CN106328496A - 一种高k界面层的制备方法 - Google Patents

一种高k界面层的制备方法 Download PDF

Info

Publication number
CN106328496A
CN106328496A CN201610959570.2A CN201610959570A CN106328496A CN 106328496 A CN106328496 A CN 106328496A CN 201610959570 A CN201610959570 A CN 201610959570A CN 106328496 A CN106328496 A CN 106328496A
Authority
CN
China
Prior art keywords
boundary layer
preparation
transition zone
silicon substrate
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610959570.2A
Other languages
English (en)
Other versions
CN106328496B (zh
Inventor
温振平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201610959570.2A priority Critical patent/CN106328496B/zh
Publication of CN106328496A publication Critical patent/CN106328496A/zh
Application granted granted Critical
Publication of CN106328496B publication Critical patent/CN106328496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供了一种高K界面层的制备方法,包括:第一步骤:提供硅衬底,并采用H2SO4和H2O2的混合溶液清洗所述硅衬底以去除样品表面的有机物;第二步骤:采用RCA清洗法清洗所述Si衬底;第三步骤:采用HF溶液清洗所述硅衬底,以有效清除硅衬底表面的原生氧化层;第四步骤:采用化学氧化法生长SiO2过渡层;第五步骤:采用纯氘气气氛和/或其同位素气氛下退火工艺使SiO2过渡层致密化;第六步骤:淀积高K材料。

Description

一种高K界面层的制备方法
技术领域
本发明涉及半导体制造领域以及CMOS(互补金属氧化物半导体,ComplementaryMetal Oxide Semiconductor)技术领域,具体涉及高K栅介质/金属栅结构工艺;更具体地说,本发明涉及一种高K界面层的制备方法。
背景技术
随着大规模的集成电路技术的不断发展,作为硅基集成电路核心器件的金属氧化物半导体场效应晶体管(MOSFET)的特征尺寸一直遵守着摩尔定律不断地缩小,必须减小栅极介质层的厚度以利用减小栅极的长度保持良好的性能。但MOS管栅介质厚度越来越小,已接近其极限。所以,为了减少栅极漏电,使用高介电常数(高k)的栅极介质层,这允许较小的物理厚度下,同时保持相同的有效厚度。为了减小高k栅介质层与Si基底之间的界面态密度,一般通过在两者之间加入一层几乎没有缺陷栅介质过渡层,如SiO2/SiON超薄层,一般为5-10埃,称为高K界面层。
目前,高K界面层一般采用的步骤如下:
1)提供一Si衬底,并采用H2SO4及H2O2混合溶液清洗所述Si衬底,以去除样品表面的有机物;
2)采用RCA清洗法清洗所述Si衬底;
3)采用HF溶液清洗所述Si衬底,以有效清除样品表面的原生氧化层,从而降低界面层的厚度;
4)采用热氧化法生长高K界面层;
5)高K材料(HfO2)淀积;
但是,由热氧化法生长的高K界面层不易与高k铪基栅介质材料之间形成Hf-Si-O的混合结构,使得两者之间的界面状态很高,影响器件的性能。
发明内容
本发明所要解决的技术问题是针对现有技术中存在上述缺陷,提供一种能够降低其界面态密度并最终改善器件的性能的高K界面层的制备方法。
为了实现上述技术目的,根据本发明,提供了一种高K界面层的制备方法,包括:
第一步骤:提供硅衬底,并采用H2SO4和H2O2的混合溶液清洗所述硅衬底以去除样品表面的有机物;
第二步骤:采用RCA清洗法清洗所述Si衬底;
第三步骤:采用HF溶液清洗所述硅衬底,以有效清除硅衬底表面的原生氧化层;
第四步骤:采用化学氧化法生长SiO2过渡层;
第五步骤:采用纯氘气气氛和/或其同位素气氛下退火工艺使SiO2过渡层致密化;
第六步骤:淀积高K材料。
优选地,所述高K材料是HfO2
优选地,SiO2过渡层/SiON层之间的界面层的厚度范围为0-10A。
优选地,采用化学氧化法生长SiO2过渡层的步骤采用O3和H2O2
优选地,采用化学氧化法生长SiO2过渡层的步骤包括掺F工艺。
优选地,所述高K界面层的制备方法用于HKMG结构中的栅电极形成工艺。
为了实现上述技术目的,根据本发明,还提供了一种高K界面层的制备方法,包括:
第一步骤:提供硅衬底,并采用H2SO4和H2O2的混合溶液清洗所述硅衬底以去除样品表面的有机物;
第二步骤:采用RCA清洗法清洗所述Si衬底;
第三步骤:采用HF溶液清洗所述硅衬底,以有效清除硅衬底表面的原生氧化层;
第四步骤:采用化学氧化法生长SiO2过渡层;
第五步骤:热氮化形成超薄SiON层,并最终形成高K界面层。
优选地,采用化学氧化法生长SiO2过渡层200的步骤采用O3和H2O2
优选地,采用化学氧化法生长SiO2过渡层的步骤采用O3和H2O2
优选地,采用化学氧化法生长SiO2过渡层的步骤包括掺F工艺。
本发明提供的高K界面层的方法是将传统的热氧化方法生长高K界面层更改为先由化学方式生长SiO2过渡层,再经过纯氘气气氛高温退火工艺加以致密化的方法生长高K界面层。这种方式生长的高K界面层能更好的改善器件性能,这是因为化学氧化生长的SiO2过渡层容易与高k铪基栅介质材料之间形成Hf-Si-O的混合结构,从而改善两者之间的界面状态,并且能够提高随后生长的Hf基介质薄膜的性质,而纯氘气气氛和/或其同位素气氛下退火工艺可使更加致密,并且氘气气氛可以补充SiO2/Si界面的Si-悬空键,更加降低了其界面态密度,最终改善器件的性能。
附图说明
结合附图,并通过参考下面的详细描述,将会更容易地对本发明有更完整的理解并且更容易地理解其伴随的优点和特征,其中:
图1示意性地示出了根据本发明优选实施例的高K界面层的制备方法的第一至第三步骤。
图2示意性地示出了根据本发明优选实施例的高K界面层的制备方法的第四步骤。
图3示意性地示出了根据本发明优选实施例的高K界面层的制备方法的第五步骤。
图4示意性地示出了根据本发明优选实施例的高K界面层的制备方法的第六步骤。
需要说明的是,附图用于说明本发明,而非限制本发明。注意,表示结构的附图可能并非按比例绘制。并且,附图中,相同或者类似的元件标有相同或者类似的标号。
具体实施方式
为了使本发明的内容更加清楚和易懂,下面结合具体实施例和附图对本发明的内容进行详细描述。
图1至图4示意性地示出了根据本发明优选实施例的高K界面层的制备方法的各个步骤。
具体地,如图1至图4所示,根据本发明优选实施例的高K界面层的制备方法包括:
第一步骤:提供硅衬底100,并采用H2SO4和H2O2的混合溶液清洗所述硅衬底100,以去除样品表面的有机物,如图1所示;
第二步骤:采用RCA清洗法清洗所述Si衬底;
第三步骤:采用HF溶液清洗所述硅衬底100,以有效清除硅衬底100表面的原生氧化层,从而降低界面层的厚度;
第四步骤:采用化学氧化法生长SiO2过渡层200,如图2所示;
第五步骤:采用纯氘气气氛和/或其同位素气氛下(高温纯氘气气氛和/或其同位素气氛下)退火工艺使SiO2过渡层200致密化,如图3所示;
第六步骤:淀积高K材料300,如图4所示。
优选地,所述高K材料是HfO2
例如,根据本发明优选实施例的高K界面层的制备方法可用于HKMG(高K金属栅极)结构中的栅电极形成工艺。
或者,在另一实施例中,根据本发明优选实施例的高K界面层的制备方法包括:
第一步骤:提供硅衬底100,并采用H2SO4和H2O2的混合溶液清洗所述硅衬底100,以去除样品表面的有机物;
第二步骤:采用RCA清洗法清洗所述Si衬底;
第三步骤:采用HF溶液清洗所述硅衬底100,以有效清除硅衬底100表面的原生氧化层,从而降低界面层的厚度;
第四步骤:采用化学氧化法生长SiO2过渡层200;
第五步骤:热氮化形成超薄SiON层,最终形成高K界面层。
优选地,SiO2过渡层200/SiON层之间的界面层的厚度范围为0-10A。
优选地,采用化学氧化法生长SiO2过渡层200的步骤包括现有和未来的化学氧化工艺,比如采用O3、H2O2等。
优选地,采用化学氧化法生长SiO2过渡层200的步骤包括现有和未来的化学氧化并掺杂工艺,比如掺F以改善NBTI(负偏压温度不稳定性)效应等。
本发明提供的高K界面层的方法是将传统的热氧化方法生长高K界面层更改为先由化学方式生长SiO2过渡层,再经过纯氘气气氛高温退火工艺加以致密化的方法生长高K界面层。这种方式生长的高K界面层能更好的改善器件性能,这是因为化学氧化生长的SiO2过渡层容易与高k铪基栅介质材料之间形成Hf-Si-O的混合结构,从而改善两者之间的界面状态,并且能够提高随后生长的Hf基介质薄膜的性质,而纯氘气气氛和/或其同位素气氛下退火工艺可使更加致密,并且氘气气氛可以补充SiO2/Si界面的Si-悬空键,更加降低了其界面态密度,最终改善器件的性能。
此外,需要说明的是,除非特别说明或者指出,否则说明书中的术语“第一”、“第二”、“第三”等描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。
可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。
而且还应该理解的是,本发明并不限于此处描述的特定的方法、化合物、材料、制造技术、用法和应用,它们可以变化。还应该理解的是,此处描述的术语仅仅用来描述特定实施例,而不是用来限制本发明的范围。必须注意的是,此处的以及所附权利要求中使用的单数形式“一个”、“一种”以及“该”包括复数基准,除非上下文明确表示相反意思。因此,例如,对“一个元素”的引述意味着对一个或多个元素的引述,并且包括本领域技术人员已知的它的等价物。类似地,作为另一示例,对“一个步骤”或“一个装置”的引述意味着对一个或多个步骤或装置的引述,并且可能包括次级步骤以及次级装置。应该以最广义的含义来理解使用的所有连词。因此,词语“或”应该被理解为具有逻辑“或”的定义,而不是逻辑“异或”的定义,除非上下文明确表示相反意思。此处描述的结构将被理解为还引述该结构的功能等效物。可被解释为近似的语言应该被那样理解,除非上下文明确表示相反意思。
而且,本发明实施例的方法和/或系统的实现可包括手动、自动或组合地执行所选任务。而且,根据本发明的方法和/或系统的实施例的实际器械和设备,可利用操作系统通过硬件、软件或其组合实现几个所选任务。

Claims (10)

1.一种高K界面层的制备方法,其特征在于包括:
第一步骤:提供硅衬底,并采用H2SO4和H2O2的混合溶液清洗所述硅衬底以去除样品表面的有机物;
第二步骤:采用RCA清洗法清洗所述Si衬底;
第三步骤:采用HF溶液清洗所述硅衬底,以有效清除硅衬底表面的原生氧化层;
第四步骤:采用化学氧化法生长SiO2过渡层;
第五步骤:采用纯氘气气氛和/或其同位素气氛下退火工艺使SiO2过渡层致密化;
第六步骤:淀积高K材料。
2.根据权利要求1所述的高K界面层的制备方法,其特征在于,所述高K材料是HfO2
3.根据权利要求1或2所述的高K界面层的制备方法,其特征在于,SiO2过渡层/SiON层之间的界面层的厚度范围为0-10A。
4.根据权利要求1或2所述的高K界面层的制备方法,其特征在于,采用化学氧化法生长SiO2过渡层的步骤采用O3和H2O2
5.根据权利要求1或2所述的高K界面层的制备方法,其特征在于,采用化学氧化法生长SiO2过渡层的步骤包括掺F工艺。
6.根据权利要求1或2所述的高K界面层的制备方法,其特征在于,所述高K界面层的制备方法用于HKMG结构中的栅电极形成工艺。
7.一种高K界面层的制备方法,其特征在于包括:
第一步骤:提供硅衬底,并采用H2SO4和H2O2的混合溶液清洗所述硅衬底以去除样品表面的有机物;
第二步骤:采用RCA清洗法清洗所述Si衬底;
第三步骤:采用HF溶液清洗所述硅衬底,以有效清除硅衬底表面的原生氧化层;
第四步骤:采用化学氧化法生长SiO2过渡层;
第五步骤:热氮化形成超薄SiON层,并最终形成高K界面层。
8.根据权利要求7所述的高K界面层的制备方法,其特征在于,采用化学氧化法生长SiO2过渡层200的步骤采用O3和H2O2
9.根据权利要求7或8所述的高K界面层的制备方法,其特征在于,采用化学氧化法生长SiO2过渡层的步骤采用O3和H2O2
10.根据权利要求7或8所述的高K界面层的制备方法,其特征在于,采用化学氧化法生长SiO2过渡层的步骤包括掺F工艺。
CN201610959570.2A 2016-10-27 2016-10-27 一种高k界面层的制备方法 Active CN106328496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610959570.2A CN106328496B (zh) 2016-10-27 2016-10-27 一种高k界面层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610959570.2A CN106328496B (zh) 2016-10-27 2016-10-27 一种高k界面层的制备方法

Publications (2)

Publication Number Publication Date
CN106328496A true CN106328496A (zh) 2017-01-11
CN106328496B CN106328496B (zh) 2019-08-23

Family

ID=57818095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610959570.2A Active CN106328496B (zh) 2016-10-27 2016-10-27 一种高k界面层的制备方法

Country Status (1)

Country Link
CN (1) CN106328496B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037031A (zh) * 2018-07-11 2018-12-18 华东师范大学 一种掺镍氧化铜薄膜晶体管及制备方法
CN114715978A (zh) * 2022-02-21 2022-07-08 江南大学 一种mos电化学阴极电产水合电子去除全氟化合物的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444592B1 (en) * 2000-06-20 2002-09-03 International Business Machines Corporation Interfacial oxidation process for high-k gate dielectric process integration
CN102044442A (zh) * 2009-10-14 2011-05-04 中国科学院微电子研究所 一种改善高介电常数栅介质界面特性的方法
CN102709186A (zh) * 2012-01-12 2012-10-03 上海华力微电子有限公司 减小器件负偏压温度不稳定性效应的方法及器件制造方法
CN102916093A (zh) * 2012-08-31 2013-02-06 扬州中科半导体照明有限公司 一种低损伤PECVD沉积高绝缘性SiO2薄膜的方法
CN103050574A (zh) * 2012-12-12 2013-04-17 浙江大学 利用聚苯乙烯纳米球作为模板生长硅基有序量子点的方法
CN105336596A (zh) * 2015-09-27 2016-02-17 上海华力微电子有限公司 一种高介电常数界面层的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444592B1 (en) * 2000-06-20 2002-09-03 International Business Machines Corporation Interfacial oxidation process for high-k gate dielectric process integration
CN102044442A (zh) * 2009-10-14 2011-05-04 中国科学院微电子研究所 一种改善高介电常数栅介质界面特性的方法
CN102709186A (zh) * 2012-01-12 2012-10-03 上海华力微电子有限公司 减小器件负偏压温度不稳定性效应的方法及器件制造方法
CN102916093A (zh) * 2012-08-31 2013-02-06 扬州中科半导体照明有限公司 一种低损伤PECVD沉积高绝缘性SiO2薄膜的方法
CN103050574A (zh) * 2012-12-12 2013-04-17 浙江大学 利用聚苯乙烯纳米球作为模板生长硅基有序量子点的方法
CN105336596A (zh) * 2015-09-27 2016-02-17 上海华力微电子有限公司 一种高介电常数界面层的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037031A (zh) * 2018-07-11 2018-12-18 华东师范大学 一种掺镍氧化铜薄膜晶体管及制备方法
CN109037031B (zh) * 2018-07-11 2021-11-19 华东师范大学 一种掺镍氧化铜薄膜晶体管及制备方法
CN114715978A (zh) * 2022-02-21 2022-07-08 江南大学 一种mos电化学阴极电产水合电子去除全氟化合物的应用

Also Published As

Publication number Publication date
CN106328496B (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
Long et al. Surface preparation and deposited gate oxides for gallium nitride based metal oxide semiconductor devices
CN101958341B (zh) 通过从mos器件的高k/金属栅极去除界面层缩小eot
CN102592974B (zh) 一种高k介质薄膜的制备方法
CN102110650A (zh) 一种半导体器件及其制造方法
Liu et al. Advances in La-based high-k dielectrics for MOS applications
Wang et al. Digital etch technique for forming ultra-scaled germanium-tin (Ge 1− x Sn x) fin structure
CN103515213A (zh) 形成FinFET栅介质层的方法和形成FinFET的方法
CN106328496A (zh) 一种高k界面层的制备方法
Chokawa et al. Investigation of the GaN/Al2O3 interface by first principles calculations
CN103855035A (zh) 一种制备栅介质层的设备
CN102237269B (zh) 以氮化铝为势垒层的Mo基金属栅叠层结构的刻蚀方法
CN103887161A (zh) 一种抑制掺杂原子在栅介质中扩散的方法
CN105336596B (zh) 一种高介电常数界面层的制备方法
CN102064103A (zh) 高k栅介质层的制备方法
CN105304691B (zh) 用于制备高k介质层的界面层的方法
Lin et al. Atomic mechanism of flat-band voltage shifts at La2O3, Al2O3 and Nb2O5 capping layers
JP2007243049A5 (zh)
Kim et al. Characterization of SiGe quantum dots on SiO2 and HfO2 grown by rapid thermal chemical deposition for nanoelectronic devices
Osten et al. MBE growth and properties of epitaxial metal oxides for high-κ dielectrics
CN102237268B (zh) 一种插入式TiN金属栅叠层结构的制备和刻蚀方法
CN104701240A (zh) 用于制备高k介质层的方法
Golias et al. Interaction of metal impurities with native oxygen defects in GeO2
Kwo et al. Research advances on III–V MOSFET electronics beyond Si CMOS
CN105206523A (zh) 用于制备高k介质层的方法
Leitsmann et al. Modeling the effects of lanthanum, nitrogen, and fluorine treatments of Si-SiON-HfO2-TiN gate stacks in 28 nm high-k-metal gate technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant