,使颗粒态活性炭形成不需要支撑结构的全碳膜。
本发明的另一目的在于提供一种无支撑活性炭全碳膜的制备方法,包括以下步骤:首先将活性炭分散于水中,形成活性炭分散液,再加入石墨烯分散液,并充分混匀,将混匀后的溶液进行过滤,使石墨烯与活性炭在滤膜基底上进行组装,得到活性炭全碳膜。活性炭全碳膜在干燥之后可从基底表面剥离,形成独立的全碳膜。
作为优选,所述的活性炭的尺寸为微米级,目的是使其更容易在水中分散。
作为优选,活性炭分散过程中,调节pH呈碱性。pH优选控制>10,使活性炭在水中具有较强的静电斥力(>-30mV),进一步增强其分散能力。
作为优选,所述的石墨烯分散液由氧化石墨烯分散液部分还原得到。利用交联剂与活性炭之间的非共价键π用交作用力使颗粒活性炭器件化是本发明的创新点,在保证碳质交联剂在水中充分分散的前提下,尽量还原其表面含氧挂能团可以增强其疏水作用以及表面π电子体系,有利于成膜的稳定性。
进一步的,还原过程通过化学还原实现,部分还原过程为,将石墨烯水溶液中的石墨烯控制在0.05-0.1mg/ml,pH控制在9-12,然后再进行加热还原。溶液pH控制在9-12时,保证碳质交联剂之间较强的静电斥力,使其在水中充分分散,防止其团聚,pH优选为11。同时浓度控制在0.05-0.1mg/ml防止浓度较高造成的团聚
作为优选,混匀后的溶液置于加压过滤装置中,通过加压过滤的方法通过微孔滤膜基底成膜。加压过滤装置中驱动力可以为氮气,也可以是其他气体,压力控制范围为0.05-0.6Mpa,目的是使混合液过滤组装过程可以在较短之间之内完成(<30min),防止时间过长活性炭分散液发生沉淀,导致成膜的不均匀。加压过滤装置底部需以微孔滤膜作为基底进行层积组装,过滤组装的微孔滤膜基底并没有材质要求,功能为截留活性炭与碳质交联剂进行组装,但表面光滑与活性炭作用力小可以有利于成膜之后从基底表面剥离。
作为优选,混匀后的溶液中,石墨烯的比例可调节,石墨烯和活性炭的质量比优选为1%~10%。活性炭膜的厚度可以通过活性炭的添加量调控,活性炭膜的表面孔隙结构可以通过碳质交联剂添加的比例进行调控。
本发明提供了一种新型活性炭器件化的方式,使活性炭在不添加高分子聚合物条件下独立成膜,膜体具有超强孔隙结构与比表面积。实施使用中该膜具有以下优势:与高分子聚合膜相比,活性炭全碳膜具有超强的化学稳定性与热稳定性。与纯石墨烯膜或碳纳米管膜全碳膜相比,活性炭由于制备成本低廉,具有较好的价格优势。同时,通过碳质交联剂添加量的控制可以高效得实现膜孔隙尺寸的调控,有选择性得截留不同尺寸的颗粒污染物。研究发现,活性炭全碳膜可以有效截留水体中的微生物、纳米颗粒,并能高效去除污染水体中染料,多环芳烃,重金属离子等溶解态污染物。
由于活性炭全碳膜同时具备超强的吸附性能与可控的孔隙结构,因此其可在水体净化、空气净化、化学催化或能源储备等领域有很大的应用潜能。
附图说明
图1为实施例1制得的全碳膜的电镜扫描图;
图2为实施例3制得的全碳膜的电镜扫描图;
图3为实施例5制得的全碳膜的电镜扫描图;
图4为实施例7制得的全碳膜的电镜扫描图。
具体实施方式
下面结合附图和实施例对本发明做进一步阐述,以便本领域技术人员更好地理解本发明的实质。本发明中试剂或材料,若无特殊说明,均为市售产品。
石墨烯分散液制备:
由氧化石墨烯分散液部分还原制备石墨烯分散液。具体为:将氧化石墨烯配置成水溶液,溶液中石墨烯控制在0.05-0.1mg/ml,pH控制在9-12,以实现静电调控,使石墨烯在水中能充分分散。上述溶液在90℃下进行加热还原15分钟,得到氧化石墨烯分散液。
上述实施例只是本发明的优选方式,且各参数可以根据实际需要进行调整,同时石墨烯分散液也可以直接通过石墨烯颗粒在表面活性剂作用下进行分散得到。或者也可以采用现有技术中的其他石墨烯分散液。
实施例
本发明的成膜过程通过过滤组装实现,过滤前活性炭与石墨烯首先通过静电调控使其在水中充分分散。活性炭与石墨烯分散液以一定比例充分混合,然后加入过滤装置中,在驱动力的作用下使其过微孔滤膜,并在微孔滤膜基底表面进行组装。制备无支撑活性炭全碳膜的具体步骤如下:
(1)活性炭首先通过研磨并通过500目筛网,保证其尺寸为微米级。
(2)将微米级的活性炭加入水中,调节溶液pH值至11,利用表面静电调控,在超声的作用下将颗粒活性炭充分分散于水中,得到活性炭分散液。需要注意的是,该步骤中,pH可影响静电调控效果,当pH控制>10,此时活性炭表面电负性<-30mV,超声作用时间为2min,保证活性炭颗粒在水中能充分分散。但只要pH保持碱性,也基本能够实现分散效果。
(3)将前述制备好的石墨烯分散液与活性炭分散液在震荡与超声的条件下充分混合,混合液中石墨烯和活性炭的质量比依次调节为1%、2%、3%、4%、5%、6%、7%,分别记为实施例1~实施例7。
(4)依次将各实施例中充分混合的活性炭+碳质交联剂混合液置于加压过滤装置中,以氮气为增压气体,压力范围为0.05-0.6Mpa,微孔滤膜基底孔径为0.22基底,混合液在30min内快速成膜。
(5)干燥之后,将全碳膜从微孔滤膜基底剥离形成独立的全碳膜。
对实施例1、3、5、7所得的全碳膜进行电镜扫描,其结果如图1所述。图中,可以看出,在石墨烯的交联作用下,作为基本材料的活性炭颗粒之间相互连接,形成整体。同时随着石墨烯量的增加,其表面结构逐渐变得致密,孔隙结构变小。同时,活性炭膜的厚度可以通过活性炭分散液添加的体积量进行调控,添加越多,膜层越厚,膜的吸附容量越大。
利用实施例1~7所得的全碳膜分别对小球藻、大肠杆菌、纳米二氧化硅、纳米银进行过滤截留试验。试验结果如表1所示,不同石墨烯添加量比例的活性炭膜具备不同的孔隙结构特质。当石墨烯添加量达到活性炭的质量的1%的时候,可以100%截留颗粒尺寸为2μm的小球藻。当石墨烯添加比例达到活性炭的质量的2%时,可以100%截留颗粒尺寸为1μm的大肠杆菌。当石墨烯添加比例达到活性炭的质量的3%时,可以100%截留颗粒尺寸为200nm的纳米二氧化硅。 当石墨烯添加比例达到活性炭的质量的7%时,膜孔隙结构可以达到24nm,可以99.23%截留颗粒尺寸为50nm的纳米银。由此可见,膜的孔隙结构可以通过碳质交联剂添加比例进行调节,交联剂添加比例越高,膜的孔隙结构越小。本发明的全碳膜可以有效截留水体中的微生物、纳米颗粒。另外其也可以用于去除污染水体中染料,多环芳烃,重金属离子等溶解态污染物。
表1.不同石墨烯含量的全碳膜对于颗粒物的截留能力
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。例如,尽管上述实施例中,活性炭均是研磨后通过500目筛网获得的,但并不意味着其必须经过500目筛网,只要能够保持活性炭颗粒在微米级,甚至纳米级,其都能实现本发明的效果。再例如,上述实施例仅列出了,混合液中石墨烯和活性炭的质量比为1%~7%的情况,但经过试验,在该范围前后进行调整,例如质量比为9%、10%甚至10%以上,其也能够实现本发明的技术效果,但水通量等性质会略微下降。
由此可见,本领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (7)

1.一种无支撑活性炭 全碳膜的制备方法,其特征在于,包括:
将活性炭分散于水中,形成活性炭分散液,再加入石墨烯分散液,并充分混匀,将混匀后的溶液进行过滤,使石墨烯与活性炭在滤膜基底上进行组装,得到活性炭 全碳膜;所述的活性炭的尺寸为微米级;活性炭分散过程中,调节pH呈碱性;所述的石墨烯分散液由氧化石墨烯水分散液部分还原得到。
2.如权利要求1所述的无支撑活性炭 全碳膜的制备方法,其特征在于,控制pH >10。
3.如权利要求1所述的无支撑活性炭 全碳膜的制备方法,其特征在于,部分还原过程中,将石墨烯水溶液中石墨烯浓度控制在0.05-0.1 mg/ml, pH控制在9-12,进行还原。
4.如权利要求1所述的无支撑活性炭 全碳膜的制备方法,其特征在于,混匀后的溶液置于加压过滤装置中,通过加压过滤的方法通过微孔滤膜基底成膜。
5.如权利要求4所述的无支撑活性炭 全碳膜的制备方法,其特征在于,过滤时间<30min。
6.如权利要求1所述的无支撑活性炭 全碳膜的制备方法,其特征在于,全碳膜的孔隙可通过石墨烯的添加量调节。
7.一种如权利要求1所述方法制备的无支撑活性炭 全碳膜,其特征在于,由活性炭为基本材料,石墨烯作为交联剂连接形成活性炭 全碳膜。
CN201610734288.4A 2016-08-25 2016-08-25 一种无支撑活性炭全碳膜及其制备方法和应用 Active CN106345319B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201610734288.4A CN106345319B (zh) 2016-08-25 2016-08-25 一种无支撑活性炭全碳膜及其制备方法和应用
PCT/CN2017/098964 WO2018036553A1 (zh) 2016-08-25 2017-08-25 一种基于活性炭的全碳膜及其制备方法和应用
CN201780003007.0A CN108136340A (zh) 2016-08-25 2017-08-25 一种基于活性炭的全碳膜及其制备方法和应用
US16/328,205 US20190176096A1 (en) 2016-08-25 2017-08-25 All-Carbon Film Based On Activated Carbon And Preparation Method And Use Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610734288.4A CN106345319B (zh) 2016-08-25 2016-08-25 一种无支撑活性炭全碳膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106345319A CN106345319A (zh) 2017-01-25
CN106345319B true CN106345319B (zh) 2019-05-17

Family

ID=57854489

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610734288.4A Active CN106345319B (zh) 2016-08-25 2016-08-25 一种无支撑活性炭全碳膜及其制备方法和应用
CN201780003007.0A Pending CN108136340A (zh) 2016-08-25 2017-08-25 一种基于活性炭的全碳膜及其制备方法和应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201780003007.0A Pending CN108136340A (zh) 2016-08-25 2017-08-25 一种基于活性炭的全碳膜及其制备方法和应用

Country Status (3)

Country Link
US (1) US20190176096A1 (zh)
CN (2) CN106345319B (zh)
WO (1) WO2018036553A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345319B (zh) * 2016-08-25 2019-05-17 浙江大学 一种无支撑活性炭全碳膜及其制备方法和应用
CN109985534B (zh) * 2017-12-30 2021-08-10 浙江大学 一种纯活性炭过滤膜及其制备方法与应用
CN108579452A (zh) * 2018-06-15 2018-09-28 南京水杯子科技股份有限公司 一种氧化石墨烯复合炭膜及其制备方法
CN109126284B (zh) * 2018-09-30 2019-10-25 江南大学 一种石墨烯改性聚丙烯复合滤料的制备方法
CN110372109A (zh) * 2019-06-25 2019-10-25 南通强生石墨烯科技有限公司 一种石墨烯阻垢滤芯及其制备方法
CN110860215B (zh) * 2019-10-12 2020-12-08 浙江大学 一种具有帐篷状结构的氧化石墨烯膜及其制备方法与应用
CN112642308A (zh) * 2019-12-03 2021-04-13 贵州省材料技术创新基地 聚砜-生物炭共混分离膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103343A1 (en) * 2008-03-17 2009-09-23 National Institute Of Advanced Industrial Science and Technology Self-standing mesoporous carbon membrane
JP2010105909A (ja) * 2008-09-30 2010-05-13 Nippon Chemicon Corp 高密度カーボンナノチューブ集合体及びその製造方法
CN103613094A (zh) * 2013-11-28 2014-03-05 华中科技大学 一种同时制备石墨烯和多孔非晶碳薄膜的方法
CN104192836A (zh) * 2014-09-16 2014-12-10 哈尔滨工业大学 自支撑多孔石墨烯基薄膜的溶液热制备方法
CN104715937A (zh) * 2014-11-07 2015-06-17 深圳市今朝时代新能源技术有限公司 一种叠层式电极的制备方法、炭膜及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393381B2 (en) * 2003-06-19 2008-07-01 Applied Filter Technology, Inc. Removing siloxanes from a gas stream using a mineral based adsorption media
US7993606B2 (en) * 2004-04-30 2011-08-09 E. I. Du Pont De Nemours And Company Adaptive membrane structure
CN101284774B (zh) * 2008-05-23 2011-09-07 浙江大学 直接采用分子氧催化氧化一步制备甘油酸的方法
CN101670282B (zh) * 2009-10-19 2011-07-20 浙江博华环境技术工程有限公司 负载型纳米二氧化钛催化剂的制备方法
WO2013170249A1 (en) * 2012-05-11 2013-11-14 Virginia Tech Intellectual Properties, Inc. Functionalized carbon nanotube nanocomposite membranes and methods of their fabrication
CN102677031B (zh) * 2012-05-18 2014-09-10 中国科学院上海硅酸盐研究所 制备金属/碳纳米复合的多孔膜的方法及由其制得的多孔膜
US9208920B2 (en) * 2012-12-05 2015-12-08 Nanotek Instruments, Inc. Unitary graphene matrix composites containing carbon or graphite fillers
US20140299818A1 (en) * 2013-03-15 2014-10-09 InHwan Do Graphene / carbon compositions
CN103362532B (zh) * 2013-06-28 2015-06-24 中国矿业大学 用于防治采空区瓦斯涌出的含活性炭的胶体泡沫制备方法
CN103495193B (zh) * 2013-10-15 2016-01-20 北京环球新能科技开发有限公司 一种装修污染高效除味剂及其制备方法
CN103664645B (zh) * 2013-12-26 2016-03-09 常州市春港化工有限公司 1,8-二氨基萘的工业化制备方法
CN104084063B (zh) * 2014-06-18 2016-08-17 天津大学 磺化聚醚醚酮-氨基负载铬有机骨架杂化膜及制备和应用
CN105448540A (zh) * 2015-11-18 2016-03-30 福建翔丰华新能源材料有限公司 一种超级电容器高导电活性炭电极制备方法
CN105709498A (zh) * 2016-02-29 2016-06-29 徐州深蓝新材料科技有限公司 一种石墨烯炭过滤材料及其制备方法
CN106345319B (zh) * 2016-08-25 2019-05-17 浙江大学 一种无支撑活性炭全碳膜及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103343A1 (en) * 2008-03-17 2009-09-23 National Institute Of Advanced Industrial Science and Technology Self-standing mesoporous carbon membrane
JP2010105909A (ja) * 2008-09-30 2010-05-13 Nippon Chemicon Corp 高密度カーボンナノチューブ集合体及びその製造方法
CN103613094A (zh) * 2013-11-28 2014-03-05 华中科技大学 一种同时制备石墨烯和多孔非晶碳薄膜的方法
CN104192836A (zh) * 2014-09-16 2014-12-10 哈尔滨工业大学 自支撑多孔石墨烯基薄膜的溶液热制备方法
CN104715937A (zh) * 2014-11-07 2015-06-17 深圳市今朝时代新能源技术有限公司 一种叠层式电极的制备方法、炭膜及其制备方法

Also Published As

Publication number Publication date
WO2018036553A1 (zh) 2018-03-01
CN108136340A (zh) 2018-06-08
US20190176096A1 (en) 2019-06-13
CN106345319A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106345319B (zh) 一种无支撑活性炭全碳膜及其制备方法和应用
Yao et al. Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres
Alaoui et al. Elaboration and study of poly (vinylidene fluoride)–anatase TiO2 composite membranes in photocatalytic degradation of dyes
Xu et al. High flux and rejection of hierarchical composite membranes based on carbon nanotube network and ultrathin electrospun nanofibrous layer for dye removal
Daraei et al. Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water
Hwang et al. The properties and filtration efficiency of activated carbon polymer composite membranes for the removal of humic acid
Mojdehi et al. Development of PES/polyaniline-modified TiO2 adsorptive membrane for copper removal
Agcaoili et al. Fabrication of polyacrylonitrile-coated kapok hollow microtubes for adsorption of methyl orange and Cu (II) ions in aqueous solution
Ghosh et al. Review on some metal oxide nanoparticles as effective adsorbent in wastewater treatment
Guo et al. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water
JP7283704B2 (ja) 多孔質炭素粒子、多孔質炭素粒子分散体及びこれらの製造方法
Zahed et al. Hydrous metal oxide incorporated polyacrylonitrile-based nanocomposite membranes for Cu (II) ions removal
Wang et al. Role of adsorption in combined membrane fouling by biopolymers coexisting with inorganic particles
Hou et al. Preparation of PAN/PAMAM blend nanofiber mats as efficient adsorbent for dye removal
Wang et al. Nanoparticle-doped polystyrene/polyacrylonitrile nanofiber membrane with hierarchical structure as promising protein hydrophobic interaction chromatography media
Kumar et al. Hydrophilic nano-aluminum oxide containing polyphenylsulfone hollow fiber membranes for the extraction of arsenic (As-V) from drinking water
Alshahrani et al. Synthesis, characterization, and heavy-ion rejection rate efficiency of PVA/MWCNTs and Triton X-100/MWCNTs Buckypaper membranes
Samari et al. A new antifouling metal-organic framework based UF membrane for oil-water separation: A comparative study on the effect of MOF (UiO-66-NH2) ligand modification
Yu et al. Synthesis of Ag–SiO2–APTES Nanocomposites by blending poly (Vinylidene Fluoride) Membrane with potential applications on dye wastewater treatment
Yang et al. Facile fabrication of freestanding all-carbon activated carbon membranes for high-performance and universal pollutant management
TW200815101A (en) Ion exchange membrane and process for removing metal impurities in an organic liquid using filter element comprising the same
Gu et al. Constructing oxidized carbon spheres-based heterogeneous membrane with high surface energy for energy-free water purification
Wittmar et al. Photocatalytic and magnetic porous cellulose macrospheres for water purification
Liu et al. Adsorption behaviors of acidic and basic dyes by thiourea-modified nanocomposite aerogels based on nanofibrillated cellulose
Wang et al. Adsorbents based on electrospun nanofibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant