CN106311295A - 一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼或甲酸分解制氢的应用 - Google Patents

一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼或甲酸分解制氢的应用 Download PDF

Info

Publication number
CN106311295A
CN106311295A CN201610687334.XA CN201610687334A CN106311295A CN 106311295 A CN106311295 A CN 106311295A CN 201610687334 A CN201610687334 A CN 201610687334A CN 106311295 A CN106311295 A CN 106311295A
Authority
CN
China
Prior art keywords
graphene
carrier
phosphorus doping
catalyst
hydrazine hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610687334.XA
Other languages
English (en)
Other versions
CN106311295B (zh
Inventor
刘通
姜代旬
杜芳林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Xinjie Hydrogen Energy Technology Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201610687334.XA priority Critical patent/CN106311295B/zh
Publication of CN106311295A publication Critical patent/CN106311295A/zh
Application granted granted Critical
Publication of CN106311295B publication Critical patent/CN106311295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1856Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种以石墨烯为载体磷掺杂的双金属纳米催化剂的制备方法及在水合肼或甲酸分解制氢的应用。所述水合肼或甲酸分解制氢的应用包括以石墨烯为载体磷掺杂的双金属纳米催化剂、水合肼(或甲酸)、以及水;所述的一种以石墨烯为载体磷掺杂的双金属纳米催化剂,其中双金属为Pt和Ni、或Pd和Ag。本发明以石墨烯为载体,利用次磷酸钠为还原剂,采用共还原法,制备过程简单,制得的磷掺杂的镍铂或钯银双金属催化剂为纳米量级,粒径在10纳米以下,负载在石墨烯表面,其对水合肼或甲酸具有高效催化制氢性能,并且便于回收可循环使用。

Description

一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼 或甲酸分解制氢的应用
技术领域
本发明涉及催化剂合成领域,具体是一种用于催化水合肼或甲酸分解制氢的双金属纳米催化剂及制备方法。
背景技术
在传统化石能源——石油、天然气和煤等日益枯竭、环境污染日益加重的严峻考验下,发展清洁环保、高能效、可再生的新能源已成为全世界的共识。我国在“十三五”期间如何调整能源政策,发展新能源等问题也被社会各界广泛关注。其中就包括如何用非化石能源的新增部分来替代化石能源存量的问题。氢能以热值高、无污染和可再生等优势而受到世界各国的广泛重视。
在氢能经济呼之欲出的形式下,水合肼(N2H4·H2O)被人们认为是一种具有巨大应用潜力的储氢材料,相比于遇到金属催化剂易发生爆炸的无水肼(N2H4),水合肼在应用中具有更高的安全性且仍具备较高的含氢量(8.0wt%)。另外,甲酸也是一种良好的化学储氢材料,其含氢量为4.4wt%。由于甲酸具有无毒,可再生,挥发性低,储存和运输安全等优点,被认为是当前最有前途的储氢材料。然而要实现温和条件下高效、高选择性的水合肼或甲酸分解制氢,开发高性能的催化剂、掌握其催化机理是研究的关键。
非金属元素掺杂的多元催化剂以其优秀的催化性能正逐渐引起了广泛关注。Tong等采用液相等离过程制备了无定形Co-B纳米球以及蜂窝状的纯相Co-B,在室温下分别取得21%和30%的制氢选择性。之后,他们用NaBH4还原法制备出了非晶Fe-B NPs分散在多孔的多壁碳纳米管(MWCNTs)上,其在室温下催化N2H4·H2O分解反应的H2选择性为97%,产氢速率为34.2L·h-1·g-1。Zhang的团队在2015年报道了Rh-Ni-B纳米粒子催化剂,他们用NaBH4为还原剂,一步法共还原制备了Rh-Ni-B纳米粒子,其在添加NaOH的情况下表现出100%的制氢选择性和优异的产氢速率,分解2mmol的N2H4·H2O仅用时22分钟。
石墨烯不仅具有比活性炭和碳纳米管更大的理论比表面积(高达2630m2/g),而且具有更为优良的导电和导热等性能。其表面存在很多的含氧基团及碳或氧等缺陷。因而会带来许多化学活性位点,或作为金属颗粒的锚定位点。相对于碳纳米管而言,石墨烯是一种易于合成,价格低廉的碳材料,因而更易于大规模化生产。
目前已有的一些研究中,Luo Wei等人以石墨烯为载体合成了石墨烯负载的镍铂催化剂,用于水合肼催化制氢。Ye Weichun等人利用次亚磷酸钠为还原剂,柠檬酸钠为络合剂,硫酸铵为缓冲剂,制备了石墨烯负载NiCoP纳米催化剂的方法,并测试了电磁波吸收特性。目前,与非金属元素磷相关的研究所采用的制备方法常以化学镀的方法获得,化学镀的制备方法需要对载体进行粗化、敏化、活化的处理,并且所获得的含有磷元素的二元或多元的合金则为化学镀层。作为催化剂材料,要获得高的催化性能需要催化剂的粒径尽可能的小,已获得更 大的比表面积从而使反应的催化活性点更多。而纳米催化剂则由于其较大的比表面积,纳米尺寸效应,使其作为催化剂材料具有极高的催化性能。
发明内容
本发明目的是提供一种用于水合肼或甲酸分解制氢的以石墨烯为载体的磷掺杂的双金属纳米催化剂的制备方法及应用,采用共还原法过程简单,制得的磷掺杂的镍铂或钯银双金属催化剂为纳米量级,粒径在10纳米以下,负载在石墨烯表面,其对水合肼或甲酸具有高效催化制氢性能,并且便于回收可循环使用。
本发明的方法包括以下步骤:
步骤一:以改性的Hummers法制备氧化石墨烯:
a.先将天然膨胀石墨与高锰酸钾按照重量比为1:6的比例在反应容器中混合,并加入浓硫酸和浓磷酸的混合酸,搅拌30min,其中,混合酸中浓硫酸:浓磷酸的体积比为9:1,天然膨胀石墨与混酸的比例为1g:120ml;
b.再将反应容器移至50摄氏度的水浴中搅拌反应12h得到氧化石墨溶液;
c.然后配制体积比为20:1至20:2的蒸馏水和双氧水溶液,并冻成冰块,将反应得到的氧化石墨溶液倒入等体积的上述冰块中至冰块完全溶解后过滤,再用重量百分比为10%的稀盐酸洗涤,最后用水洗至溶液pH=7,在40摄氏度下真空干燥12h得到氧化石墨烯待用;
步骤二:石墨烯载体表面合成的磷掺杂的双金属纳米催化剂:
将4-24mmol/L的金属盐、7.7-15.4mmol/L的另一种金属盐的和30mg氧化石墨烯置入25ml体积比为4:1的水/异丙醇混合液中超声2小时;另配25ml浓度为200-2000mmol/L的次亚磷酸钠水溶液加入上述混合液中,用浓度1mol/L碳酸钠水溶液调节上述溶液pH值至7-11后,在25-95℃油浴中磁力搅拌1-12h,所得反应物经抽滤洗涤,真空干燥后为以石墨烯为载体的磷掺杂的双金属纳米催化剂。
步骤二中,所述金属盐选自铂盐、镍盐、银盐或钯盐。其中所述铂盐选自氯铂酸钾、氯铂酸钠、氯铂酸等;所述镍盐选自氯化镍、硫酸镍、硝酸镍或草酸镍等;所述钯盐选自氯化钯或氯钯酸等;所述银盐选自硝酸银等。
经大量研究发现,次亚磷酸钠(NaH2PO2·H2O)的浓度是制备的关键之一,因本发明需要使用比其他工艺所用的要高很多的浓度,只有浓度达到上述浓度才能获得纳米量级的双金属催化剂。另外,调解pH值在一定的范围内、以及异丙醇的加入增加了体系中的NaH2PO2·H2O的还原能力,有助于双金属盐同时被还原为双金属纳米粒子。
本发明与现有技术相比,具有显著的积极效果和先进性:目前磷掺杂多元合金催化剂的制备过程主要基于化学镀技术或电沉积技术。一种为纯化学过程,另一种为电化学还原过程。次亚磷酸根是常用还原剂,将溶液中的金属离子还原,金属本身具有催化活性,使金属阳离子一直在界面处析出并最终形成致密的表面镀层。
在催化反应中,人们更希望催化剂具有更小的粒径,已获得更大的比表面积,从而进一 步提高催化活性。所以,在制备磷元素掺杂的催化剂工艺上不能使用已有的化学镀或电沉积方法。而非金属的硼、磷等元素自身无催化性能,但本发明采用独特设计的工艺流程,通过调节溶液组份,调控次亚磷酸钠的还原性强弱,确保次亚磷酸钠可同时还原镍离子和铂离子,同时次亚磷酸钠反应的磷元素可掺杂到双金属粒子中,实现了将非金属元素磷与金属元素形成了多元催化剂,该多元催化剂不但颗粒处于纳米量级,还存在大量不饱和活性位及缺陷结构,从而使催化性能大幅提高。
本发明以石墨烯为载体,利用次磷酸钠为还原剂,制备了磷元素掺杂的双金属纳米催化剂复合材料。该制备方法中,所用的次亚磷酸钠剂量为双金属离子总量的10倍以上,大量的次亚磷酸钠可以有效地将金属粒子限制在极小的尺寸,可以有效提高催化性能。所用溶液为水和异丙醇的混合液,能够有效地使整个体系稳定性提高,确保双金属离子在次亚磷酸钠的作用下还原,不需要在体系中添加其他络合剂。
因此所制备石墨烯负载的磷掺杂的双金属纳米催化剂颗粒小,并且有效地提高了催化水合肼分解制氢的效率。本发明所述的制备方法不仅提高了制备过程中的可控性,且工艺简单,容易实现,可以高效地催化水合肼分解制氢反应,对水合肼分解制氢的应用极大地促进作用。
附图说明
图1本发明实施例1制备的以石墨烯为载体的磷掺杂的镍铂纳米催化剂的透射电镜图。
图2为本发明实施例2制备的以石墨烯为载体的磷掺杂的钯银纳米催化剂的透射电镜图。
图3为本发明实施例2制备的以石墨烯为载体的磷掺杂的钯银纳米催化剂的电子能谱(EDX图。
图4为本发明实施例1制备的以石墨烯为载体的磷掺杂的镍铂纳米催化剂在不同温度下催化水合肼分解制氢的摩尔量随时间变化曲线。
图5为本发明实施例1制备的以石墨烯为载体的磷掺杂的镍铂纳米催化剂催化水合肼分解制氢过程中ln TOF随温度倒数变化的曲线。
图6为本发明实施例1制备的以石墨烯为载体的磷掺杂的镍铂纳米催化剂重复使用的水合肼分解制氢的摩尔量随时间变化曲线。
图7为本发明实施例1制备的以石墨烯为载体的磷掺杂的镍铂纳米催化剂重复使用后的透射电镜图。
图8为本发明实施例1和实施例5制备的镍铂纳米催化剂水合肼分解制氢的摩尔量随时间变化曲线
具体实施方式:下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。
实施例1:磷掺杂的镍铂纳米催化剂的制备
步骤一:以改性的Hummers法制备氧化石墨烯:
a.先将天然膨胀石墨1.5g与9g高锰酸钾固体在反应容器中混合,并加入浓硫酸和浓磷酸的混合酸,其中浓磷酸20ml、浓硫酸180ml,搅拌30min;
b.再将反应容器移至50摄氏度的水浴中搅拌反应12h得到氧化石墨溶液;
c.将反应得到的200ml氧化石墨溶液倒入混合有200g冰块与1.5ml双氧水容器中,至 冰块完全溶解后过滤,再用重量百分比为10%的稀盐酸洗涤,最后用水洗至溶液pH=7,在40摄氏度下真空干燥12h得到氧化石墨烯待用;
步骤二:石墨烯载体表面合成的磷掺杂的镍铂纳米催化剂:
将6mmol/L的H2PtCl6·6H2O、13.5mmol/L的NiCl2·6H2O和30mg GO置入25ml体积比为4:1的水/异丙醇混合液中超声2小时;另配25ml浓度为200mmol/L的NaH2PO2·H2O水溶液加入上述混合液中,用浓度1mol/L Na2CO3水溶液调节上述溶液pH值至10后,在90℃油浴中磁力搅拌8h,所得反应物经抽滤洗涤,真空干燥后为纳米镍铂磷/石墨烯。
图1为本发明实施例1制备的以石墨烯为载体的磷掺杂的镍铂纳米催化剂的透射电镜(TEM)图。从图中可以看出,镍铂催化剂的粒径大小不超过5nm。
实施例2:磷掺杂的钯银纳米催化剂的制备
氧化石墨烯的制备方法同实施例1
将2mmol/L的AgNO3、18mmol/L的PdCl2和30mg GO置入25ml体积比为4:1的水/异丙醇混合液中超声2小时;另配25ml浓度为200mmol/L的NaH2PO2·H2O水溶液加入上述混合液中,用浓度1mol/L Na2CO3水溶液调节上述溶液pH值至7,在25℃油浴中磁力搅拌1h,所得反应物经抽滤洗涤,真空干燥后为纳米钯银磷/石墨烯。
图2为本发明实施例2制备的以石墨烯为载体的磷掺杂的钯银纳米催化剂的透射电镜图。从图中可以看出,催化剂的粒径大小不超过3nm。图3为本发明实施例2制备的以石墨烯为载体的磷掺杂的钯银纳米催化剂的电子能谱(EDX)图。图中显示钯、银和磷的比例大约为30:6:1。
实施例3:一种包含实施例1制备的磷掺杂的镍铂纳米催化剂的水合肼(N2H4·H2O)水解制氢体系:所述体系包括磷掺杂的镍铂纳米催化剂以及水合肼水溶液。对该体系水合肼分解制氢的研究如下:
将制备的100mg的磷掺杂的镍铂纳米催化剂加入到含有0.1mol/L氢氧化钠的4ml去离子水的三口烧瓶中,三口瓶固定在水浴恒温振荡器中,反应温度可通过水浴调解,振荡器以220圈/每分钟带动三口瓶旋转震荡,用移液枪加入0.1ml水合肼(N2H4·H2O),加入完以后,用橡胶塞封闭三口瓶,并立马按下秒表开始计时。产生的氢气用岛津DC-14C气相色谱检测,此气相色谱使用0.5nm分子筛柱(3m×2mm),热导池检测器(TCD),载气为氩气。
研究该体系中反应温度对催化水解速率的影响,包括以下步骤:
上述磷掺杂的镍铂纳米催化剂的水合肼水解制氢体系温度分别为25℃、40℃、50℃、60℃.记录各个反应在不同时刻收集到的氢气的体积。释放完氢气所需的时间分别为11min、5.5min、3.1min和2.2min,以氢气体积对时间作曲线,如图4所示,以每条曲线接近直线的部分分别计算出不同温度下的催化制氢速率,进一步计算出相应的TOF(转化速率)值,它们分别是224,427,742和1050molH2·(molNiPt)-1·h-1。对4个催化TOF值取自然对数,得到4个lnTOF,根据Arrhenius公式,以lnTOF对温度的倒数作曲线,如图5所示,根据曲 线斜率,计算出该体系中反应的活化能约为50.7KJ/mol。该体系中,反应温度对催化水解速率的影响为:随着温度的升高,水合肼的水解速率增大。
研究该体系中催化剂的循环利用情况,包括以下步骤:
在第一次催化水合肼水解制氢反应结束后,再将等量的水合肼(0.1ml)加入到三口瓶中,继续测量催化剂产氢速率。反应结束后再一次加入等量的水合肼,共循环重复5次。分别记录每次重复使用过程中氢气产量与水合肼的比值和对应的反应时间。从图6所示结果可以得出,该磷掺杂的镍铂纳米催化剂,对催化水合肼水解制氢保持高活性。对循环反应后回收的催化剂进行透射电镜分析,如图7所示。从图中可以看出反应后催化剂的形貌并无明显的变化,即催化剂在循环反应后可以稳定存在。
实施例4:一种包含实施例2制备的磷掺杂的钯银纳米催化剂的甲酸水解制氢体系:所述体系包括磷掺杂的钯银纳米催化剂以及甲酸及甲酸钠水溶液。对该体系甲酸分解制氢反应如下:
将制备的100mg的磷掺杂的钯银纳米催化剂加入到2ml去离子水的三口瓶中超声分散,三口瓶固定在水浴恒温振荡器中,反应温度可通过水浴调解,振荡器以220圈/每分钟带动三口瓶旋转震荡,用移液枪向三口瓶中加入含有0.624g甲酸钠及0.225ml甲酸的1ml水溶液,加入完以后,用橡胶塞封闭三口瓶。将产生的气体经1mol/L的氢氧化钠水溶液洗气瓶后,收集氢气。对该体系水解制氢行为的研究与实施例3相同,所得的实验结果与实施例3类似。
实施例5:非磷掺杂的镍铂纳米催化剂的制备
氧化石墨烯的制备方法同实施例1
将6mmol/L的H2PtCl6·6H2O、13.5mmol/L的NiCl2·6H2O和30mg GO置入25ml体积比为4:1的水/异丙醇混合液中超声2小时;另配25ml加入加100mg硼氢化钠与100mg固体氢氧化钠的混合溶液加入上述混合液中,在25℃搅拌5分钟,所得反应物经抽滤洗涤,真空干燥后为非磷掺杂的镍铂纳米催化剂。
实施例6:一种包含实施例5制备的非磷掺杂的镍铂纳米催化剂的水合肼(N2H4·H2O)水解制氢体系,对该体系水解制氢行为的研究与实施例3相同,所得的实验结果与实施例3类似。如图8所示结果可以看出,非磷掺杂的镍铂纳米催化剂的催化水合肼(N2H4·H2O)水解制氢的反应速率低于实施例1中制备的磷掺杂的镍铂纳米催化剂,这说明本专利所制备的以石墨烯为载体磷掺杂的双金属纳米催化剂的水合肼或甲酸分解制氢性能好于非磷掺杂的催化剂。
显然,本发明上述实施例仅仅是为清楚地说明本发明所做的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (7)

1.一种以石墨烯为载体磷掺杂的双金属纳米催化剂,其特征在于:石墨烯作为催化剂载体,其中双金属为Pt和Ni、或Pd和Ag,磷元素掺杂在双金属催化剂中。
2.根据权利要求1所述的一种以石墨烯为载体磷掺杂的双金属纳米催化剂,其特征在于:所述磷掺杂的双金属纳米催化剂的尺寸不超过10nm。
3.根据权利要求1所述的一种以石墨烯为载体磷掺杂的双金属纳米催化剂,其特征在于:所述以石墨烯为载体磷掺杂的双金属纳米催化剂的制备方法包括如下步骤:
1)以改性的Hummers法制备氧化石墨烯;
2)将Pt和Ni、或Pd和Ag的金属盐和步骤1)得到的氧化石墨烯置入体积比为4:1的水/异丙醇混合液中超声2小时;另配次亚磷酸钠水溶液加入上述混合液中,用碳酸钠水溶液调节上述溶液pH值,在油浴中磁力搅拌,所得反应物经抽滤洗涤,真空干燥后即得到以石墨烯为载体的磷掺杂的纳米双金属催化剂。
4.根据权利要求3所述的一种以石墨烯为载体磷掺杂的双金属纳米催化剂,其特征在于:步骤2)中,所述两种金属盐的浓度分别是4-24mmol/L和7.7-15.4mmol/L;次亚磷酸钠水溶液的浓度为200-2000mmol/L;pH值为7-11;油浴温度为25-95℃;磁力搅拌时间为1-12h;所述金属盐选自铂盐、镍盐、银盐或钯盐。
5.根据权利要求4所述的一种以石墨烯为载体磷掺杂的双金属纳米催化剂,其特征在于:铂盐选自氯铂酸钾、氯铂酸钠、氯铂酸;所述镍盐选自氯化镍、硫酸镍、硝酸镍或草酸镍;所述钯盐选自氯化钯或氯钯酸;所述银盐选自硝酸银。
6.根据权利要求1所述的一种以石墨烯为载体磷掺杂的双金属纳米催化剂在甲酸分解制氢的应用方法,包括以下步骤:
1)将制备的100mg的磷掺杂的钯银纳米催化剂加入到2ml去离子水的三口瓶中超声分散,三口瓶固定在水浴恒温振荡器中,,振荡器以220圈/每分钟带动三口瓶旋转震荡;
2)用移液枪向三口瓶中加入含有0.624g甲酸钠及0.225ml甲酸的1ml水溶液,加入完以后,制备收集氢气。
7.根据权利要求1所述的一种以石墨烯为载体磷掺杂的双金属纳米催化剂在水合肼分解制氢的应用方法,包括以下步骤:
1)将制备的100mg的磷掺杂的镍铂纳米催化剂加入到含有0.1mol/L氢氧化钠的4ml去离子水的三口烧瓶中,三口瓶固定在水浴恒温振荡器中,反应温度可通过水浴调解,振荡器以220圈/每分钟带动三口瓶旋转震荡;
2)用移液枪加入0.1ml水合肼,加入完以后,制备收集氢气。
CN201610687334.XA 2016-08-18 2016-08-18 一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼或甲酸分解制氢的应用 Active CN106311295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610687334.XA CN106311295B (zh) 2016-08-18 2016-08-18 一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼或甲酸分解制氢的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610687334.XA CN106311295B (zh) 2016-08-18 2016-08-18 一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼或甲酸分解制氢的应用

Publications (2)

Publication Number Publication Date
CN106311295A true CN106311295A (zh) 2017-01-11
CN106311295B CN106311295B (zh) 2019-05-03

Family

ID=57744373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610687334.XA Active CN106311295B (zh) 2016-08-18 2016-08-18 一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼或甲酸分解制氢的应用

Country Status (1)

Country Link
CN (1) CN106311295B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195912A (zh) * 2017-05-15 2017-09-22 上海电力学院 一种含有石墨烯材料的催化剂及其制备方法
CN107381545A (zh) * 2017-07-20 2017-11-24 沈阳化工大学 一种含磷功能化石墨烯的制备方法
CN108539237A (zh) * 2018-05-04 2018-09-14 厦门大学 银/铂纳米催化剂修饰的Nafion复合膜及制备方法
CN108675262A (zh) * 2018-05-07 2018-10-19 南京大学 一种催化甲酸制氢的方法
CN109364964A (zh) * 2018-11-27 2019-02-22 浙江工业大学 一种催化氧还原反应的铂钯镍磷合金多孔纳米微球及其制备方法
CN110586157A (zh) * 2019-09-09 2019-12-20 青岛科技大学 一种PdAgB/NH2-N-rGO-TiO2催化剂及其制备方法和应用
CN110586158A (zh) * 2019-09-09 2019-12-20 青岛科技大学 一种PdB/NH2-N-rGO催化剂及其制备方法和应用
CN110947388A (zh) * 2019-11-28 2020-04-03 南昌大学 一种石墨烯气凝胶负载镍的催化剂及其制备方法和应用
CN111349245A (zh) * 2018-12-21 2020-06-30 中国科学院大连化学物理研究所 一种交叠结构纳米片层材料及其制备方法和应用
CN111346649A (zh) * 2020-04-30 2020-06-30 青岛品泰新材料技术有限责任公司 一种Pd@Ni-SNT/石墨烯析氢催化剂及其制备方法和应用
CN113042068A (zh) * 2021-03-26 2021-06-29 河北工业大学 一种双功能化石墨烯负载NiAuPd纳米催化剂的制备方法及应用
CN113522263A (zh) * 2021-07-19 2021-10-22 河北工业大学 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用
CN114101696A (zh) * 2021-09-16 2022-03-01 北京航空航天大学 一种磷掺杂铂镍纳米线及其制备方法和应用
CN114950544A (zh) * 2022-03-15 2022-08-30 青岛科技大学 一种苯胺基团修饰的MXene负载金属催化剂的制备方法及应用
CN115069289A (zh) * 2022-07-07 2022-09-20 青岛科技大学 一种水合肼脱氢催化剂的制备方法
CN115532267A (zh) * 2022-10-31 2022-12-30 厦门大学 一种用于低温液相甲酸制氢纳米镍催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347736A (zh) * 2007-07-20 2009-01-21 中国科学院金属研究所 一种用于硼氢化物催化水解制氢催化剂及其制备方法
CN101380586A (zh) * 2007-09-07 2009-03-11 中国科学院大连化学物理研究所 一种双组分磷化物肼分解催化剂及其制备和应用
CN101455970A (zh) * 2008-11-19 2009-06-17 南京航空航天大学 用于直接甲醇燃料电池催化剂的碳载核壳型Ni-Pt粒子的制备方法
CN101733134A (zh) * 2008-11-21 2010-06-16 北京工业大学 燃料电池催化剂的制备方法
CN103949272A (zh) * 2014-05-21 2014-07-30 江西师范大学 一种用于肼硼烷产氢的NiPt@RGO复合纳米催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347736A (zh) * 2007-07-20 2009-01-21 中国科学院金属研究所 一种用于硼氢化物催化水解制氢催化剂及其制备方法
CN101380586A (zh) * 2007-09-07 2009-03-11 中国科学院大连化学物理研究所 一种双组分磷化物肼分解催化剂及其制备和应用
CN101455970A (zh) * 2008-11-19 2009-06-17 南京航空航天大学 用于直接甲醇燃料电池催化剂的碳载核壳型Ni-Pt粒子的制备方法
CN101733134A (zh) * 2008-11-21 2010-06-16 北京工业大学 燃料电池催化剂的制备方法
CN103949272A (zh) * 2014-05-21 2014-07-30 江西师范大学 一种用于肼硼烷产氢的NiPt@RGO复合纳米催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN WANG: "Synthesis and electrocatalytic alcohol oxidation performance of PdeCo bimetallic nanoparticles supported on graphene", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195912A (zh) * 2017-05-15 2017-09-22 上海电力学院 一种含有石墨烯材料的催化剂及其制备方法
CN107381545A (zh) * 2017-07-20 2017-11-24 沈阳化工大学 一种含磷功能化石墨烯的制备方法
CN108539237B (zh) * 2018-05-04 2020-11-03 厦门大学 银/铂纳米催化剂修饰的Nafion复合膜及制备方法
CN108539237A (zh) * 2018-05-04 2018-09-14 厦门大学 银/铂纳米催化剂修饰的Nafion复合膜及制备方法
CN108675262A (zh) * 2018-05-07 2018-10-19 南京大学 一种催化甲酸制氢的方法
CN109364964A (zh) * 2018-11-27 2019-02-22 浙江工业大学 一种催化氧还原反应的铂钯镍磷合金多孔纳米微球及其制备方法
CN111349245B (zh) * 2018-12-21 2021-11-23 中国科学院大连化学物理研究所 一种交叠结构纳米片层材料及其制备方法和应用
CN111349245A (zh) * 2018-12-21 2020-06-30 中国科学院大连化学物理研究所 一种交叠结构纳米片层材料及其制备方法和应用
CN110586157A (zh) * 2019-09-09 2019-12-20 青岛科技大学 一种PdAgB/NH2-N-rGO-TiO2催化剂及其制备方法和应用
CN110586158A (zh) * 2019-09-09 2019-12-20 青岛科技大学 一种PdB/NH2-N-rGO催化剂及其制备方法和应用
CN110947388B (zh) * 2019-11-28 2021-05-07 南昌大学 一种石墨烯气凝胶负载镍的催化剂及其制备方法和应用
CN110947388A (zh) * 2019-11-28 2020-04-03 南昌大学 一种石墨烯气凝胶负载镍的催化剂及其制备方法和应用
CN111346649B (zh) * 2020-04-30 2021-01-08 荷氢新能源科技(山东)有限公司 一种Pd@Ni-SNT/石墨烯析氢催化剂及其制备方法和应用
CN111346649A (zh) * 2020-04-30 2020-06-30 青岛品泰新材料技术有限责任公司 一种Pd@Ni-SNT/石墨烯析氢催化剂及其制备方法和应用
CN113042068A (zh) * 2021-03-26 2021-06-29 河北工业大学 一种双功能化石墨烯负载NiAuPd纳米催化剂的制备方法及应用
CN113042068B (zh) * 2021-03-26 2022-04-05 河北工业大学 一种双功能化石墨烯负载NiAuPd纳米催化剂的制备方法及应用
CN113522263A (zh) * 2021-07-19 2021-10-22 河北工业大学 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用
CN113522263B (zh) * 2021-07-19 2022-06-17 河北工业大学 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用
CN114101696A (zh) * 2021-09-16 2022-03-01 北京航空航天大学 一种磷掺杂铂镍纳米线及其制备方法和应用
CN114950544A (zh) * 2022-03-15 2022-08-30 青岛科技大学 一种苯胺基团修饰的MXene负载金属催化剂的制备方法及应用
CN115069289A (zh) * 2022-07-07 2022-09-20 青岛科技大学 一种水合肼脱氢催化剂的制备方法
CN115532267A (zh) * 2022-10-31 2022-12-30 厦门大学 一种用于低温液相甲酸制氢纳米镍催化剂及其制备方法
CN115532267B (zh) * 2022-10-31 2023-11-07 厦门大学 一种用于低温液相甲酸制氢纳米镍催化剂及其制备方法

Also Published As

Publication number Publication date
CN106311295B (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN106311295B (zh) 一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼或甲酸分解制氢的应用
Liang et al. Multi‐scale design of metal–organic framework‐derived materials for energy electrocatalysis
Xu et al. Well‐defined metal–organic‐framework hollow nanostructures for catalytic reactions involving gases
Ling et al. Optimization strategies for selective CO 2 electroreduction to fuels
Xu et al. Cobalt nanoparticles encapsulated in nitrogen-doped carbon shells: efficient and stable catalyst for nitrobenzene reduction
Chen et al. Galvanic replacement synthesis of NiPt/graphene as highly efficient catalysts for hydrogen release from hydrazine and hydrazine borane
Ren et al. Recent advances of Cu-based materials for electrochemical nitrate reduction to ammonia
Ye et al. Synergistic effects of Co/CoO nanoparticles on imine-based covalent organic frameworks for enhanced OER performance
Wang et al. Alkaline ultrasonic irradiation-mediated boosted H2 production over O/N-rich porous carbon anchored Ru nanoclusters
Huang et al. Recent advances of electrocatalyst and cell design for hydrogen peroxide production
Wang et al. Single-atom catalysts for energy conversion
Feng et al. Controllable synthesis of cobalt-containing nanosheet array-like ternary CuCoAl-LDH/rGO hybrids to boost the catalytic efficiency for 4-nitrophenol reduction
Duan et al. Pd-Co2P nanoparticles supported on N-doped biomass-based carbon microsheet with excellent catalytic performance for hydrogen evolution from formic acid
Liu et al. Advances in selective electrocatalytic hydrogenation of alkynes to alkenes
Song et al. CeVO4/CeO2 heterostructure-supported Co nanoparticles for photocatalytic H2 production from ammonia borane under visible light
Shah et al. Recent Advances in Synthesis and Applications of Single‐Atom Catalysts for Rechargeable Batteries
Chen et al. Pt–Co electrocatalysts: syntheses, morphologies, and applications
Meng et al. Tuning phase structure of nickel–ruthenium alloys via MOFs in situ hydrolysis toward enhanced hydrogen evolution performance in alkaline
CN104258853B (zh) 一种金铱双功能氧电极催化剂及制备方法和应用
Yao et al. Alkali-assisted synthesis of ultrafine NiPt nanoparticles immobilized on La2O2CO3 for highly efficient dehydrogenation of hydrous hydrazine and hydrazine borane
Li et al. Active clusters ensemble effect of bimetallic RuCo alloys for efficient hydrogen production from ammonia borane
Wu et al. PdCu alloy nanoparticle-decorated copper nanotubes as enhanced electrocatalysts: DFT prediction validated by experiment
Alfonso-Herrera et al. Novel strategies to tailor the photocatalytic activity of metal—organic frameworks for hydrogen generation: a mini-review
Rong et al. “On-off” controlled H2 evolution and O2 evolution upon NH3BH3 hydrolysis resp· H2O2 decomposition on Pt/ZIF-67
Wu et al. Direct design of cage-like bimetallic NiFe hydroxides with regulated electron structure to boost the kinetic activity of oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220402

Address after: 332000 510, building 2, jinjingcheng science and Technology Park, 186-4 Binjiang East Road, Xunyang District, Jiujiang City, Jiangxi Province

Patentee after: Jiangxi Xinjie Hydrogen Energy Technology Co.,Ltd.

Address before: 266000 Qingdao University of Science & Technology, 53 Zhengzhou Road, Shibei District, Qingdao, Shandong

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY