CN106340445A - 二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中的应用 - Google Patents

二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中的应用 Download PDF

Info

Publication number
CN106340445A
CN106340445A CN201610820682.XA CN201610820682A CN106340445A CN 106340445 A CN106340445 A CN 106340445A CN 201610820682 A CN201610820682 A CN 201610820682A CN 106340445 A CN106340445 A CN 106340445A
Authority
CN
China
Prior art keywords
tio
photoelectric
thin film
nanometer well
nio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610820682.XA
Other languages
English (en)
Other versions
CN106340445B (zh
Inventor
郑灵霞
方晓生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201610820682.XA priority Critical patent/CN106340445B/zh
Publication of CN106340445A publication Critical patent/CN106340445A/zh
Application granted granted Critical
Publication of CN106340445B publication Critical patent/CN106340445B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明属于光电器件技术领域,具体为二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中的应用。本发明首先制备二维有序TiO2纳米井薄膜;然后以制备的TiO2纳米井薄膜为基底,分别制备与无机物层状NiO有机半导体聚苯胺的异质结复合物,再构筑自供能型光电探测器;包括以下步骤:阳极氧化、物理剥离、加热煅烧、低温水热、原位聚合等。本发明避免了光电器件复杂昂贵的制备工艺,可实现大规模器件的快速构筑;利用p‑n结的光伏效应,在零偏压驱动下使得光生载流子在内建电势作用下快速分离,实现器件的自供能,光电流稳定且响应速度超快,并对紫外光具有良好选择性,可作为节能型高频探测器和高频光电转换器,应用在光通信、军事、医疗、光电存储等领域。

Description

二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中 的应用
技术领域
本发明属于光电器件技术领域,具体涉及二维有序TiO2纳米井薄膜的制备方法,以及该TiO2纳米井薄膜在构筑性能可控的自供能型光电器件中的应用。
背景技术
异质结型光电探测器利用光伏特性能同时有效的提高器件的光响应度和响应速度,其原理在于内建电势差的存在能有效分离光生电子空穴对,从而使得器件在不需要偏压驱动的情况下可以完全独立且持续稳定的工作,这种在零偏压下工作的新型器件被称为自供能型光电探测器(H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Adv. Mater.2016, 28, 403)。而目前半导体光电器件的制备工艺复杂、耗费时间且价格昂贵,使实验室规模的研究难以普及到产业化生产。
TiO2作为一种非常有潜力的n型宽禁带半导体材料,因其独特的物理稳定性、化学惰性和突出的紫外光吸收特性(锐钛矿带隙为3.2 eV),被广泛应用在新型日盲紫外光探测器上(K. Lee, A. Mazare, P. Schmuki, Chem. Rev.2014, 114, 9385)。在众多的合成手段上,阳极氧化是一种普适简单的自组装方法。通过对钛金属衬底的电化学氧化得到一维有序的TiO2纳米管阵列,可以实现低成本大面积制备(P. Roy, S. Berger, P. Schmuki,Angew. Chem. Int. Ed.2011, 50, 2904)。可惜的是研究表明电荷在TiO2纳米管基器件中的传输主要是通过截面的相邻管之间,并没有充分有效地利用一维管道(L. Wang, W.Yang, H. Chong, L. Wang, F. Gao, L. Tian, Z. Yang, RSC Adv.2015, 5, 52388; G.Liu, N. Hoivik, X. Wang, S. Lu, K. Wang, H. Jakobsen, Electrochim. Acta2013,93, 80);此外,由于管间距延长了电子的传输通道且增加了晶面接触,大大降低了电子迁移率,从而导致响应速度很慢(X. Wang, W. Song, B. Liu, G. Chen, D. Chen, C.Zhou, G. Shen, Adv. Funct. Mater.2013, 23, 1202)。另一方面,目前已报道的TiO2 基自供能光电探测器多采用了光电化学池组装工艺,其中的液态电解液的易挥发大大影响了器件的稳定性,不利于实际生产应用(Q. Zhu, C. Xie, H. Li, C. Yang, D. Zeng, Nano Energy2014, 9, 252. J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, E. Xie,Nanoscale2015, 8, 50)。所以现仍缺乏关于全固态自供能型TiO2 基紫外光探测器的研究报道。另目前此类器件在性能上存在光电流不稳定,强度不够高和反应速率有限等缺点。
发明内容
本发明的目的在于提供一种合成工艺简单可控且可大规模生产的二维有序TiO2纳米井薄膜的制备方法,并利用本发明方法制得的TiO2纳米井薄膜与无机、有机半导体复合,构筑新型异质结自供能型光电探测器件。
本发明还提供无机层状介孔NiO纳米花结构与TiO2纳米井复合的TiO2/NiO复合物的制备方法,和其自供能特性的测试。
本发明还提供具有工艺可控的有机半导体聚苯胺纳米结构与TiO2纳米井复合的TiO2/PANI复合物的制备方法,和其自供能特性的测试。
本发明提出的二维有序的TiO2纳米井薄膜的制备方法,具体步骤为:
以金属钛片为阳极,铂丝网为阴极,同时插入30~40wt%的氟化铵、5~20%的二甲亚砜和70~90%的乳酸的混合液中,施加40~70 V电压阳极氧化7~12小时,制得TiO2纳米管阵列薄膜,该薄膜厚度为1~5微米,管径为150~350纳米;
将制得的TiO2纳米管阵列薄膜用物理剥离的方法除去并用大量的乙醇冲洗干燥,然后置于马弗炉中加热,升温速率为3~10℃/min,至400~600℃,煅烧1-3小时,制得TiO2纳米井阵列薄膜,该薄层TiO2纳米井阵列的厚度为50~200纳米,井口径为100~300纳米。
所述的物理剥离方法可以是胶带撕扯,大功率超声。超声时,超声溶液可以为丙酮、乙醇祸水。
本发明提出的TiO2/NiO异质结复合物光电探测器件的制备方法,具体步骤为:
以上述制得TiO2纳米井薄膜为基底,将无机镍盐,尿素溶解于水介质中,通过低温75~95℃水热反应12~48小时,然后置于马弗炉中加热,升温速率为3~10℃/min,至400~600℃,煅烧1-3小时,制得TiO2纳米井与层状NiO纳米花结构的复合物TiO2/NiO;
在制得的TiO2/NiO复合物上滴加大小为0.003~0.005 cm2的银浆作为电极,构筑得到“金属电极-半导体薄膜-金属电极”结构的光电器件,即TiO2/NiO异质结复合物光电探测器件。
其中,所述的层状NiO纳米花结构具有介孔特性,孔径小于20 nm,花瓣侧面高度500~900 nm。
制备的TiO2/NiO复合物光电器件,具有如下特点:
在外界光源的照射下,施加零偏压,器件中的TiO2和NiO之间的p-n结产生内建电势差,致使光生电子空穴对迅速分离,并在器件两端检测到的明显的光电流,大小可以达到300~400 pA,光电流与暗电流之比可以达到10~30倍;其上升和下降时间均可在10 s以内;该器件具有紫外光响应,日盲的特点,在280 ~ 700 nm的光源照射下,仅紫外区280~400 nm间具有良好的光响应度,零偏压下可达到40~70 μA/W。
本发明提出的TiO2/PANI异质结复合物光电探测器件的制备方法,具体步骤为:
步骤一:配制含10~50 μL苯胺单体的1 M硫酸水溶液10-50 mL,并放入上述制得的TiO2纳米井薄膜基底;
步骤二:配制含30~90 mg过硫酸铵的1 M硫酸水溶液10-50 mL;
步骤三:将步骤二的溶液迅速加入步骤一的溶液中,通过控制温度的原位聚合反应得到形貌可控的聚苯胺纳米结构的TiO2/PANI复合物;
步骤四:在制得的TiO2/PANI复合物上滴加大小为0.003~0.005 cm2的银浆作为电极,构筑“金属电极-半导体薄膜-金属电极”结构的光电器件,即TiO2/PANI异质结复合物光电探测器件。
本发明中,所述通过控制温度的原位聚合反应得到形貌可控的聚苯胺纳米结构的TiO2/PANI复合物,当控制温度为室温10~25℃,原位聚合反应制得直径为10~100 nm的聚苯胺纳米纤维随机的分布在TiO2纳米井表面上。
当控制温度为低温-10~0℃,原位聚合反应制得聚苯胺薄膜覆盖在TiO2纳米井的井沿上,留井底部的TiO2未被覆盖。
当控制温度为低温-10~0℃,原位聚合反应重复操作两遍,可制得聚苯胺纳米突簇堆积的薄膜完全覆盖住TiO2纳米井,聚苯胺膜厚度为200~400 nm。
所制备的TiO2/PANI复合物光电器件,具有如下特点:
在外界光源的照射下,施加零偏压,器件中的TiO2和聚苯胺之间的p-n结产生内建电势差,致使光生电子空穴对迅速分离,并在器件两端检测到的明显的光电流,大小可以达到0.2~35 nA,光电流与暗电流之比可以达到10~103倍;器件具有优异的快速响应性能,在脉冲激光的照射下,其上升和下降时间均可在35 ms以下;该器件具有紫外光响应,日盲的特点,在280 ~ 700 nm的光源照射下,仅紫外区280~400 nm间具有良好的光响应度,零偏压下可达到70~3700 μA/W。
本发明提出的两种TiO2纳米井基异质结复合物光电器件在不施加偏压驱动下具有很高灵敏度,超快响应速度和良好光谱选择性,可作为节能型高频紫外光探测器和高频光电转换器,在光通信、军事、医疗、光电存储、环境等领域有着广泛的应用前景。
本发明的优点在于:
1.制备原料简单易得,工艺简单可控,且可大规模生产,避开了其他合成技术中繁琐的操作步骤和对设备的高要求,成本低;制备全过程均采用绿色方法,对环境污染小;
2.反应操作简单,具有普适性,可以与无机、有机半导体材料复合制备异质结复合物;
3.器件组装工艺简单,成本低廉可大面积快速构筑,所制探测器无需外界电压驱动即可长期稳定工作,具有优异的紫外光自供能特性。
本发明避免了光电器件复杂昂贵的制备工艺,可实现大规模器件的快速构筑;利用p-n结的光伏效应,在零偏压驱动下使得光生载流子在内建电势作用下快速分离,实现器件的自供能,光电流稳定且响应速度超快,并对紫外光具有良好选择性,可作为节能型高频探测器和高频光电转换器,应用在光通信、军事、医疗、光电存储等领域。
附图说明
图1为TiO2纳米井薄膜、TiO2/NiO和TiO2/PANI复合物制备过程示意图。
图2为实施例1中的TiO2纳米管阵列的微观扫描电镜形貌,其中,(a)表面图,(b)侧面图;以及实施例1中的TiO2纳米井薄膜的微观扫描电镜形貌,其中,(c)表面图,(d)侧面图。
图3为实施例2的TiO2/NiO复合物的微观扫描电镜形貌,其中,(a~c)表面图,(d)侧面图。
图4为实施例2中的TiO2/NiO复合物器件的光电响应曲线,其中,(a)0V偏压下的电流-时间曲线;(b)0V偏压下的响应度曲线。
图5为TiO2/PANI复合物的微观扫描电镜形貌,其中,(a~b):实施例3中-5℃下反应的TiO2/PANI复合物;(c~d)实施例3中10℃下反应的TiO2/PANI复合物;(e~f)实施例3中10℃下二次聚合反应的TiO2/PANI复合物。
图6为TiO2/PANI复合物器件的光电响应曲线,包括频谱响应度曲线、电流-时间曲线和脉冲激光照射下的快速响应曲线,其中,(a~c)实施例4中的器件;(d~f)实施例5中的器件;(g-i)实施例6中的器件。
具体实施方式
下面通过具体实施例,进一步说明本发明的内容,以便更好理解本发明的内容而非限制本发明的保护范围。
本发明制得的TiO2纳米井基异质结复合物光电器件的性能表征如下:
TiO2纳米井基异质结复合物的显微形貌由Zeiss公司的Sigma场发射扫描电镜(FESEM)测得。
TiO2纳米井基异质结复合物器件的光电性能由Keithley公司的4200-SCS半导体表征仪测得。
各测试都在室温环境条件下进行,除非另有说明。
实施例1、 TiO2纳米井薄膜的制备
取2cm×2cm大小,纯度为99.6%的钛片为阳极,铂丝网为阴极,35wt%的氟化铵、10%的二甲亚砜和85%的乳酸的混合液为电解液,施加45 V电压阳极氧化12小时,制得TiO2纳米管阵列薄膜(形貌见图2,a~b);用大量乙醇清洗,氮气吹干,之后用胶带将制得的薄膜撕掉,再用乙醇清洗氮气吹干;之后将钛片放置于马弗炉中煅烧处理,程序设置为在85 分钟内从室温加热到450℃,并在该温度条件下保温120分钟,之后自然冷却至室温。将钛片基底取出,可得到锐钛矿型二维有序的TiO2纳米井薄膜(形貌见图2,c~d)。
重复以上操作步骤,将电压升至60 V,阳极氧化时间缩短至8.5小时,可得类似产物。
重复以上操作步骤,将保温温度升至500 ℃,保温时间减至60分钟,可得类似产物。
重复以上操作步骤,仅将保温时间减少至60 分钟,可得类似产物。
实施例2、 TiO2/NiO异质结复合物的制备和光电器件自供能特性的测试
分别取57 mg六水合氯化镍和288 mg尿素,溶解于100 mL去离子水的蓝盖玻璃瓶中,室温下搅拌10分钟后,将实施例1中制得的TiO2纳米井薄膜基底平放于玻璃瓶底,之后放入烘箱中90℃保温24小时,反应后自然冷却到室温。取出基底用水冲洗三次后放置于马弗炉中煅烧处理,程序设置为在140分钟内从室温加热到450℃,并在该温度条件下保温120 分钟,保温完成后自然冷却至室温。将基底取出可制得层状介孔NiO纳米化结构与TiO2纳米井的复合物TiO2/NiO(形貌见图3)。
重复以上操作步骤,将烘箱中保温时间延长至36小时,可得类似产物。
重复以上操作步骤,将马弗炉中保温温度升至500℃,保温时间减至60分钟,可得类似产物。
取实施例2中的TiO2/NiO复合物,分别在TiO2纳米井薄膜和NiO纳米花的两端滴加银浆,室温下干燥后形成“金属电极―半导体薄膜―金属电极”结构的光电探测器。随后通过光电测试系统,在0 V偏压和没有光照的条件下,器件的暗电流约为25 pA,在波长为350nm的光照条件下,光电流为375 pA,光暗电流比14倍,上升和下降速度分别为1.2 s和7.1s。该器件的截止波长为400 nm,紫外-可见抑制比为16,具有良好的紫外光选择性;另根据公式:R λ =(I light - I dark )/P λ SR λ :响应度,I light :光电流,I dark :暗电流,P λ :特定波长光功率密度,S:有效光照面积)可算出0偏压下350 nm时的响应度约为42 μA/W,表明该器件在不提供外电压驱动下可实现紫外光的探测。
实施例3、 TiO2/PANI异质结复合物的制备
于烧杯中配制含有27.39 μL苯胺单体的1 M 硫酸水溶液20 mL,将实施例1中制得的TiO2纳米井薄膜基底平放于烧杯底部,之后迅速沿杯壁倒入另一份配置好的含有68.48 mg过硫酸铵的1 M硫酸水溶液20 mL。混合后在-5℃反应24小时,之后将基底取出,用水清洗三次后放置于在60℃的烘箱中干燥后可得到聚苯胺薄膜与TiO2纳米井的复合物TiO2/PANI(形貌见图5,a~b)。
重复以上操作步骤,将反应温度升至10℃反应24小时,可得到聚苯胺纤维与TiO2纳米井的复合物(形貌见图5,c~d)。
重复以上操作步骤二次,利用制得的TiO2/PANI复合物薄膜再次作为基底二次反应,增加复合物的厚度,可得聚苯胺突簇堆积的薄膜与TiO2纳米井的复合物(形貌见图5,e~f)。
实施例4、TiO2/PANI复合物的光电器件自供能特性的测试
取实施例3中-5℃反应24小时制得的TiO2/PANI复合物,分别在TiO2纳米井薄膜和聚苯胺的两端滴加银浆,室温下干燥后形成“金属电极―半导体薄膜―金属电极”结构的光电探测器。通过光电测试系统,在0 V偏压和没有光照的条件下,器件的暗电流约为45 pA,在波长为320 nm的光照条件下,光电流为3.3 nA,光暗电流比高达73倍,在脉冲激光的照射下,施加0偏压,上升和下降速度分别为4.5 ms和33.6 ms。此外,器件的截止波长为400 nm,紫外-可见抑制比为37,具有良好的紫外光选择性;0V偏压下320 nm时的响应度约为490 μA/W,表明该器件在不提供外电压驱动下具有很强的紫外光响应(见图6,a~c)。
实施例5、 TiO2/PANI复合物的光电器件自供能特性的测试
取实施例3中10℃反应24小时制得的TiO2/PANI复合物,分别在TiO2纳米井薄膜和聚苯胺的两端滴加银浆,室温下干燥后形成“金属电极―半导体薄膜―金属电极”结构的光电探测器。通过光电测试系统,在0 V偏压和没有光照的条件下,器件的暗电流约为40 pA,在波长为320 nm的光照条件下,光电流为32 nA,光暗电流比高达800倍,在脉冲激光的照射下,施加0偏压,上升和下降速度分别为3.8 ms和30.7 ms。此外,器件的截止波长为400 nm,紫外-可见抑制比为34,具有良好的紫外光选择性;0V偏压下320 nm时的响应度约为3600 μA/W,表明该器件具有非常优异的自供能特性(见图6,d~f)。
实施例6、 TiO2/PANI复合物的光电器件自供能特性的测试
取实施例3中10℃反应24小时且重复操作两次聚合反应制得的TiO2/PANI复合物,分别在TiO2纳米井薄膜和聚苯胺的两端滴加银浆,室温下干燥后形成“金属电极―半导体薄膜―金属电极”结构的光电探测器。通过光电测试系统,在0 V偏压和没有光照的条件下,器件的暗电流约为3 pA,在波长为320 nm的光照条件下,光电流为260 pA,光暗电流比高达86倍,在脉冲激光的照射下,施加0偏压,上升和下降速度分别为1.2 ms和22.8 ms。此外,器件的截止波长为400 nm,紫外-可见抑制比为78,具有良好的紫外光选择性;0偏压下320 nm时的响应度约为37 μA/W,表明该器件在不提供外电压驱动下具有良好的紫外光响应(见图6,g~i)。

Claims (8)

1.一种TiO2纳米井薄膜的制备方法,其特征在于,具体步骤为:
以金属钛片为阳极,铂丝网为阴极,同时插入30~40wt%的氟化铵、5~20%的二甲亚砜和70~90%的乳酸的混合液中,施加40~70 V电压阳极氧化7~12小时,制得TiO2纳米管阵列薄膜,该薄膜厚度为1~5微米,管径为150~350纳米;
将制得的TiO2纳米管阵列薄膜用物理剥离的方法除去并用大量的乙醇冲洗干燥,然后置于马弗炉中加热,升温速率为3~10℃/min,至400~600℃,煅烧1-3小时,制得TiO2纳米井阵列薄膜,该薄层TiO2纳米井阵列的厚度为50~200纳米,井口径为100~300纳米。
2.如权利要求1所述的TiO2纳米井薄膜的制备方法,其特征在于,所述的TiO2纳米井阵列薄膜的面积由前驱金属钛片的尺寸进行调节。
3.一种TiO2/NiO异质结复合物光电器件的制备方法,其特征在于,具体步骤为:
以权利要求1所述方法制得TiO2纳米井薄膜为基底,将无机镍盐,尿素溶解于水介质中,通过低温75~95℃水热反应12~48小时,然后置于马弗炉中加热,升温速率为3~10℃/min,至400~600℃,煅烧1-3小时,制得TiO2纳米井与层状NiO纳米花结构的复合物TiO2/NiO;
在制得的TiO2/NiO复合物上滴加大小为0.003~0.005 cm2的银浆作为电极,构筑得到“金属电极-半导体薄膜-金属电极”结构的光电器件。
4. 如权利要求3所述的TiO2/NiO异质结复合物光电器件的制备方法,其特征在于所述的层状NiO纳米花结构具有介孔特性,孔径小于20 nm,花瓣侧面高度为500~900 nm。
5.一种TiO2/PANI异质结复合物光电器件的制备方法,其特征在于,具体步骤为:
步骤一:配制含10~50 μL苯胺单体的1 M硫酸水溶液10-50 mL,并放入权利要求1所述方法制得的TiO2纳米井薄膜基底;
步骤二:配制含30~90 mg过硫酸铵的1 M硫酸水溶液10-50 mL;
步骤三:将步骤二的溶液加入步骤一的溶液中,通过控制温度的原位聚合反应得到形貌可控的聚苯胺纳米结构的TiO2/PANI复合物;
步骤四:在制得的TiO2/PANI复合物上滴加大小为0.003~0.005 cm2的银浆作为电极,构筑“金属电极-半导体薄膜-金属电极”结构的光电器件。
6.根据权利要求5所述的TiO2/PANI异质结复合物光电器件的制备方法,其特征在于,所述通过控制温度的原位聚合反应得到形貌可控的聚苯胺纳米结构的TiO2/PANI复合物,
当控制温度为室温10~25℃,原位聚合反应制得直径为10~100 nm的聚苯胺纳米纤维随机的分布在TiO2纳米井表面上;
当控制温度为低温-10~0℃,原位聚合反应制得聚苯胺薄膜覆盖在TiO2纳米井的井沿上,留井底部的TiO2未被覆盖;
当控制温度为低温-10~0℃,原位聚合反应重复操作两遍,可制得聚苯胺纳米突簇堆积的薄膜完全覆盖住TiO2纳米井,聚苯胺膜厚度为200~400 nm。
7. 一种由权利要求3或4所述制备方法制备得到的TiO2/NiO异质结复合物光电器件,该光电器件在外界光源的照射下,施加零偏压,器件中的TiO2和NiO之间的p-n结产生内建电势差,致使光生电子空穴对迅速分离,并在器件两端检测到的明显的光电流,大小达到300~400 pA,光电流与暗电流之比可以达到10~30倍;其上升和下降时间均在10 s以内;该器件具有紫外光响应,日盲的特点,在280 ~ 700 nm的光源照射下,仅紫外区280~400 nm间具有良好的光响应度,零偏压下可达到40~70 μA/W。
8. 一种由权利要求5或6所述制备方法制备得到的TiO2/PANI异质结复合物光电器件,该光电器件在外界光源的照射下,施加零偏压,器件中的TiO2和聚苯胺之间的p-n结产生内建电势差,致使光生电子空穴对迅速分离,并在器件两端检测到的明显的光电流,大小达到0.2~35 nA,光电流与暗电流之比可以达到10~103倍;器件具有优异的快速响应性能,在脉冲激光的照射下,其上升和下降时间均在35 ms以下;该器件具有紫外光响应,日盲的特点,在280 ~ 700 nm的光源照射下,仅紫外区280~400 nm间具有良好的光响应度,零偏压下可达到70~3700 μA/W。
CN201610820682.XA 2016-09-13 2016-09-13 二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中的应用 Expired - Fee Related CN106340445B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610820682.XA CN106340445B (zh) 2016-09-13 2016-09-13 二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610820682.XA CN106340445B (zh) 2016-09-13 2016-09-13 二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中的应用

Publications (2)

Publication Number Publication Date
CN106340445A true CN106340445A (zh) 2017-01-18
CN106340445B CN106340445B (zh) 2019-10-15

Family

ID=57838960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610820682.XA Expired - Fee Related CN106340445B (zh) 2016-09-13 2016-09-13 二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中的应用

Country Status (1)

Country Link
CN (1) CN106340445B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108155266A (zh) * 2017-12-14 2018-06-12 浙江大学 以暴露{001}晶面的锐钛矿型二氧化钛纳米管阵列为基底的紫外光探测器及方法
CN109473489A (zh) * 2018-10-18 2019-03-15 北京镓族科技有限公司 一种可区分紫外波段的自供电光电探测器
CN110828668A (zh) * 2019-10-29 2020-02-21 浙江工业大学 Ti-TiO2/P3HT异质结纤维的制备、异质结光电探测器及其制备
CN114649429A (zh) * 2022-03-15 2022-06-21 北京大学深圳研究生院 一种氧化镍基自偏压光电探测器及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108316A (zh) * 2009-12-23 2011-06-29 西北工业大学 一种氧化钛包覆聚苯胺纳米管电流变液
CN102260898A (zh) * 2011-06-30 2011-11-30 襄樊学院 一种p25包覆的二氧化钛纳米管阵列电极材料制备工艺
CN102703952A (zh) * 2012-05-30 2012-10-03 四川农业大学 利用离子液体在钛基上制备碳硼氮掺杂双管二氧化钛纳米管阵列的方法及其应用
CN104465125A (zh) * 2014-11-28 2015-03-25 太原理工大学 TiO2/NiO三维叉指微电极及其制备方法
CN104681304A (zh) * 2015-03-20 2015-06-03 太原理工大学 一种非对称超级电容器制备方法
CN105420792A (zh) * 2014-08-20 2016-03-23 南京理工大学 一种使聚苯胺在中性介质中电化学活性增强的方法
CN105951154A (zh) * 2016-04-27 2016-09-21 中国计量大学 一种降解罗丹明b的二氧化钛纳米管阵列光催化剂的阳极氧化制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108316A (zh) * 2009-12-23 2011-06-29 西北工业大学 一种氧化钛包覆聚苯胺纳米管电流变液
CN102260898A (zh) * 2011-06-30 2011-11-30 襄樊学院 一种p25包覆的二氧化钛纳米管阵列电极材料制备工艺
CN102703952A (zh) * 2012-05-30 2012-10-03 四川农业大学 利用离子液体在钛基上制备碳硼氮掺杂双管二氧化钛纳米管阵列的方法及其应用
CN105420792A (zh) * 2014-08-20 2016-03-23 南京理工大学 一种使聚苯胺在中性介质中电化学活性增强的方法
CN104465125A (zh) * 2014-11-28 2015-03-25 太原理工大学 TiO2/NiO三维叉指微电极及其制备方法
CN104681304A (zh) * 2015-03-20 2015-06-03 太原理工大学 一种非对称超级电容器制备方法
CN105951154A (zh) * 2016-04-27 2016-09-21 中国计量大学 一种降解罗丹明b的二氧化钛纳米管阵列光催化剂的阳极氧化制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENGXIA LIANG ET AL.: "《Selective electrodeposition of Ni into the intertubular voids of anodic TiO2 nanotubes for improved photocatalytic properties》", 《J. MATER. RES.》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108155266A (zh) * 2017-12-14 2018-06-12 浙江大学 以暴露{001}晶面的锐钛矿型二氧化钛纳米管阵列为基底的紫外光探测器及方法
CN109473489A (zh) * 2018-10-18 2019-03-15 北京镓族科技有限公司 一种可区分紫外波段的自供电光电探测器
CN109473489B (zh) * 2018-10-18 2020-06-16 北京镓族科技有限公司 一种可区分紫外波段的自供电光电探测器
CN110828668A (zh) * 2019-10-29 2020-02-21 浙江工业大学 Ti-TiO2/P3HT异质结纤维的制备、异质结光电探测器及其制备
CN114649429A (zh) * 2022-03-15 2022-06-21 北京大学深圳研究生院 一种氧化镍基自偏压光电探测器及其制备方法和应用
CN114649429B (zh) * 2022-03-15 2024-06-04 北京大学深圳研究生院 一种氧化镍基自偏压光电探测器及其制备方法和应用

Also Published As

Publication number Publication date
CN106340445B (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
Xue et al. Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure
Dong et al. Self-powered fiber-shaped wearable omnidirectional photodetectors
CN107919409B (zh) 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法
CN105384358B (zh) 一种wo3纳米片阵列薄膜制备方法及其应用研究
CN106340445B (zh) 二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中的应用
Sarkar et al. Self powered highly enhanced dual wavelength ZnO@ CdS core–shell nanorod arrays photodetector: an intelligent pair
Yang et al. Carrier transport in dye-sensitized solar cells using single crystalline TiO2 nanorods grown by a microwave-assisted hydrothermal reaction
CN103441154B (zh) 一种ZnO纳米阵列紫外探测器及其制作方法
Thambidurai et al. Dye-sensitized ZnO nanorod based photoelectrochemical solar cells with natural dyes extracted from Ixora coccinea, Mulberry and Beetroot
Gonzalez-Valls et al. Synthesis conditions, light intensity and temperature effect on the performance of ZnO nanorods-based dye sensitized solar cells
CN104009105B (zh) 一种线状钙钛矿太阳能电池及其制备方法
CN105304747A (zh) 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法
CN106540673A (zh) 一种三维TiO2/ZnO异质结阵列的合成方法
CN105070664B (zh) 光电子器件ZnO/ZnS异质结纳米阵列膜制备方法
Li et al. A high performance ZnO based photoelectrochemical cell type UV photodetector with [Co (bpy) 3] 3+/2+ electrolyte and PEDOT/ITO counter electrode
CN103871750B (zh) 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
CN109473489A (zh) 一种可区分紫外波段的自供电光电探测器
CN101956222B (zh) 硫化镉纳米颗粒敏化的二氧化钛纳米管阵列的制备方法
CN108767028A (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN103135224B (zh) 一种光控可逆润湿涂层的制备方法
CN104952963A (zh) 一种用于钙钛矿太阳能电池的TiO2-ZnO异质结纳米棒的制备方法
CN107658384B (zh) 基于有机-无机多异质结纳米阵列的广谱光电探测器及其制备方法
CN108893728A (zh) 具有高比表面积的超薄ZnO纳米片阵列的制备方法
Gokilamani et al. Grape pigment (malvidin-3-fructoside) as natural sensitizer for dye-sensitized solar cells
CN108754525B (zh) 一种锆钛酸铅铁电薄膜光电极及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191015

CF01 Termination of patent right due to non-payment of annual fee