CN113522263A - 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用 - Google Patents

一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用 Download PDF

Info

Publication number
CN113522263A
CN113522263A CN202110811978.6A CN202110811978A CN113522263A CN 113522263 A CN113522263 A CN 113522263A CN 202110811978 A CN202110811978 A CN 202110811978A CN 113522263 A CN113522263 A CN 113522263A
Authority
CN
China
Prior art keywords
catalyst
phosphorus
solution
doped graphene
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110811978.6A
Other languages
English (en)
Other versions
CN113522263B (zh
Inventor
李思佳
刘玉博
白亚轩
尚赫男
梁金生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN202110811978.6A priority Critical patent/CN113522263B/zh
Publication of CN113522263A publication Critical patent/CN113522263A/zh
Application granted granted Critical
Publication of CN113522263B publication Critical patent/CN113522263B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1856Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明为一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用。该方法采用简单的共还原法,通过添加磷源,首先对石墨烯进行掺杂改性,然后再加入金属盐溶液,还原之后,即可得到磷掺杂石墨烯载体负载的纳米催化剂。本发明得到催化剂在肼硼烷的分解反应中具有更高的催化活性和循环稳定性,且具备合成过程简单、操作简便、合成周期短、催化活性及循环稳定性高等优点。

Description

一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用
技术领域
本发明涉及催化剂制备以及生态环境和能源的绿色、可持续发展领域,特别是一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用。
背景技术
氢能作为一种高能量密度、无污染的新能源,越来越受到人们的重视,寻找安全高效的储氢材料是实现氢经济的首要步骤。肼硼烷在常温常压下为安全稳定的固体粉末,易于保存和运输,其在适当的催化剂的作用下能够完全分解,生成氢气和少量的氮气。因此,肼硼烷被认为是可替代传统能源的储氢材料之一。
肼硼烷(N2H4BH3,HB)的氢含量高达15.4wt%,通过水解反应,1mol HB理论上能够产生5当量的氢气,是一种非常有前途的储氢材料,并且肼硼烷还具有成本低、制备过程简单、产物纯度高等优点,成为近几年的研究热点。HB产氢主要分为两步,首先是活化能较低的硼烷基的分解(N2H4BH3(s)+3H2O(l)→N2H4(l)+H3BO3(l)+3H2(g),Ea=17.6kJ/mol),这一过程可以在很短的时间内完成,且没有杂质气体的生成;其次是活化能较高的肼基的分解(N2H4(l)→N2(g)+2H2(g),Ea=56.4kJ/mol),此过程较为缓慢,分解动力学相对较低。因此,成为制约肼硼烷分解速率的主要因素。此外,肼基分解会伴有副反应的发生(3N2H4(l)→4NH3(g)+N2(g)),结果产生了氨气(NH3)。为了最大化开发HB的储氢效益并防止NH3对燃料电池的毒化作用,肼基分解的副反应必须完全避免。金属镍Ni对HB的分解具有独特的催化活性,同时Ni的储量丰富,容易获得,价格低廉等优点,被广泛应用于HB的制氢反应中。单金属Ni的催化活性和选择性都相对较低,为了提高催化剂的催化活性和选择性,选择性地加入一些掺杂元素对Ni的电子结构进行调控,从而提高催化剂的活性。纳米催化剂由于其尺寸小,表面能高,在制备过程中容易发生团聚,造成金属活性位点减少,从而使催化剂的催化活性降低。因此,为了克服上述缺点,开发一种制备方法简单高效,成本较低,颗粒尺寸小,分散性良好的催化剂是分解HB制氢的关键步骤。
发明内容
本发明主要是针对HB的分解反应中,现有存在的反应条件苛刻、纳米粒子分散不均、催化剂活性不高等缺点,提供一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用。该方法采用简单的共还原法,通过添加磷源,首先对石墨烯进行掺杂改性,然后再加入金属盐溶液,还原之后,即可得到磷掺杂石墨烯载体负载的纳米催化剂。本发明得到催化剂在HB的分解反应中具有更高的催化活性和循环稳定性,且具备合成过程简单、操作简便、合成周期短、催化活性及循环稳定性高等优点。
为达到上述目的,本发明是按照以下技术方案实施的:
一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法,包括以下步骤:
步骤一、配制浓度为3~9mg/mL的氧化石墨烯GO的水溶液,超声处理后得到分散均匀的氧化石墨烯GO水溶液;
步骤二、将K2HPO4加入到步骤一的混合溶液中,并继续搅拌1~10min后,得到混合溶液A;
每5~10mL GO水溶液加入30~60mg的K2HPO4
步骤三、将NiCl2·6H2O、K2PtCl6溶液加入到溶液A中,搅拌1~5min后,得到混合溶液B;
其中,摩尔比为:NiCl2·6H2O:K2PtCl6=1:(0.4~0.8)(优选为1:0.66);每20~60mg GO加0.04~0.1mmol的NiCl2·6H2O;
步骤四、将硼氢化钠NaBH4作为还原剂加入到步骤三的混合溶液B中,搅拌5~15min进行还原反应,得到混合溶液C;
其中,每5~10mL混合溶液B加入20~60mg硼氢化钠NaBH4
步骤五、在室温下,将步骤四所述的混合溶液C磁力搅拌还原,待不再产生气泡时,即得到所需的磷掺杂石墨烯负载镍铂纳米催化剂(NiPt/P-rGO)。
所述NiPt为双金属合金结构,且均匀的分散在磷掺杂石墨烯衬底上,颗粒尺寸为5.0~5.5nm。
所述步骤四中的NaBH4与混合溶液B进行还原反应的温度为室温。
所述方法制备的磷掺杂石墨烯负载镍铂纳米催化剂的应用,将该催化剂应用于催化肼硼烷水解制氢反应;
具体包括如下步骤:将NaOH溶液加入到制得的催化剂中,在搅拌下再加入肼硼烷溶液,在30~60℃、常压条件下,0.05~10min内,即可完全催化肼硼烷的水解;
其中,每0.5~2.0mL的NaOH溶液加到0.1~1mmol催化剂中;肼硼烷溶液的浓度为0.1~2.0M;催化剂和肼硼烷的摩尔比为0.05~1:1;催化剂的摩尔量以Ni和Pt两种元素的摩尔量之和计;
所述的NaOH溶液的浓度为1~20M。
本发明的实质性特点为:
本发明由于用K2HPO4作为磷源对石墨烯进行掺磷改性,磷元素的加入能够有效改变石墨烯的电子结构,有利于锚定金属纳米粒子,并保持良好的分散性,从而使催化剂的活性有较大的提升,使该催化剂具有更高的催化活性和循环稳定性,对分解HB具有高的催化活性。
与现有技术相比,本发明的有益效果是:
本发明是采用共还原法合成了磷掺杂石墨烯负载镍铂纳米催化剂,该方法在常温下即可进行,不需要特殊实验装置,也不需要加热、惰性气体保护、离心等操作,因此具有合成过程简单、操作简便、合成周期短、催化活性及循环稳定性高等优点,并且合成的催化剂明显提高了NiPtNPs在rGO载体上的分散性以及降低了金属NPs的颗粒尺。
将合成的NiPt/P-rGO催化剂用于催化HB水溶液50℃分解制氢,在没有任何表面活性剂存在的条件下,具有极高的催化活性,具有100%的氢气选择性及良好的循环稳定性。在1.24min内实现了HB的完全分解,其TOF值高达2419.4h-1,远高于目前已报道的大部分催化剂。例如,Rh0.8Ni0.2/MIL-101(转化率为100%,TOF为1200h-1)、Ni0.9Pt0.1-Cr2O3(转化率为100%,TOF为1200h-1)、Rh0.8Ni0.2@CeO2/rGO(转化率为100%,TOF为666.7h-1)等催化剂。本发明NiPt/P-rGO中,贵金属元素只占一小部分,有效降低了催化剂的成本,加速推进了HB作为储氢材料的实际应用。总而言之,该发明通过简单的共还原法合成了还原氧化石墨烯负载的NiPtNPs催化剂,所合成的催化剂具有小的颗粒尺寸以及良好的分散性,使得催化剂暴露出更多的活性位点,相对于在50℃分解HB制氢的大多数催化剂具有更高的催化活性,并且具有良好的循环稳定性。该催化剂的开发,为实现安全、稳定、高效、廉价的催化剂开辟了新的道路。
附图说明
图1为实施例1中NiPt/P-rGO催化剂的制备示意图;
图2为实施例1、比较例1、比较例2制备的催化剂的X射线衍射谱图;
图3为实施例1中NiPt/P-rGO催化剂中P 2p的X射线光电子能谱图;
图4为实施例1、比较例1、比较例2制备的催化剂在50℃催化肼硼烷溶液分解的时间-过程曲线;
图5为实施例2、实施例3制备的催化剂在50℃催化催化肼硼烷溶液分解的时间-过程曲线;
图6为实施例1中NiPt/P-rGO催化剂透射电镜图;
图7为实施例1中NiPt/P-rGO在50℃下催化肼硼烷溶液分解的循环性能曲线图。
具体实施方式
下面结合具体实施例对本发明作进一步描述,在此发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1(本专利实施例)
1.如图1所示,一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法,包括以下步骤:
将35mg GO超声分散在6mL水中,加入45.7mg(0.5mL)的K2HPO4,搅拌5min,再加入0.06mmol的NiCl2·6H2O和0.04mmol的K2PtCl6溶液(浓度均为0.1M,体积分别为0.6mL和0.4mL),搅拌1min后,将30mg的NaBH4溶解于0.5mL的超纯水中,然后加到上述混合溶液中,磁力搅拌,待不再产生气泡时,即得NiPt/P-rGO催化剂。
2.样品检测
(1)将上述制得的NiPt/P-rGO催化剂真空干燥,研磨成细小粉末;参考图2的X射线粉末衍射(XRD)结果可以看出,NiPt/P-rGO催化剂的衍射峰位于Ni(JCPDS:01-1266)和Pt(JCPDS:89-7382)之间,说明Ni和Pt形成了合金结构,即该实验方法成功的合成了磷掺杂石墨烯负载镍铂合金纳米催化剂。
(2)将上述制得的NiPt/P-rGO催化剂真空干燥;参考图3,X射线光电子能谱(XPS)分峰结果显示,形成了P-C键和P-O键,说明P成功的掺入石墨烯载体中。
(3)将上述制得的NiPt/P-rGO催化剂稀释,滴在碳支持膜上,干燥;参考图6,透射电子显微镜(TEM)结果显示,NiPt/P-rGO样品具有较小的颗粒尺寸(~5.5nm)和均匀的分散性。
3.催化肼硼烷脱氢反应
在成功制备的NiPt/P-rGO催化剂中(催化剂的摩尔量以Ni和Pt两种元素的摩尔量之和计,即催化剂为0.1mmol),首先加入1mL、10M(10mmol)的NaOH溶液,然后把盛有催化剂和NaOH混合溶液的双颈圆底烧瓶分别与气体测量管和滴液漏斗连接,安装在密闭体系内,将滴液漏斗中2mL、0.5M的肼硼烷溶液(含有1mmol肼硼烷)加入到上述制得的催化剂中,整个密闭体系通过气体量管测量所产生的氢气。
此次,NiPt/P-rGO催化剂在50℃的反应条件下,肼硼烷制氢过程的制氢量(mL)与时间(分钟)图,如图4中的(a)所示,催化肼硼烷水解制氢能够在1.24min内产生气体的量为140mL,转化率达到100%。
本发明中,NaOH作为添加剂,有利于提高肼硼烷的分解速率并抑制其副反应的发生。
在第一轮分解反应结束以后,再将等量的肼硼烷溶液加入到双颈烧瓶当中,接下来的操作与之前的反应相同。同样的操作步骤在50℃水浴温度下再重复5次,如图6所示。由此可以看出,所制备的NiPt/P-rGO纳米催化剂对于催化肼硼烷脱氢反应具有良好的循环稳定性。
比较例1(未添加NiCl2·6H2O)
将35mg GO超声分散在6mL水中,加入45.7mg(0.5mL)的K2HPO4,搅拌15min,加入0.1mmol的K2PtCl6溶液(浓度为0.1M,体积1mL),搅拌1min后,将30mg的NaBH4溶解于0.5mL的超纯水中,然后加到上述混合溶液中,磁力搅拌,待不再产生气泡时,即得Pt/P-rGO催化剂。
将10mmol(1mL)氢氧化钠溶液加入到上述制得的Pt/P-rGO催化剂中,封闭整个体系并通过气体量管测量所产生的氢气。此次Pt/P-rGO催化剂在50℃条件下,催化肼硼烷水溶液制氢过程的制氢量(mL)与时间(分钟)图,如图4中的(b)所示,催化肼硼烷水解制氢能够在1.5min内产生气体的量为115mL,转化率达到82.14%。
比较例2(未添加K2PtCl6)
将35mg GO超声分散在6mL水中,加入45.7mg(0.5mL)的K2HPO4,搅拌15min,再加入0.1mmol的NiCl2·6H2O溶液(浓度为0.1M,体积为1mL),搅拌1min后,将30mg的NaBH4溶解于0.5mL的超纯水中,然后加入到上述混合溶液中,磁力搅拌,待不再产生气泡时,即得Ni/P-rGO催化剂。
将10mmol(1mL)氢氧化钠溶液加入到上述制得的Ni/P-rGO催化剂中,封闭整个体系并通过气体量管测量所产生的氢气。此次Ni/P-rGO催化剂在50℃条件下,催化肼硼烷水溶液制氢过程的制氢量(mL)与时间(分钟)图,如图4中的(c)所示,催化肼硼烷水解制氢能够在1.6min内产生气体的量为75mL,转化率达到50%。
图2为实施例1、比较例1、比较例2和制得的样品的XRD图。从图中可以看出,NiPt纳米粒子形成了合金结构。
通过实施案例1与比较案例1和2的性能测试,可以看出,本发明所制备的NiPt/P-rGO催化剂对肼硼烷的分解具有优异的催化活性和H2选择性。良好的性能可能是P的掺杂改变了还原氧化石墨烯的电子结构,有利于锚定NiPt合金纳米粒子并提高其分散性,催化剂活的性位点增多,从而提高催化剂的催化活性。
实施例2
其他步骤同实施例1,不同之处为将Ni:Pt的摩尔量改为1:1.5;
得到的催化剂仍具有合金结构,且性能与实施例1接近。
实施例3
其他步骤同实施例1,不同之处为不添加磷源,即NiPt/rGO;
得到的催化剂仍具有合金结构,产氢性能如图5(a),在2.6min内使肼硼烷溶液完全分解。与NiPt/P-rGO相比,分解速率降低的原因可能是NiPt合金纳米粒子发生了团聚,分散度降低,从而导致催化活性的降低。
实施例4
其他步骤同实施例1,不同之处为无载体,即NiPt;
得到的催化剂仍具有合金结构,产氢性能如图5(b),氢气选择性和分解速率有所降低,可能是由于NiPt合金纳米粒子发生了团聚,湮没了部分活性位点,从而导致催化活性降低。
本发明的技术方案不限于上述具体实施例的限制,凡是根据本发明的技术方案做出的技术变形,均落入本发明的保护范围之内。
本发明未尽事宜为公知技术。

Claims (6)

1.一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法,其特征为该方法包括以下步骤:
步骤一、配制浓度为3~9mg/mL的氧化石墨烯GO的水溶液,超声处理后得到分散均匀的氧化石墨烯GO水溶液;
步骤二、将K2HPO4加入到步骤一的混合溶液中,并继续搅拌1~10min后,得到混合溶液A;
每5~10mLGO水溶液加入30~60mg的K2HPO4
步骤三、将NiCl2·6H2O、K2PtCl6溶液加入到溶液A中,搅拌1~5min后,得到混合溶液B;
其中,摩尔比为:NiCl2·6H2O:K2PtCl6=1:(0.4~0.8)(优选为1:0.66);每20~60mgGO加0.04~0.1mmol的NiCl2·6H2O;
步骤四、将硼氢化钠NaBH4作为还原剂加入到步骤三的混合溶液B中,搅拌5~15min进行还原反应,得到混合溶液C;
其中,每5~10mL混合溶液B加入20~60mg硼氢化钠NaBH4
步骤五、在室温下,将步骤四所述的混合溶液C磁力搅拌还原,待不再产生气泡时,即得到所需的磷掺杂石墨烯负载镍铂纳米催化剂(NiPt/P-rGO)。
2.如权利要求1所述的磷掺杂石墨烯负载镍铂纳米催化剂的制备方法,其特征为所述NiPt为双金属合金结构,且均匀的分散在磷掺杂石墨烯衬底上,颗粒尺寸为5.0~5.5nm。
3.如权利要求1所述的磷掺杂石墨烯负载镍铂纳米催化剂的制备方法,其特征为所述步骤四中的NaBH4与混合溶液B进行还原反应的温度为室温。
4.如权利要求1所述方法制备的磷掺杂石墨烯负载镍铂纳米催化剂的应用,其特征为将该催化剂应用于催化HB水解制氢反应。
5.如权利要求1所述方法制备的磷掺杂石墨烯负载镍铂纳米催化剂的应用,其特征为具体包括如下步骤:将NaOH溶液加入到制得的催化剂中,在搅拌下再加入肼硼烷溶液,在30~60℃、常压条件下,0.05~10min内,即可完全催化肼硼烷的水解;
其中,每0.5~2.0mL的NaOH溶液加到0.1~1mmol催化剂中;肼硼烷溶液的浓度为0.1~2.0M;催化剂和肼硼烷的摩尔比为0.05~1:1;催化剂的摩尔量以Ni和Pt两种元素的摩尔量之和计。
6.如权利要求1所述方法制备的磷掺杂石墨烯负载镍铂纳米催化剂的应用,其特征为所述的NaOH溶液的浓度为1~20M。
CN202110811978.6A 2021-07-19 2021-07-19 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用 Active CN113522263B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110811978.6A CN113522263B (zh) 2021-07-19 2021-07-19 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110811978.6A CN113522263B (zh) 2021-07-19 2021-07-19 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113522263A true CN113522263A (zh) 2021-10-22
CN113522263B CN113522263B (zh) 2022-06-17

Family

ID=78128649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110811978.6A Active CN113522263B (zh) 2021-07-19 2021-07-19 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113522263B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931980A (zh) * 2022-06-20 2022-08-23 河北工业大学 一种金属有机骨架负载氧化钼修饰镍铁纳米催化剂的制备方法及应用
CN116060076A (zh) * 2022-12-22 2023-05-05 厦门大学 氮磷掺杂石墨烯钙钛矿LaNiO3催化制氢催化剂及制备方法
CN117169205A (zh) * 2023-09-08 2023-12-05 中国海洋大学 基于比色生物传感器的次黄嘌呤的检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949272A (zh) * 2014-05-21 2014-07-30 江西师范大学 一种用于肼硼烷产氢的NiPt@RGO复合纳米催化剂及其制备方法
CN106311295A (zh) * 2016-08-18 2017-01-11 青岛科技大学 一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼或甲酸分解制氢的应用
CN108554432A (zh) * 2018-04-09 2018-09-21 陕西理工大学 一种磷氮共掺杂石墨烯负载钯基催化剂及制备方法与应用
CN109876833A (zh) * 2018-12-29 2019-06-14 江苏索普(集团)有限公司 氧化镍负载硫磷掺杂石墨烯复合电催化剂及其制备方法
WO2020138600A1 (ko) * 2018-12-28 2020-07-02 에스케이가스 주식회사 산소 캐리어 물질 및 탈수소 촉매를 포함하는 올레핀 제조용 촉매
CN113042085A (zh) * 2021-03-26 2021-06-29 河北工业大学 一种氮磷双掺杂石墨烯负载镍钴钯纳米催化剂的制备方法及应用
CN113042068A (zh) * 2021-03-26 2021-06-29 河北工业大学 一种双功能化石墨烯负载NiAuPd纳米催化剂的制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949272A (zh) * 2014-05-21 2014-07-30 江西师范大学 一种用于肼硼烷产氢的NiPt@RGO复合纳米催化剂及其制备方法
CN106311295A (zh) * 2016-08-18 2017-01-11 青岛科技大学 一种以石墨烯为载体磷掺杂的双金属纳米催化剂及在水合肼或甲酸分解制氢的应用
CN108554432A (zh) * 2018-04-09 2018-09-21 陕西理工大学 一种磷氮共掺杂石墨烯负载钯基催化剂及制备方法与应用
WO2020138600A1 (ko) * 2018-12-28 2020-07-02 에스케이가스 주식회사 산소 캐리어 물질 및 탈수소 촉매를 포함하는 올레핀 제조용 촉매
CN109876833A (zh) * 2018-12-29 2019-06-14 江苏索普(集团)有限公司 氧化镍负载硫磷掺杂石墨烯复合电催化剂及其制备方法
CN113042085A (zh) * 2021-03-26 2021-06-29 河北工业大学 一种氮磷双掺杂石墨烯负载镍钴钯纳米催化剂的制备方法及应用
CN113042068A (zh) * 2021-03-26 2021-06-29 河北工业大学 一种双功能化石墨烯负载NiAuPd纳米催化剂的制备方法及应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931980A (zh) * 2022-06-20 2022-08-23 河北工业大学 一种金属有机骨架负载氧化钼修饰镍铁纳米催化剂的制备方法及应用
CN114931980B (zh) * 2022-06-20 2023-06-23 河北工业大学 一种金属有机骨架负载氧化钼修饰镍铁纳米催化剂的制备方法及应用
CN116060076A (zh) * 2022-12-22 2023-05-05 厦门大学 氮磷掺杂石墨烯钙钛矿LaNiO3催化制氢催化剂及制备方法
CN116060076B (zh) * 2022-12-22 2024-05-28 厦门大学 氮磷掺杂石墨烯钙钛矿LaNiO3催化制氢催化剂及制备方法
CN117169205A (zh) * 2023-09-08 2023-12-05 中国海洋大学 基于比色生物传感器的次黄嘌呤的检测方法
CN117169205B (zh) * 2023-09-08 2024-04-05 中国海洋大学 基于比色生物传感器的次黄嘌呤的检测方法

Also Published As

Publication number Publication date
CN113522263B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
He et al. Air-engaged fabrication of nitrogen-doped carbon skeleton as an excellent platform for ultrafine well-dispersed RuNi alloy nanoparticles toward efficient hydrolysis of ammonia borane
CN113522263B (zh) 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用
CN111129513B (zh) 一种氮掺杂碳担载粒径均一的低铂金属球形纳米颗粒电催化剂的制备方法及应用
Gao et al. CrPd nanoparticles on NH2-functionalized metal-organic framework as a synergistic catalyst for efficient hydrogen evolution from formic acid
Zou et al. La (OH) 3-decorated NiFe nanoparticles as efficient catalyst for hydrogen evolution from hydrous hydrazine and hydrazine borane
CN108126695B (zh) 一种功能化碳纳米管负载钯纳米催化剂及其制备和应用
Zhang et al. Atomic-bridge structure in B-Co-P dual-active sites on boron nitride nanosheets for catalytic hydrogen generation
Wang et al. Enhancing formic acid dehydrogenation for hydrogen production with the metal/organic interface
Guan et al. Recent advances and perspectives on supported catalysts for heterogeneous hydrogen production from ammonia borane
CN103949272B (zh) 一种用于肼硼烷产氢的NiPt@RGO复合纳米催化剂及其制备方法
Zhou et al. Pd-doped Cu nanoparticles confined by ZIF-67@ ZIF-8 for efficient dehydrogenation of ammonia borane
Wang et al. Alkaline ultrasonic irradiation-mediated boosted H2 production over O/N-rich porous carbon anchored Ru nanoclusters
CN108816289B (zh) 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用
CN113042085B (zh) 一种氮磷双掺杂石墨烯负载镍钴钯纳米催化剂的制备方法及应用
Du et al. Alloyed palladium-nickel hollow nanospheres with interatomic charge polarization for improved hydrolytic dehydrogenation of ammonia borane
CN113042086B (zh) 一种氨基功能化碳纳米管负载NiAuPd纳米催化剂的原位制备方法及应用
CN110586158A (zh) 一种PdB/NH2-N-rGO催化剂及其制备方法和应用
Ding et al. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid
Zhang et al. Amine-functionalized carbon nanotubes supported NiAuPd nanoparticles as an efficient in-situ prepared catalyst for formic acid dehydrogenation
Jiang et al. La2O3-modified highly dispersed AuPd alloy nanoparticles and their superior catalysis on the dehydrogenation of formic acid
Guo et al. Surface property and spatial confinement engineering for achieving Ru nanoclusters on O/N-doped hollow carbon towards enhanced hydrogen production
Jiang et al. Hierarchically porous CoP@ CNR nanorod derived from metal-organic frameworks as noble-metal-free catalyst for dehydrogenization of ammonia-borane
CN108745403B (zh) 一种氮化硼负载Ni-MoOx纳米催化剂的制备方法及应用
CN113426469B (zh) 一种用于甲酸脱氢的双载体支撑镍钯纳米催化剂的制备方法及应用
Du et al. Efficient catalytic performance of Ru nanoparticles for hydrogen generation from NH3BH3: The dual role of Mo oxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant