CN106311260A - 一种合成气制低碳醇催化剂的低温热等离子体制法和应用 - Google Patents

一种合成气制低碳醇催化剂的低温热等离子体制法和应用 Download PDF

Info

Publication number
CN106311260A
CN106311260A CN201610680407.2A CN201610680407A CN106311260A CN 106311260 A CN106311260 A CN 106311260A CN 201610680407 A CN201610680407 A CN 201610680407A CN 106311260 A CN106311260 A CN 106311260A
Authority
CN
China
Prior art keywords
catalyst
low
gas
plasma
temperature thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610680407.2A
Other languages
English (en)
Other versions
CN106311260B (zh
Inventor
苏海全
李建立
张兵兵
胡瑞珏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University
Original Assignee
Inner Mongolia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University filed Critical Inner Mongolia University
Priority to CN201610680407.2A priority Critical patent/CN106311260B/zh
Publication of CN106311260A publication Critical patent/CN106311260A/zh
Application granted granted Critical
Publication of CN106311260B publication Critical patent/CN106311260B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种采用低温热等离子体法制备合成气制低碳醇催化剂的方法,属于化工催化剂制备领域。本发明的具体原理是首先产生低温热等离子体,进而将钼源与钴源化合物的混合物通过高温等离子体弧处理制得催化剂活性组分,然后以浸渍法引入碱金属盐后制得目标催化剂。该目标催化剂在合成气制低碳醇反应中具有催化活性高、醇类选择性高、反应寿命长等优点。该方法制备过程简单快捷,易于大规模生产。

Description

一种合成气制低碳醇催化剂的低温热等离子体制法和应用
技术领域
本发明涉及化工催化剂技术领域,具体涉及一种用于合成气制低碳醇的催化剂制备方法和反应条件,尤其是涉及一种以射频感应低温热等离子体方法制备催化剂。
背景技术
低碳混合醇燃料就是以甲醇或乙醇为主,混合有甲醇或乙醇以及丙醇、丁醇、戊醇等高级醇的多醇混合物。低碳混合醇是一种良好的车用燃料,其辛烷值较高,与汽油的掺混性较好,可替代甲基叔丁基醚(MTBE)作为汽油添加剂,具有燃烧清洁、低污染的优点。因此,低碳醇与汽油混合代用燃料受到各国的普遍重视。另外,对低碳混合醇进行分离后,可得到甲醇、乙醇、丙醇、丁醇和戊醇等单一醇类,可作为制备精细化学品的原料。
与传统生产低碳醇工艺(生物发酵法和间接化学转化法)相比,合成气(CO+H2)催化合成低碳醇路线最直接、工艺步骤最少。因而,合成气制低碳醇产品的应用和产业链延伸范围更广,工艺更简单。从合成气直接合成低碳醇是煤化工科学界和产业界几十年来梦寐以求的目标。合成气催化合成低碳醇的非均相催化剂从广义上可分为两大类:(1)贵金属基催化剂(US Patent 4014913,4096164),包括Rh、Ru和Re,常以SiO2、γ-Al2O3、CeO2、ZrO2、MgO等做载体,这类催化剂可以直接催化CO加氢合成高级醇;其中Rh基催化剂由于具有较高的乙醇选择性而得到广泛研究,但由于贵金属基催化剂原料成本高而限制了其商业应用。(2)非贵金属基催化剂,可以分为三类:a.改性的甲醇合成催化剂(EP-0034338-A2,US Patent4513100),主要由甲醇合成催化剂添加碱金属或碱土金属化合物改性而成;b.改性的费托合成催化剂,以Cu-Co系高级醇合成催化剂为代表,它是由IFP(法国石油研究院)首先合成(US Patent 4122110,4291126);c.钼基催化剂,如MoO2,具有优异的抗硫性和良好的水煤气变换性能及较高的C2+OH选择性,因而能在较高含硫量和较低H2/CO摩尔比(0.7~1)的条件下使用,被认为是一类颇有前景的催化剂(US Patent 4882360)。非贵金属基催化剂由于其低廉的成本日益受到研究者的青睐,然而这类催化剂通常得到碳原子数为C1~C6分布的混合醇,其中甲醇的选择性较高,C2+OH选择性较低。
除了催化剂组成上的影响,传统的合成气制低碳醇催化剂制备方法(浸渍法、溶胶凝胶法、共沉淀法等)仍存在一些不足,如催化活性低、易中毒、机械稳定性差等。为了提高催化剂的反应活性,近几十年出现了多种新型催化剂制备技术,例如等离子体、超声波和微波等技术,取得了积极的效果。中国专利CN103495427A 采用气体放电将硫化氢气体电离,形成低温冷等离子体,与金属盐前驱体相互作用形成硫化物。其制备的催化剂颗粒尺寸更小,分散度更高。但是目前对于等离子体改性催化剂,所用的等离子体多属冷等离子体,与冷等离子体相比,热等离子体具有如下优点:第一,拥有高达15000K的高温,所以很容易产生各种活跃的组分;第二,发生在等离子体火焰区的快速淬灭过程(105-106K/s)可以有效形成高度分散的纳米粒子,同时在纳米粒子表面形成多种缺陷结构,从而有利于提高催化剂活性;第三,高温下纳米粒子表面发生钝化,可阻止催化反应过程中纳米粒子团聚而导致的催化活性下降,从而提高催化剂的运行稳定性。
发明内容
本发明目的在于提供一种合成气制低碳醇高效钼基催化剂的新型制备方法,即采用射频感应低温热等离子体法制备。该催化剂具有优异的合成气制低碳醇活性、选择性和运行稳定性,成本低廉制作方便,具有很好的实际应用价值。
本发明主要包括催化剂原料的制备、等离子体仪器调控和催化剂反应评价等步骤。以下为本发明的操作步骤及原理性说明:
(1)将钼源与钴源化合物以不同比例机械混合,Co与Mo的原子摩尔比为0∶1~3∶1。烘干后,冷却至室温,过筛,作为原料加入等离子体设备的进料器内。
(2)所采用等离子体为射频低温热等离子体,等离子体设备的调控参数为:所用气体均为高纯惰性气体和(或)氮气,进料速度为0~30 g/min,中气流速为0.1~2.0 m3/h,边气流速为1.0~10.0 m3/h,载气流速为0~2m3/h,仪器功率为5~25kW。
(3)从等离子体仪器中收集得到的产品,以碱金属盐类的溶液按一定比例浸渍,然后在一定温度下烘干,得到非负载型催化剂。
本发明的合成气催化合成低碳醇反应条件为:温度200~400℃,压力1~20MPa,原料气H2/CO为0.5/1~3/1,空速500~100000h-1
本发明提供的催化剂制备方法有如下特点:
(1)原料制备简单,等离子体设备参数可根据要求进行调节,制备过程简单快捷,易于大规模生产。
(2)制备出的催化剂粒径较常规方法小、比表面积大、分散性好。
(3)本发明的催化剂具有活性高、总醇和C2+醇选择性高、抗积碳和寿命长等特点。
附图说明
图1为实施例1中催化剂的X射线衍射(XRD)图谱;
图2为实施例1中催化剂的透射电镜(TEM)照片。
具体实施方式
下面结合具体实施例对本发明做进一步说明,本发明包括但不限于下面的实施例。
实施例1
称取钼酸铵61.79g,三氧化二钴14.51g(Co/Mo为1∶2),机械混合均匀后,烘箱中120℃下烘干24h,待冷却至室温后,研钵研碎过80目网筛后加入到等离子体仪器进料仓内。
等离子体设备参数调控如下:所用气体均为高纯氩气,中气0.5 m3/h,边气4.5 m3/h,载气0.2 m3/h,进料速度为7.27 g/min,仪器功率为10kW。
将产品以碳酸钾溶液浸渍(nK/(nMo+ nCo)=5%),浸渍后120℃下烘干24h,冷却后压片过筛,收集40-60目的催化剂。
将上述方法制备的K-Co-MoO2催化剂在不锈钢固定床反应器中进行催化性能评价。反应器内径8mm,催化剂装填量2mL,混合40-60目石英砂填装于恒温段,上部预热段和下部保温段均填装石英砂。反应条件:温度300℃,压力9.0MPa,空速3000h-1,合成气H2/CO=1∶1。反应产生的醇类产物使用装有RESTEK的Stabilwax毛细管柱的GC-2014C气相色谱(Shimadzu制造)分析,使用FID检测器;烃类产物分析由装有Propack-Q固定相色谱柱的Shimadzu公司的GC-2014C气相色谱分析,使用FID检测器;反应产物尾气中H2、CO、CO2由装有TDX-01碳分子筛柱的Shimadzu公司的GC-2014C气相色谱分析,使用TCD检测器。
对以上催化剂进行合成低碳醇催化性能评价结果显示,CO转化率40.5%,总醇选择性67.9%,C2+醇选择性65.2%,时空产率为287.3mg/mL/h,运行500h催化剂活性无明显下降。该催化剂显示出良好的催化活性和稳定性,是优良的合成气制低碳醇催化剂 。
实施例2
将三氧化二钴的质量变为29.03g,钼酸铵的质量仍为61.79g(Co/Mo为1∶1),其他条件同实施例1。催化评价结果为,CO转化率46.8%,总醇选择性51.6%,C2+醇选择性71.7%,时空产率为178.7mg/mL/h。
实施例3
将三氧化二钴的质量变为58.06g,钼酸铵的质量仍为61.79g(Co/Mo为2∶1),其他条件同实施例1。催化评价结果为,CO转化率51.5%,总醇选择性50.4%,C2+醇选择性70.5%,时空产率为222.1mg/mL/h。

Claims (6)

1.一种合成气制低碳醇催化剂的低温热等离子体制法,其特征在于催化剂的组成、制备方法和反应条件。
2.根据权利要求1所述的一种合成气制低碳醇催化剂的低温热等离子体制法,其特征在于包括如下步骤:将钼源与钴源化合物以不同比例机械混合均匀,烘干过筛后作为原料加入低温热等离子体设备的进料器内进行等离子体反应;从等离子体反应器中收集得到的产品与碳酸钾溶液按一定比例浸渍,烘干后得到非负载型催化剂。
3.根据权利要求1和2所述的方法,其特征在于催化剂原料为钼源与钴源化合物的混合物,其中钼源如钼的含氧酸盐、卤化物、氧化物等,钴源如钴的含氧酸盐、卤化物、氧化物等,Co与Mo的原子摩尔比为0/1~3/1。
4.根据权利要求1和2所述的方法,其特征在于所采用等离子体为低温热等离子体,所用等离子源气体为高纯惰性气体和(或)氮气,进料速度为0~30 g/min,中气流速为0.1~2.0 m3/h,边气流速为1.0~10.0 m3/h,载气流速为0~2m3/h,仪器功率为5~25kW。
5.根据权利要求1和2所述的方法,其特征在于加入的助剂为各类碱金属盐,如碳酸钾、碳酸钠、醋酸钾、碳酸铯等,加入量为nM/(nMo+ nCo)=1%~100%。
6.根据权利要求1和2所述的方法,其特征在于催化剂的使用条件为:温度200~400℃,压力1~20MPa,原料气H2/CO为0.5/1~3/1,空速500~100000h-1
CN201610680407.2A 2016-08-18 2016-08-18 一种合成气制低碳醇催化剂的低温热等离子体制法和应用 Expired - Fee Related CN106311260B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610680407.2A CN106311260B (zh) 2016-08-18 2016-08-18 一种合成气制低碳醇催化剂的低温热等离子体制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610680407.2A CN106311260B (zh) 2016-08-18 2016-08-18 一种合成气制低碳醇催化剂的低温热等离子体制法和应用

Publications (2)

Publication Number Publication Date
CN106311260A true CN106311260A (zh) 2017-01-11
CN106311260B CN106311260B (zh) 2019-05-24

Family

ID=57743039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610680407.2A Expired - Fee Related CN106311260B (zh) 2016-08-18 2016-08-18 一种合成气制低碳醇催化剂的低温热等离子体制法和应用

Country Status (1)

Country Link
CN (1) CN106311260B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325548A (zh) * 2018-03-15 2018-07-27 内蒙古大学 一种用于合成气制低碳醇的硫化钼基催化剂及其制备方法
CN110560137A (zh) * 2019-09-25 2019-12-13 内蒙古大学 一种合成气制低碳醇催化剂及其制备方法和应用
CN110918098A (zh) * 2019-11-25 2020-03-27 中南民族大学 一种用于费-托合成反应的高效Co/CNTs催化剂的制备方法
CN111420689A (zh) * 2020-03-26 2020-07-17 内蒙古大学 一种合成气制低碳醇催化剂的制备方法及应用
CN114725405A (zh) * 2022-04-21 2022-07-08 浙江理工大学 一种负载钴铁核壳结构的复合碳纳米颗粒的制备及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882360A (en) * 1984-07-30 1989-11-21 The Dow Chemical Company Process for producing alcohols from synthesis gas
CN1154271A (zh) * 1996-01-11 1997-07-16 中国石化齐鲁石油化工公司 一种新型co耐硫变换催化剂的制备方法
CN101249441A (zh) * 2008-03-14 2008-08-27 厦门大学 合成气制低碳混合醇催化剂及其制备方法
CN101602017A (zh) * 2009-07-22 2009-12-16 大连理工大学 利用低温等离子体制备负载型金属催化剂的方法
CN103331171A (zh) * 2013-07-08 2013-10-02 华东理工大学 一种用于合成气制取低碳烯烃的催化剂的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882360A (en) * 1984-07-30 1989-11-21 The Dow Chemical Company Process for producing alcohols from synthesis gas
CN1154271A (zh) * 1996-01-11 1997-07-16 中国石化齐鲁石油化工公司 一种新型co耐硫变换催化剂的制备方法
CN101249441A (zh) * 2008-03-14 2008-08-27 厦门大学 合成气制低碳混合醇催化剂及其制备方法
CN101602017A (zh) * 2009-07-22 2009-12-16 大连理工大学 利用低温等离子体制备负载型金属催化剂的方法
CN103331171A (zh) * 2013-07-08 2013-10-02 华东理工大学 一种用于合成气制取低碳烯烃的催化剂的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘静波 等: "Fe-Mo系氧化物固相热反应机理及界面结构", 《黑龙江大学自然科学学报》 *
鲍骏 等: "超细粒子K-Co-Mo催化剂中钴含量对催化剂结构及其合成低碳醇性能的影响", 《分子催化》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325548A (zh) * 2018-03-15 2018-07-27 内蒙古大学 一种用于合成气制低碳醇的硫化钼基催化剂及其制备方法
CN108325548B (zh) * 2018-03-15 2023-03-31 内蒙古大学 一种用于合成气制低碳醇的硫化钼基催化剂及其制备方法
CN110560137A (zh) * 2019-09-25 2019-12-13 内蒙古大学 一种合成气制低碳醇催化剂及其制备方法和应用
CN110918098A (zh) * 2019-11-25 2020-03-27 中南民族大学 一种用于费-托合成反应的高效Co/CNTs催化剂的制备方法
CN110918098B (zh) * 2019-11-25 2022-08-16 中南民族大学 一种用于费-托合成反应的高效Co/CNTs催化剂的制备方法
CN111420689A (zh) * 2020-03-26 2020-07-17 内蒙古大学 一种合成气制低碳醇催化剂的制备方法及应用
CN114725405A (zh) * 2022-04-21 2022-07-08 浙江理工大学 一种负载钴铁核壳结构的复合碳纳米颗粒的制备及应用
CN114725405B (zh) * 2022-04-21 2024-06-07 浙江理工大学 一种负载钴铁核壳结构的复合碳纳米颗粒的制备及应用

Also Published As

Publication number Publication date
CN106311260B (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
CN106311260A (zh) 一种合成气制低碳醇催化剂的低温热等离子体制法和应用
Jaffar et al. Parametric study of CO2 methanation for synthetic natural gas production
Yang et al. Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al2O3 with a low Pt content
Tada et al. Sponge Ni catalyst with high activity in CO2 methanation
Liu et al. Performance and characterization of rhenium-modified Rh–Ir alloy catalyst for one-pot conversion of furfural into 1, 5-pentanediol
Li et al. Benzenesulfonic acid functionalized hydrophobic mesoporous biochar as an efficient catalyst for the production of biofuel
Guo et al. Effect of surface basicity over the supported Cu-ZnO catalysts on hydrogenation of CO2 to methanol
Liao et al. An active, selective, and stable manganese oxide-supported atomic Pd catalyst for aerobic oxidation of 5-hydroxymethylfurfural
Shu et al. Hydrogenation of lignin-derived phenolic compounds over step by step precipitated Ni/SiO 2
Tamura et al. Promoting effect of Ru on Ir-ReOx/SiO2 catalyst in hydrogenolysis of glycerol
Yang et al. Efficient hydrodeoxygenation of lignin-derived phenols and dimeric ethers with synergistic [Bmim] PF 6-Ru/SBA-15 catalysis under acid free conditions
Li et al. Ce-promoted Rh/TiO 2 heterogeneous catalysts towards ethanol production from syngas
CN105540588A (zh) α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用
Cui et al. Enhancing methanol selectivity of commercial Cu/ZnO/Al2O3 catalyst in CO2 hydrogenation by surface silylation
CN113649010B (zh) 一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制备合成方法及应用
Wang et al. Bimetallic ordered mesoporous carbon from lignin for catalytic selective hydrogenation of levulinic acid to γ-valerolactone
Wildfire et al. Microwave-assisted ammonia synthesis over Ru/MgO catalysts at ambient pressure
Zhang et al. Understanding the reaction route of selectively converting furfural to furan over the alkali-induced Co-Mo2C heterostructure
Wang et al. Selective aqueous phase hydrodeoxygenation of erythritol over carbon-supported Cu catalyst prepared from ion-exchange resin
LI et al. Catalytic performance of Ni/Al2O3 catalyst for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran
WU et al. Selective oxidation of methanol to methyl formate over bimetallic Au-Pd nanoparticles supported on SiO2
Chanklang et al. Hydrogenolysis of glycerol to 1, 3-propanediol over H-ZSM-5-supported iridium and rhenium oxide catalysts
Lan et al. CeO 2 promoting allyl alcohol synthesis from glycerol direct conversion over MoFe/CeO 2 oxide catalysts: morphology and particle sizes dependent
CN113999088A (zh) 一种催化2-甲基呋喃选择性转化为1,4-戊二醇的方法
Aslam et al. The catalytic activity of KMoCo carbon spheres for higher alcohols synthesis from syngas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190524

CF01 Termination of patent right due to non-payment of annual fee