CN105540588A - α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用 - Google Patents

α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用 Download PDF

Info

Publication number
CN105540588A
CN105540588A CN201510900354.6A CN201510900354A CN105540588A CN 105540588 A CN105540588 A CN 105540588A CN 201510900354 A CN201510900354 A CN 201510900354A CN 105540588 A CN105540588 A CN 105540588A
Authority
CN
China
Prior art keywords
reaction
molybdenum carbide
hydrogenation
metal
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510900354.6A
Other languages
English (en)
Other versions
CN105540588B (zh
Inventor
石川
朱晓兵
张晓�
宋泽昌
于涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201510900354.6A priority Critical patent/CN105540588B/zh
Publication of CN105540588A publication Critical patent/CN105540588A/zh
Application granted granted Critical
Publication of CN105540588B publication Critical patent/CN105540588B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides

Abstract

本发明公开了α型碳化钼或金属改性α型碳化钼作为催化剂在二氧化碳加氢制一氧化碳反应中的应用。所述二氧化碳加氢制一氧化碳反应的反应气氛为CO2和H2混合气,反应压力为常压,反应温度为300-600℃。本发明提供的α型碳化钼催化剂及金属改性α型碳化钼催化剂成本低,制备简单,应用于二氧化碳加氢制一氧化碳反应中具有较高的低温活性和CO选择性、具有良好的热稳定性,可满足二氧化碳加氢制一氧化碳反应高温、强还原反应条件的使用要求,在CO2催化转化利用领域具有广阔的应用前景。

Description

α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用
技术领域
本发明属于二氧化碳转化利用的技术领域,具体涉及α型碳化钼(α-MoC1-x)催化剂在二氧化碳加氢制一氧化碳反应中的应用。
背景技术
近年来,由于CO2大量排放引起的温室效应、海水酸化、气候变暖等环境问题日益严重,威胁着人类的生存和发展,因此CO2的减排和资源化利用成为世界各国的关注重点。CO2是一种经济、安全和可再生的碳资源,可通过化学作用催化转化为合成气、甲醇、低碳烯烃、醛、酸、醚、酯等化学品,在过去几十年中相关研究日渐活跃。
CO2催化加氢生成CO和H2O(CO2+H2=CO+H2O,ΔH298K=41.2kJ/mol)的反应被认为是最有前景的CO2转化反应之一。CO2通过该反应转化为更有价值的CO,生成的CO进而用于合成甲醇、烃类燃料等其他高附加值化工产品。同时,该反应还可与乙苯脱氢制苯乙烯和低碳烷烃脱氢制烯烃等反应进行耦合,可提高反应性能,显著降低能耗,使得CO2资源化利用。所以在二氧化碳加氢合成一氧化碳反应的研究中,开发具有高活性和选择性的催化剂具有重要意义。
目前,用于该反应催化剂主要包括Cu基催化剂(Cu-Zn/Al2O3,Cu-Fe/Al2O3,Cu/SiO2等)、Ni基催化剂(Ni/Al2O3、Ni/CeO2等)和贵金属催化剂(Pt/TiO2,Rh/Al2O3,Pd-La2O3/MWCNT)等。铜基催化剂的普遍问题为热稳定性较差,很难应用于高温二氧化碳加氢反应中,即使加入助剂可以使其热稳定性和活性得到一定提高,但提高空间有限(ChemicalCommunications,2001,1770-1771;JournaloftheAmericanChemicalSociety,2006,128:15950-15951.)。镍基催化剂存在的主要问题为CO选择性差,如王路辉等人研究的Ni/CeO2催化剂和K改性Co-CeO2催化剂虽然在600℃时,CO收率可达35%-38%,但催化剂较容易积碳失活(公开号CN103183346A;公开号CN103183346B)。而Ni/Al2O3催化剂虽然具有很高的活性,但反应过程中甲烷化副反应比较严重,生成大量的甲烷副产物(AppliedCatalysisA:General,1997,164(1):1-11.)。贵金属催化剂虽然具有较高的活性(AppliedCatalysisa-General,2012,423:100-107.),但其成本较高,限制了其工业化应用。另一方面,目前应用于该反应的催化剂主要使用还原性氧化物载体(如CeO2、TiO2等),在高温、强还原性的反应条件下,易被过度氧化而使催化剂快速失活,
α型碳化钼具有成本低、比表面积高、热稳定性好以及类贵金属性质等优点,不仅是性能优异的催化剂,也可作为催化剂的良好载体。目前为止,尚未见到将α型碳化钼及其金属改性α型碳化钼催化剂应用于二氧化碳加氢制一氧化碳反应的相关报道。
发明内容
本发明的目的是提供一种应用于CO2加氢制CO的α型碳化钼(α-MoC1-x)及其金属改性α型碳化钼(M/α-MoC1-x)催化剂。将该类型催化剂应用于CO2加氢制CO反应中,具有催化活性高、热稳定性好以及CO选择性高的特点,弥补现有催化剂或成本高,或热稳定性差,或CO选择性低等不足。
为实现此目的,本发明的技术方案是:α型碳化钼或金属改性α型碳化钼作为催化剂在二氧化碳加氢制一氧化碳反应中的应用。
作为优选的技术方案,所述二氧化碳加氢制一氧化碳反应的反应气氛为CO2和H2混合气,反应压力为常压,反应温度为300-600℃。
作为优选的技术方案,所述金属为铂或钯或镍中的任何一种;
作为优选的技术方案,所述金属改性α型碳化钼的金属负载量为1-5%;
作为优选的技术方案,所述α型碳化钼经CH4/H2混合气预处理;混合气中CH4的体积分数为10-20%;预处理温度为500-700℃,时间为1-3小时;优选地,所述预处理温度为550-650℃。
作为优选的技术方案,所述金属改性α型碳化钼催化剂先经纯H2后经CH4/H2混合气预处理,纯H2处理温度为300-500℃,时间为1-3小时;混合气中CH4的体积分数为10-20%,处理温度为500-700℃,时间为1-3小时;优选地,所述CH4/H2混合气预处理温度为550-650℃。
作为优选的技术方案,所述CO2气体与H2气体的体积比为1:1-4。
作为优选的技术方案,所述反应的条件为质量空速36000-600000mL/g/h,即CO2气体与H2气体的总通入速度与催化剂质量的关系为36000-600000mL/g/h。
本发明有益效果:
(1)现有技术用于二氧化碳加氢制一氧化碳反应的催化剂存在或成本高,或低温活性低,或CO选择性差等不足,见表1。本发明提供的α型碳化钼催化剂及金属改性α型碳化钼催化剂成本低,制备简单,应用于二氧化碳加氢制一氧化碳反应中具有较高的低温活性和CO选择性。
(2)本发明提供的α型碳化钼及金属改性α型碳化钼催化剂在二氧化碳加氢制一氧化碳反应中具有良好的热稳定性,可满足二氧化碳加氢制一氧化碳反应高温、强还原反应条件的使用要求,解决了Cu基催化剂热烧结及氧化性载体不可逆过度还原等问题,在CO2催化转化利用领域具有广阔的应用前景。
附图说明
本发明附图12幅,
图1为对比例1制备的β-Mo2C(a)与实施例1制备的α-MoC1-x(b)的XRD对比图;
图2为实施例1制备的α-MoC1-x(a)催化剂与实施例4,实施例6,实施例9制备的金属改性α-MoC1-x催化剂3%Pt/α-MoC1-x(b),3%Pd/α-MoC1-x(c)和3%Ni/α-MoC1-x(d)的XRD对比图;
图3为对比例1制备的β-Mo2C与实施例1制备的α-MoC1-x催化CO2加氢制CO反应的CO2转化率对比图;
图4为对比例1制备的β-Mo2C与实施例1制备的α-MoC1-x催化CO2加氢制CO反应的CO选择性对比图;
图5为实施例3-5制备的不同比例金属铂改性α-MoC1-x催化剂催化CO2加氢制CO反应的CO2转化率对比图;
图6为实施例3-5制备的不同比例金属铂改性α-MoC1-x催化剂催化CO2加氢制CO反应的CO选择性对比图;
图7为实施例6-8制备的不同比例金属钯改性α-MoC1-x催化剂催化CO2加氢制CO反应的CO2转化率对比图;
图8为实施例6-8制备的不同比例金属钯改性α-MoC1-x催化剂催化CO2加氢制CO反应的CO选择性对比图;
图9为实施例9-11制备的不同比例金属镍改性α-MoC1-x催化剂催化CO2加氢制CO反应的CO2转化率对比图;
图10为实施例9-11制备的不同比例金属镍改性α-MoC1-x催化剂催化CO2加氢制CO反应的CO选择性对比图;
图11为实施例1制备的α-MoC1-x催化剂与对比例2商用Cu-Zn-Al催化剂催化CO2加氢制CO反应的稳定性对比图;
图12为实施例1制备的α-MoC1-x催化剂在稳定性测试前后的XRD对比图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
以下结合技术方案详细叙述本发明的具体实施例。
⑴以MoO3为前驱体,采用程序升温反应法制备得到α型碳化钼(α-MoC1-x)催化剂;以金属盐溶液为前驱体(氯铂酸,硝酸钯及硝酸镍等),以α型碳化钼为载体,采用等体积浸渍的方法制备得到金属改性α型碳化钼催化剂,其中金属的负载量为1%-5%,操作条件为常温常压;
⑵将α型碳化钼(α-MoC1-x)或金属改性α型碳化钼催化剂应用于二氧化碳加氢制一氧化碳反应中,包括如下步骤:
a.将制得的催化剂样品压片过筛制成40~60目的颗粒,置于内径为4mm的石英管固定床反应器中,对催化剂进行预处理过程:(1)α型碳化钼催化剂以CH4/H2混合气进行预处理,混合气中CH4的体积分数为10-20%,预处理温度为500-700℃,处理时间为1-3h;(2)金属改性α型碳化钼催化剂先以纯H2后以CH4/H2混合气进行预处理,纯H2处理温度为300-500℃,时间为1-3小时;混合气中CH4的体积分数为10-20%,处理温度为500-700℃,时间为1-3小时。
b.将CO2和H2按一定比例混合后通入装有催化剂的反应器中,于300-600℃下反应,CO2和H2体积比为1:1-4,反应气质量空速为36000-600000mL/g/h。
实施例1α-MoC1-x的制备及活性评价
(1)制备
取1.2gMoO3(40-60目)样品置于石英反应器中,通入150ml/min的纯NH3气氛,以5℃/min的升温速率从室温升至最终氮化温度700℃,并保温2h,然后冷却至室温,将反应气切换为20%CH4/H2(150mL/min)混合气,再以5℃/min的升温速率升至最终碳化温度700℃,并保温2h。然后降至室温后,在1%O2/Ar气氛中钝化12h得到α-MoC1-x催化剂样品。
(2)活性评价试验
二氧化碳加氢制一氧化碳反应在内径4mm的石英管固定床反应器中进行。实验所需各路气体流量均有质量流量计调节和控制,混合后流入反应器。
分别称取30mg的α-MoC1-x(40-60目)催化剂和0.12g石英砂(40-60目)置于石英管中,以15%CH4/H2混合气对催化剂于590℃进行预处理2h,然后于下述条件下进行活性评价:反应气氛采用CO2:H2=1:2,气体空速为300000mL/g/h,反应温度为300-600℃。300℃时,其CO2转化率为6.6%,CO选择性为97.7%。
对比例1β-Mo2C的制备及活性评价
(1)制备
取1.2gMoO3(40-60目)样品置于固定床反应器中,通入20%CH4/H2混合气进行程序升温碳化,以5℃/min升温速率由室温升至300℃后,再以1℃/min升温速率由300℃升至700℃,在700℃下恒温2h。然后冷却至室温,在1%O2/Ar气氛中钝化12h后,得到传统方法制备的β-Mo2C催化剂,作为对比。
(2)活性评价试验
二氧化碳加氢制一氧化碳反应在内径4mm的石英管固定床反应器中进行。实验所需各路气体流量均有质量流量计调节和控制,混合后流入反应器。分别称取30mg的β-Mo2C(40-60目)催化剂和0.12g石英砂(40-60目)置于石英管中,以15%CH4/H2混合气对催化剂于590℃进行预处理2h,然后于下述条件下进行活性评价:反应气氛采用CO2:H2=1:2,气体空速为300000mL/g/h,反应温度为300-600℃。300℃时,其CO2转化率为0.1%。
实施例2α-MoC1-x稳定性测试
本实施例是α-MoC1-x催化剂的40h稳定性测试,过程中催化剂的制备和活性评价试验条件与实施例1相同,区别在于稳定性测试温度为600℃。可以看出,40h内,催化剂的反应活性只下降了5%左右,相比商用Cu-Zn-Al催化剂,具有更优异的热稳定性。
对比例2商用Cu-Zn-Al稳定性测试
本对比例是商用Cu-Zn-Al催化剂的16h稳定性测试,催化剂采用直接购买的商用Cu-Zn-Al催化剂,稳定性测试温度为600℃。可以看出,16h内,催化剂的反应活性下降了27%。
实施例31%Pt/α-MoC1-x的制备及活性评价
(1)制备
通过等体积浸渍法制备得到3%Pt/α-MoC1-x催化剂:于室温称取3g实施例1制备的α-MoC1-x载体并与一定浓度氯铂酸溶液(氯铂酸质量为0.0796g,去离子水体积为4.2ml)混合,将浸渍后的产物静置一夜,于60℃真空干燥箱中干燥12h,得到1%Pt/α-MoC1-x催化剂;
(2)活性评价试验
二氧化碳加氢制一氧化碳反应在内径4mm的石英管固定床反应器中进行。实验所需各路气体流量均有质量流量计调节和控制,混合后流入反应器。
分别称取30mg的1%Pt/α-MoC1-x(40-60目)催化剂和0.12g石英砂(40-60目)置于石英管中,先以纯H2于500℃下处理2h后以15%CH4/H2混合气对催化剂于590℃再处理2h,然后于下述条件下进行活性评价:反应气氛采用CO2:H2=1:2,气体空速为300000mL/g/h,反应温度为300-600℃。300℃时,其CO2转化率为9.1%,CO选择性为99.1%。
实施例43%Pt/α-MoC1-x的制备及活性评价
本实施例的步骤和工艺条件与实施例3均相同,区别在于称取氯铂酸质量为0.2389g制备得到3%Pt/α-MoC1-x催化剂,并于相同的反应条件下进行活性评价;300℃时,其CO2转化率为10.6%,CO选择性为99.5%。
实施例55%Pt/α-MoC1-x的制备及活性评价
本实施例的步骤和工艺条件与实施例3均相同,区别在于称取氯铂酸质量为0.3982g制备得到5%Pt/α-MoC1-x催化剂,并于相同的反应条件下进行活性评价;300℃时,其CO2转化率为8.7%,CO选择性为97.7%。
实施例61%Pd/α-MoC1-x的制备及活性评价
本实施例的步骤和工艺条件与实施例3均相同,区别在于称取3gα-MoC1-x载体并一定浓度硝酸钯溶液(硝酸钯质量为0.0751g,去离子水的体积为4.2ml)制备得到1%Pd/α-MoC1-x催化剂,并于质量空速为600000ml/g/h反应条件下进行活性评价;300℃时,其CO2转化率为4.3%,CO选择性为98.8%。
实施例73%Pd/α-MoC1-x的制备及活性评价
本实施例的步骤和工艺条件与实施例3均相同,区别在于称取硝酸钯溶液(硝酸钯质量为0.2253g制备得到3%Pd/α-MoC1-x催化剂,并于质量空速为600000ml/g/h反应条件下进行活性评价;300℃时,其CO2转化率为5.4%,CO选择性为98.6%。
实施例85%Pd/α-MoC1-x的制备及活性评价
本实施例的步骤和工艺条件与实施例3均相同,区别在于称取硝酸钯质量为0.3755g制备得到5%Pd/α-MoC1-x催化剂,并于质量空速为600000ml/g/h反应条件下进行活性评价;300℃时,其CO2转化率为6.7%,CO选择性为97.7%。
实施例91%Ni/α-MoC1-x的制备及活性评价
本实施例的步骤和工艺条件与实施例3均相同,区别在于称取3gα-MoC1-x载体并一定浓度硝酸镍溶液(硝酸镍质量为0.1486g,去离子水体积为4.2ml)制备得到1%Ni/α-MoC1-x催化剂,并于相同的反应条件下进行活性评价;300℃时,其CO2转化率为6.8%,CO选择性为98.1%。
实施例102%Ni/α-MoC1-x的制备及活性评价
本实施例的步骤和工艺条件与实施例3均相同,区别在于称取硝酸镍质量为0.2973g制备得到2%Ni/α-MoC1-x催化剂,并于相同的反应条件下进行活性评价;300℃时,其CO2转化率为9%,CO选择性为96.4%。
实施例115%Ni/α-MoC1-x的制备及活性评价
本实施例的步骤和工艺条件与实施例3均相同,区别在于称取硝酸镍质量为0.4459g制备得到5%Ni/α-MoC1-x催化剂,并于相同的反应条件下进行活性评价;300℃时,其CO2转化率为7.3%,CO选择性为94.2%。
表1本发明制备的催化剂与文献中已有催化剂在CO2加氢制CO反应中的反应速率对比结果
表1中,a反应速率的测试温度;b所有催化剂反应速率的测试压力为常压;c反应气组成:CO2:H2=1:2;d反应气组成:CO2:H2=1:1;e反应气组成:21%CO2/30%H2/N2平衡气。
[1]Porosoff,M.D.;Yang,X.;Boscoboinik,J.A.;Chen,J.G.,AngewandteChemie2014,53(26),6705-9.
[2]Wang,L.H.;Liu,H.;Chen,Y.;Zhang,R.K.;Yang,S.Q.,Chem.Lett.2013,42(7),682-683.
[3]Stone,F.;Waller,D.,TopicsinCatalysis2003,22(3-4),305-318.
[4]Chen,C.-S.;Cheng,W.-H.;Lin,S.-S.,AppliedCatalysisA:General2004,257(1),97-106.
[5]Wang,L.;Zhang,S.;Liu,Y.,JournalofRareEarths2008,26(1),66-70.
[6]Wang,L.H.,etal.,ChemistryLetters,2013.42(7):p.682-683.
[7]Kim,S.S.,etal.,AppliedCatalysisa-General,2012.423:p.100-107.

Claims (8)

1.α型碳化钼或金属改性α型碳化钼作为催化剂在二氧化碳加氢制一氧化碳反应中的应用。
2.根据权利要求1所述的应用,其特征在于,所述二氧化碳加氢制一氧化碳反应的反应气氛为CO2和H2混合气,反应压力为常压,反应温度为300-600℃。
3.根据权利要求1所述的应用,其特征在于,所述金属为铂或钯或镍中的任何一种。
4.根据权利要求1或3所述的应用,其特征在于,所述金属改性α型碳化钼的金属负载量为1-5%。
5.根据权利要求1所述的应用,其特征在于,所述α型碳化钼经CH4/H2混合气进行预处理;混合气中CH4的体积分数为10-20%;预处理温度为500-700℃,时间为1-3小时。
6.根据权利要求1所述的应用,其特征在于,所述金属改性α型碳化钼催化剂先经纯H2后经CH4/H2混合气进行预处理;纯H2处理温度为300-500℃,时间为1-3h;混合气中CH4的体积分数为10-20%,处理温度为500-700℃,时间为1-3小时。
7.根据权利要求2所述的应用,其特征在于,所述CO2气体与H2气体的体积比为1:1-4。
8.根据权利要求2所述的应用,其特征在于,所述反应的条件为质量空速36000-600000mL/g/h。
CN201510900354.6A 2015-12-08 2015-12-08 α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用 Active CN105540588B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510900354.6A CN105540588B (zh) 2015-12-08 2015-12-08 α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510900354.6A CN105540588B (zh) 2015-12-08 2015-12-08 α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用

Publications (2)

Publication Number Publication Date
CN105540588A true CN105540588A (zh) 2016-05-04
CN105540588B CN105540588B (zh) 2017-10-27

Family

ID=55820225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510900354.6A Active CN105540588B (zh) 2015-12-08 2015-12-08 α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用

Country Status (1)

Country Link
CN (1) CN105540588B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106925314A (zh) * 2017-04-24 2017-07-07 中国科学院上海硅酸盐研究所 一种镍辅助低温合成碳化钼电催化剂的方法
CN107138171A (zh) * 2017-06-21 2017-09-08 重庆工商大学 一种用于二氧化碳加氢反应的表面功能化碳化钼‑碳催化剂的制备方法
CN109894133A (zh) * 2019-03-15 2019-06-18 大连理工大学 负载型Ni-MoCx催化材料的制备方法及其在化学链干气重整制合成气中的应用
CN109939710A (zh) * 2019-04-09 2019-06-28 浙江工业大学 一种Pd再分散的Pd/MCx负载型催化剂及其制备方法和应用
EP3482826A4 (en) * 2016-06-23 2019-07-24 Peking University MONOATOMIC DISPERSION CATALYST OF THE CHARGED METAL / A-MOC1-X TYPE, METHOD OF SYNTHESIS, AND APPLICATIONS
CN111185209A (zh) * 2018-11-14 2020-05-22 中国科学院大连化学物理研究所 碳化钼负载的镍基催化剂制备及其在二氧化碳加氢制备乙醇中的应用
CN111250121A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 超高分散的高负载量Pd/α-MoC负载型催化剂合成与应用
CN112387293A (zh) * 2020-10-23 2021-02-23 大连理工大学 一种原位诱导生成MoOxHy经一步碳化制备非贵金属改性纯相α型碳化钼的方法
CN112916030A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 一种Pt/α-MoC1-x水汽变换催化剂的制备方法及其应用
CN113398961A (zh) * 2021-06-04 2021-09-17 上海簇睿低碳能源技术有限公司 一种基于碳化钼催化剂的二氧化碳加氢制甲醇的方法
CN114713253A (zh) * 2021-01-04 2022-07-08 中国科学院大连化学物理研究所 一步碳化制备纯α相碳化钼催化剂的方法及催化剂和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923274A (zh) * 2015-05-18 2015-09-23 大连理工大学 一种纯α相碳化钼负载贵金属催化剂及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923274A (zh) * 2015-05-18 2015-09-23 大连理工大学 一种纯α相碳化钼负载贵金属催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASATOSHI NAGAI等: "Reverse Water Gas Shift Reaction over Molybdenum Carbide", 《JOURNAL OF CHEMICAL ENGINEERING OF JAPAN》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3482826A4 (en) * 2016-06-23 2019-07-24 Peking University MONOATOMIC DISPERSION CATALYST OF THE CHARGED METAL / A-MOC1-X TYPE, METHOD OF SYNTHESIS, AND APPLICATIONS
US11141716B2 (en) 2016-06-23 2021-10-12 Peking University Metal/alpha-MoC1-X load-type single-atomic dispersion catalyst, synthesis method and applications
CN106925314B (zh) * 2017-04-24 2019-10-15 中国科学院上海硅酸盐研究所 一种镍辅助低温合成碳化钼电催化剂的方法
CN106925314A (zh) * 2017-04-24 2017-07-07 中国科学院上海硅酸盐研究所 一种镍辅助低温合成碳化钼电催化剂的方法
CN107138171B (zh) * 2017-06-21 2019-08-02 重庆工商大学 一种用于二氧化碳加氢反应的表面功能化碳化钼-碳催化剂的制备方法
CN107138171A (zh) * 2017-06-21 2017-09-08 重庆工商大学 一种用于二氧化碳加氢反应的表面功能化碳化钼‑碳催化剂的制备方法
CN111185209A (zh) * 2018-11-14 2020-05-22 中国科学院大连化学物理研究所 碳化钼负载的镍基催化剂制备及其在二氧化碳加氢制备乙醇中的应用
CN111185209B (zh) * 2018-11-14 2021-07-06 中国科学院大连化学物理研究所 碳化钼负载的镍基催化剂制备及其在二氧化碳加氢制备乙醇中的应用
CN111250121A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 超高分散的高负载量Pd/α-MoC负载型催化剂合成与应用
CN111250121B (zh) * 2018-11-30 2021-07-16 中国科学院大连化学物理研究所 超高分散的高负载量Pd/α-MoC负载型催化剂合成与应用
CN109894133A (zh) * 2019-03-15 2019-06-18 大连理工大学 负载型Ni-MoCx催化材料的制备方法及其在化学链干气重整制合成气中的应用
CN109894133B (zh) * 2019-03-15 2020-06-02 大连理工大学 负载型Ni-MoCx催化材料的制备方法及其在化学链干气重整制合成气中的应用
CN109939710B (zh) * 2019-04-09 2022-02-22 浙江工业大学 一种Pd再分散的Pd/MCx负载型催化剂及其制备方法和应用
CN109939710A (zh) * 2019-04-09 2019-06-28 浙江工业大学 一种Pd再分散的Pd/MCx负载型催化剂及其制备方法和应用
CN112916030A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 一种Pt/α-MoC1-x水汽变换催化剂的制备方法及其应用
CN112916030B (zh) * 2019-12-06 2022-02-01 中国科学院大连化学物理研究所 一种Pt/α-MoC1-x水汽变换催化剂的制备方法及其应用
CN112387293A (zh) * 2020-10-23 2021-02-23 大连理工大学 一种原位诱导生成MoOxHy经一步碳化制备非贵金属改性纯相α型碳化钼的方法
CN114713253A (zh) * 2021-01-04 2022-07-08 中国科学院大连化学物理研究所 一步碳化制备纯α相碳化钼催化剂的方法及催化剂和应用
CN114713253B (zh) * 2021-01-04 2024-02-20 中国科学院大连化学物理研究所 一步碳化制备纯α相碳化钼催化剂的方法及催化剂和应用
CN113398961A (zh) * 2021-06-04 2021-09-17 上海簇睿低碳能源技术有限公司 一种基于碳化钼催化剂的二氧化碳加氢制甲醇的方法

Also Published As

Publication number Publication date
CN105540588B (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
CN105540588A (zh) α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用
CN101352687B (zh) 可用于甲烷二氧化碳干重整的催化剂、其制备方法与应用
CN102716744B (zh) 溶胶凝胶蒸氨法合成铜基催化剂的制备方法
CN103230799B (zh) 一种用于逆水煤气变换反应的Cu-Zn基催化剂、其制备方法和应用
Wu et al. CO preferential oxidation in H2-rich stream over a CuO/CeO2 catalyst with high H2O and CO2 tolerance
CN107500296B (zh) 一种棒状β-Mo2C的可控合成及其在逆水汽变换反应中的应用
CN103785470B (zh) 一种用于合成丙烯酸的催化剂的制备方法
CN106540707B (zh) 一种高分散性Cu基铈氧化物复合催化剂的制备方法
CN104857965A (zh) 一种甲醇水蒸气重整制氢气的催化剂制备方法及应用工艺
CN102145876B (zh) 一种甲醇水蒸气重整制氢的方法
CN106807387B (zh) 一种用于吸收强化生物油水蒸气重整制氢的双功能催化剂及其制备方法
CN106311260B (zh) 一种合成气制低碳醇催化剂的低温热等离子体制法和应用
CN103933978A (zh) 一种用于二氧化碳催化转化的负载型纳米催化剂及其制备方法和应用
CN106955713A (zh) 一种纳米化高分散金属催化剂的制备方法
CN102600852B (zh) 一种制备二甲醚的催化剂及其制备方法和应用
CN101497047B (zh) X型分子筛担载的Ni基催化剂在丙三醇氢解中的应用
CN105457637B (zh) 一种二氧化碳甲烷化催化剂及其制备方法与应用
CN101690894A (zh) 一种二氧化碳直接加氢合成甲醇的催化剂及其制备方法
CN103191747A (zh) 一种二氧化碳加氢合成低碳醇催化剂的方法
CN108114724B (zh) 一氧化碳水汽变换低温催化剂的制备方法
CN101722001A (zh) 二甲醚合成所用的复合催化剂、制备方法及其用途
CN103143352B (zh) 一种以TiO2为载体CeO2为助催化剂的负载型铑催化剂的制备方法及其应用
CN106881084B (zh) 一种用于逆水煤气变换反应贵金属催化剂及其制备和应用
CN105032421A (zh) 凹凸棒石负载铜锆催化剂的制备方法及在甲醇水蒸气重整制氢反应中的应用
CN110329992A (zh) 甲醇低温水汽重整制氢催化剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant