CN106316380A - 一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法 - Google Patents

一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN106316380A
CN106316380A CN201610693559.6A CN201610693559A CN106316380A CN 106316380 A CN106316380 A CN 106316380A CN 201610693559 A CN201610693559 A CN 201610693559A CN 106316380 A CN106316380 A CN 106316380A
Authority
CN
China
Prior art keywords
ferrite material
room temperature
preparation
wideband
big
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610693559.6A
Other languages
English (en)
Other versions
CN106316380B (zh
Inventor
汤如俊
周浩
杨浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201610693559.6A priority Critical patent/CN106316380B/zh
Publication of CN106316380A publication Critical patent/CN106316380A/zh
Application granted granted Critical
Publication of CN106316380B publication Critical patent/CN106316380B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明涉及一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法,所述铁氧体材料具有分子式:AFe12‑xMxO19,其中A为Ba元素或Sr元素中的至少一种,M为Sc元素、Mg元素或Cr元素中的至少一种,x是M的原子比含量,且0<x≤4;通过将高纯BaCO3、SrCO3、Fe2O3,Sc2O3、MgO或Cr2O3粉末药品按铁氧体材料分子式中的原子摩尔比进行配比、混合、球磨、烘干、预烧、研磨、加压、烧结处理获得。本发明的铁氧体材料具有较高的纯度,电阻率较高,在20Hz至2MHz的频率范围内都呈现出显著的磁电容效应,磁电容效应在2MHz以上仍然呈现一定的增加趋势,弥补了现有单相磁电容材料室温磁电容效应弱且频率范围窄的缺点。

Description

一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法
技术领域
本发明涉及一种具有磁电容效应的材料,尤其涉及一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法。
背景技术
磁电容效应(Magnetocapacitance effect)是指在材料在外磁场下,电容或介电常数发生变化的现象。具有磁电容效应的材料可以在磁场探测器、智能滤波器和磁场控制器等电磁器件中具有重要的应用。
具有磁电容效应的材料可以分为单相材料和复合材料两种。其中单相材料是最早发现的,但是到目前为止,绝大多数单相材料(如BiMnO3等)的磁电耦合效应都只能在远低于室温(约为100K)的条件下才能比较明显,远达不到实际应用的要求。于是人们也把目光转向磁电复合材料。
目前,材料复合的方式有两种,即颗粒复合和层状复合。颗粒复合磁电容材料由压电相颗粒和磁致伸缩相颗粒混合而成,如图1所示,可以在室温下具有磁电容效应,但是其磁电容效应一般较弱(小于4%)。层状复合材料由多层单相材料——压电相和磁致伸缩相粘结而成,如图2所示,可以具有较大的磁电容效应,但是其磁电容效应随着电场频率的增加衰减很快。在高频(1MHz及以上)情况下,复合材料的磁电容效应都很弱;同时,层状复合材料由于其粘结工艺,对器件的小型化有一定的限制。
随着器件小型化的发展,具有室温大磁电容效应的单相材料变得越来越重要。
在目前报道的多数单相磁电容材料的室温磁电容效应都比较弱。已报道的具有大磁电容效应的代表性单相材料主要有钙钛矿结构的BiFeO3、SnO2和尖晶石铁氧体(Ni,Mn,Zn)Fe2O4等,其中BiFeO3和SnO2材料的室温大磁电容效应集中在低频范围。(Ni,Mn,Zn)Fe2O4在低频和高频共振点附近具有较大的磁电容效应,但是在其它频率区域的磁电容效应较小。因此,目前兼具室温大磁电容效应和宽频特点的单相材料未见报道。
发明内容
为解决上述技术问题,本发明的目的是提供一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法。
本发明的具有室温宽频大磁电容效应的铁氧体材料具有分子式:AFe12-xMxO19,其中A为Ba元素或Sr元素中的至少一种,M为Sc元素、Mg元素或Cr元素中的至少一种,x是M的原子比含量,且0<x≤4。
本发明的具有室温宽频大磁电容效应的铁氧体材料的制备方法,包括步骤:
(1)以高纯BaCO3、SrCO3、Fe2O3,Sc2O3、MgO和\或Cr2O3粉末药品为原料,按所述铁氧体材料分子式中的原子摩尔比进行配比;
(2)将原料混合,并加入无水酒精进行球磨;
(3)球磨后取出进行烘干,然后磨碎,在空气或流动氧气气氛中进行预烧处理;
(4)取出预烧后的样品,进行研磨成粉末,然后向粉末中滴入PET粘结胶水,再次研磨直至样品无结块现象且与研钵壁没有明显粘结;
(5)将粉末倒入模具当中,进行加压处理;
(6)减压后取出成型样品,观察样品是否存在裂痕,若存在裂痕则重新磨碎为粉末并再次压制直至无裂痕为止;
(7)在流动氧气气氛中进行烧结处理,即获得所述铁氧体材料。
进一步的,所述步骤(2)中原料混合后置于球磨罐中并放入球磨珠,加入无水酒精至球磨罐三分之二高度处,将球磨罐放入球磨机进行球磨,球磨机转速为200R/min至300R/min,球磨时间为10至20小时。
进一步的,所述步骤(3)的预烧处理按照温度梯度升温,升温速率为2℃/min,预烧温度为800℃至1000℃,预烧时间为10小时至16小时,降温速率为1℃/min至3℃/min。
进一步的,所述步骤(3)在70℃至100℃下进行烘干,烘干时间为30分钟至50分钟。
进一步的,所述步骤(7)中烧结处理的烧结温度为1050℃至1300℃,烧结时间为10小时至16小时,降温速率为1℃/min至3℃/min,并在不同温度区间变化。
进一步的,所述步骤(5)中使用液压千斤顶加压,压力为5Mpa至10MPa,并保持8min至10min。
进一步的,对烧结成型后的样品,经研磨至光滑后可用酒精擦拭干净进行存放。
借由上述方案,本发明至少具有以下优点:
1、分子式为AFe12-xMxO19的铁氧体材料具有较高的纯度,电阻率较高,在20Hz至2MHz的频率范围内都呈现出显著的磁电容效应,磁电容效应在2MHz以上仍然呈现一定的增加趋势,因此,本发明的铁氧体材料具有室温宽频大磁电容效应,同时在部分频率范围磁电容效应随磁场的增加而显著增大,弥补了现有单相磁电容材料室温磁电容效应弱和频率范围窄的缺点;
2、制备方法简单,易操作。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是现有技术中颗粒复合材料示意图;
图2是现有技术中层状复合材料示意图;
图3是本发明制备的铁氧体材料室温XRD测试图谱;
图4是本发明制备的铁氧体材料在不同温度下的电阻率测试图谱;
图5是本发明制备的铁氧体材料的磁电容(C%)测试图谱,其中温度为300K,磁场大小分别为0.01T、0.5T和2.5T,扫描频率范围是20Hz至2MHz。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明中的铁氧体材料具有分子式:AFe12-xMxO19,其中A为Ba元素或Sr元素中的至少一种,M为Sc元素、Mg元素或Cr元素中的至少一种,x是M的原子比含量:0<x≤4。
本发明的铁氧体材料的具体制备方法如下:
(1)、本发明以高纯BaCO3、SrCO3、Fe2O3,Sc2O3、MgO和\或Cr2O3粉末药品为原料(原料纯度为99.99%),按分子式中的原子摩尔比配比;比如在x=1.6时,各成份摩尔比为BaCO3:SrCO3:Fe2O3:Sc2O3:MgO:Cr2O3=80:20:520:78:3:1;
(2)、将称量出的药品手工混合后,置于球磨罐中并放入球磨珠,加入无水酒精至球磨罐三分之二高度处,将球磨罐放入球磨机进行球磨,球磨机转速为200R/min至300R/min,球磨时间为10至20小时;
(3)、球磨完成后取出球磨罐内药品并置于研钵内,放入烘干机烘干,烘干机设定为70℃至100℃,烘干时间为30分钟至50分钟;
(4)、将烘干后的药品磨碎并置于坩埚中,放入管式炉在空气或流动氧气气氛中进行预烧处理,并按照一定的温度梯度升温,升温速率为2℃/min,预烧温度为800℃至1000℃,预烧时间为10小时至16小时,降温速率为1℃/min至3℃/min;
(5)、预烧完成后,取出样品,并放入清洗过的研钵中手工研磨至少20分钟至40分钟;
(6)、向研磨后的预烧药品粉末中滴入3至5滴左右PET粘结胶水,再次研磨直至药品看不到有结块现象且与研钵壁没有明显粘结;
(7)、将粉末倒入模具当中,使用液压千斤顶加压,压力为5Mpa至10MPa,根据样品大小和模具不同选择合适的压力,并保持10min左右;
(8)、减压后取出成型样品,观察样品是否存在裂痕等,若存在裂痕则需重新磨碎为粉末并再次压制直至无裂痕为止;
(9)、将成型样品放入洁净的坩埚中,放入管式炉在流动氧气气氛中进行烧结处理,按照一定的温度梯度升温,升温速率为2℃/min,烧结温度为1050℃至1300℃,烧结时间为10小时至16小时,降温速率为1℃/min至3℃/min,并在不同温度区间变化;
(10)、烧结完成后将成型样品取出,使用砂纸对靶材边缘和表面进行仔细研磨,将表面打磨尽可能光滑,打磨之后用酒精擦拭干净,存放起来等待测试。
对制得的铁氧体材料成型样品(直径3cm、厚度0.6mm的圆薄片)进行材料微结构、变温电阻和室温磁电容效应测试。
1、材料微结构表征测试(X射线衍射,简称XRD)结果,如图3所示,可以看到,本发明制备的铁氧体材料的所有XRD实验衍射峰位置都可以与理论计算峰位置一致,这表明成型样品材料具有较高的纯度。
2、变温电阻测试结果,如图4所示,本发明制备的铁氧体材料的成型样品电阻率随温度升高而下降,在室温附近约2×108Ω·cm,具有较高的电阻率。
3、磁电容测试结果,如图5所示,测试温度为300K,磁场大小分别为0.01T、0.5T和2.5T,扫描频率范围是20Hz至2MHz,可以看到,本发明制备的铁氧体材料的成型样品在整个测试频率范围(20Hz至2MHz)内都呈现出显著的磁电容效应。数据结果表明,样品的磁电容效应在2MHz以上仍然呈现一定的增加趋势,因而在高于2MHz的频率范围内也将呈现出显著的磁电容效应。同时在部分频率范围下样品的磁电容效应随磁场的增加而显著增大,可见更大的磁场会有更大的磁电容效应。所以,本发明的铁氧体材料具有室温宽频磁电容效应,同时在部分频率范围具有较大的磁电容效应。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (8)

1.一种具有室温宽频大磁电容效应的铁氧体材料,其特征在于:所述铁氧体材料具有分子式:AFe12-xMxO19,其中A为Ba元素或Sr元素中的至少一种,M为Sc元素、Mg元素或Cr元素中的至少一种,x是M的原子比含量,且0<x≤4。
2.一种如权利要求1所述的具有室温宽频大磁电容效应的铁氧体材料的制备方法,其特征在于,包括步骤:
(1)以高纯BaCO3、SrCO3、Fe2O3,Sc2O3、MgO和\或Cr2O3粉末药品为原料,按所述铁氧体材料分子式中的原子摩尔比进行配比;
(2)将原料混合,并加入无水酒精进行球磨;
(3)球磨后取出进行烘干,然后磨碎,在空气或流动氧气气氛中进行预烧处理;
(4)取出预烧后的样品,进行研磨成粉末,然后向粉末中滴入PET粘结胶水,再次研磨直至样品无结块现象且与研钵壁没有明显粘结;
(5)将粉末倒入模具当中,进行加压处理;
(6)减压后取出成型样品,观察样品是否存在裂痕,若存在裂痕则重新磨碎为粉末并再次压制直至无裂痕为止;
(7)在流动氧气气氛中进行烧结处理,即获得所述铁氧体材料。
3.根据权利要求2所述的具有室温宽频大磁电容效应的铁氧体材料的制备方法,其特征在于:所述步骤(2)中原料混合后置于球磨罐中并放入球磨珠,加入无水酒精至球磨罐三分之二高度处,将球磨罐放入球磨机进行球磨,球磨机转速为200R/min至300R/min,球磨时间为10至20小时。
4.根据权利要求2所述的具有室温宽频大磁电容效应的铁氧体材料的制备方法,其特征在于:所述步骤(3)的预烧处理按照温度梯度升温,升温速率为2℃/min,预烧温度为800℃至1000℃,预烧时间为10小时至16小时,降温速率为1℃/min至3℃/min。
5.根据权利要求4所述的具有室温宽频大磁电容效应的铁氧体材料的制备方法,其特征在于:所述步骤(3)在70℃至100℃下进行烘干,烘干时间为30分钟至50分钟。
6.根据权利要求2所述的具有室温宽频大磁电容效应的铁氧体材料的制备方法,其特征在于:所述步骤(7)中烧结处理的烧结温度为1050℃至1300℃,烧结时间为10小时至16小时,降温速率为1℃/min至3℃/min,并在不同温度区间变化。
7.根据权利要求2所述的具有室温宽频大磁电容效应的铁氧体材料的制备方法,其特征在于:所述步骤(5)中使用液压千斤顶加压,压力为5Mpa至10MPa,并保持8min至10min。
8.根据权利要求2-7任一项所述的具有室温宽频大磁电容效应的铁氧体材料的制备方法,其特征在于:对烧结成型后的样品,经研磨至光滑后可用酒精擦拭干净进行存放。
CN201610693559.6A 2016-08-19 2016-08-19 一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法 Active CN106316380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610693559.6A CN106316380B (zh) 2016-08-19 2016-08-19 一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610693559.6A CN106316380B (zh) 2016-08-19 2016-08-19 一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106316380A true CN106316380A (zh) 2017-01-11
CN106316380B CN106316380B (zh) 2021-11-30

Family

ID=57743796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610693559.6A Active CN106316380B (zh) 2016-08-19 2016-08-19 一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106316380B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851325A (zh) * 2021-01-29 2021-05-28 无锡杰夫电声股份有限公司 高饱和磁化强度z型六角铁氧体粉末及其制备方法
CN115417665A (zh) * 2022-08-30 2022-12-02 苏州银琈玛电子科技有限公司 铁氧体材料、其制备方法以及微波器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102006A (zh) * 1993-05-28 1995-04-26 国际商业机器公司 用于纵向记录的铁酸钡薄膜
JP3083891B2 (ja) * 1991-11-14 2000-09-04 旭テクノグラス株式会社 磁気記録媒体用磁性粉およびその製造方法
CN1364145A (zh) * 1999-07-05 2002-08-14 尤吉马格股份有限公司 M型六角铁氧体粉末或团块的制造方法
CN1674355A (zh) * 2004-03-26 2005-09-28 索尼株式会社 天线设备
CN101106004A (zh) * 2007-06-14 2008-01-16 北京科技大学 一种低温烧结六角晶系软磁铁氧体
CN102682947A (zh) * 2011-03-09 2012-09-19 Tdk株式会社 天线用磁性材料、以及天线和无线通信器械
CN102964595A (zh) * 2012-11-12 2013-03-13 南昌航空大学 一种钡镁铁氧体/sdbs改性碳纳米管/聚吡咯复合吸波材料的制备方法
CN103979959A (zh) * 2014-05-09 2014-08-13 天津大学 锶掺杂钡铁氧体/氧化锆复合陶瓷材料及其制备方法
JP2015191935A (ja) * 2014-03-27 2015-11-02 Tdk株式会社 六方晶フェライト焼結体、及びこれを用いた高周波磁性部品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3083891B2 (ja) * 1991-11-14 2000-09-04 旭テクノグラス株式会社 磁気記録媒体用磁性粉およびその製造方法
CN1102006A (zh) * 1993-05-28 1995-04-26 国际商业机器公司 用于纵向记录的铁酸钡薄膜
CN1364145A (zh) * 1999-07-05 2002-08-14 尤吉马格股份有限公司 M型六角铁氧体粉末或团块的制造方法
CN1674355A (zh) * 2004-03-26 2005-09-28 索尼株式会社 天线设备
CN101106004A (zh) * 2007-06-14 2008-01-16 北京科技大学 一种低温烧结六角晶系软磁铁氧体
CN102682947A (zh) * 2011-03-09 2012-09-19 Tdk株式会社 天线用磁性材料、以及天线和无线通信器械
CN102964595A (zh) * 2012-11-12 2013-03-13 南昌航空大学 一种钡镁铁氧体/sdbs改性碳纳米管/聚吡咯复合吸波材料的制备方法
JP2015191935A (ja) * 2014-03-27 2015-11-02 Tdk株式会社 六方晶フェライト焼結体、及びこれを用いた高周波磁性部品
CN103979959A (zh) * 2014-05-09 2014-08-13 天津大学 锶掺杂钡铁氧体/氧化锆复合陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BILAL HAMID BHAT ET AL.: "Magnetic, dielectric and complex impedance properties of lanthanum and magnesium substituted strontium hexaferrite", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS VOLUME》 *
KUMAR, ABHISHEK ET AL.: ""Effect of Mg Substitution on Microwave Absorption of BaFe12O19", 《ADVANCED MATERIALS RESEARCH》 *
LOU HONGFEI ET AL.: "Effects of Mg or Sr Doping on the Intrinsic Characteristics and Absorption Properties of Micro-nano BaFe12O19 Hollow Multiphase Ceramic Microspheres", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851325A (zh) * 2021-01-29 2021-05-28 无锡杰夫电声股份有限公司 高饱和磁化强度z型六角铁氧体粉末及其制备方法
CN112851325B (zh) * 2021-01-29 2022-07-19 无锡杰夫电声股份有限公司 高饱和磁化强度z型六角铁氧体粉末及其制备方法
CN115417665A (zh) * 2022-08-30 2022-12-02 苏州银琈玛电子科技有限公司 铁氧体材料、其制备方法以及微波器件

Also Published As

Publication number Publication date
CN106316380B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
TWI432394B (zh) Ni-Zn-Cu fat iron powder, the first billet and Ni-Zn-Cu fat iron sintered body containing the Ni-Zn-Cu fat and iron powder
CN102428586B (zh) 钨青铜型压电材料及其制备方法
JP7218481B2 (ja) スパッタリングターゲット材及び酸化物半導体
EP3370271B1 (en) Piezoelectric composition and piezoelectric device
CN106431382A (zh) 制备具有室温宽频大磁电容效应的铁氧体外延薄膜的方法
CN108558383A (zh) NiZn铁氧体材料及制备方法
JP5676910B2 (ja) セラミクスの製造方法および圧電材料
CN105601264A (zh) 一种高致密化多铁性(1-y)BiFeO3-yBi1-xRxFeO3复合陶瓷的制备方法
CN104387058A (zh) 一种铁酸铋基多铁陶瓷的制备方法
CN106316380A (zh) 一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法
CN103518004B (zh) In-Ga-Zn系氧化物溅射靶及其制造方法
CN109437318A (zh) 一种外延六角铁氧体纳米点阵结构的制备方法
CN102757232A (zh) 铌镁酸铅-钛酸铅陶瓷的制备方法
Chen et al. Influence of MgO precursors on mechanically activated forsterite synthesis
CN113292329B (zh) 一种铁酸铋-钛酸钡二元高温压电陶瓷材料及其制备方法和应用
CN102260080A (zh) 一种改性CaBi2Nb2O9铋层状结构压电陶瓷材料及其制备方法
CN108178616A (zh) 一种制备含铋层状钙钛矿陶瓷的方法
CN109608194A (zh) 一种锆钛酸铅厚膜陶瓷及其制备方法和应用
CN109326401A (zh) 一种纳米氧化锌复合粉体压敏电阻片的制备工艺
CN108689708B (zh) 一种铋掺杂钛钽酸铜巨介电陶瓷材料及制备方法
CN103183505A (zh) 一种织构化钴铁氧体膜材料及制备方法
Zhu et al. Dielectric and magnetic properties of BaTiO3/Ni0. 5Zn0. 5Fe2O4 composite ceramics synthesized by a co-precipitation process
Wang et al. The effects of hot isostatic pressing temperature on the structure and properties in GdMnO3 ceramics
CN102633495A (zh) 室温铁磁性Sr2FemMonO6陶瓷的制备方法
CN102731091A (zh) 压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant