CN106278277B - 一种尖锥形碳化硅陶瓷吸收体及其制备方法 - Google Patents

一种尖锥形碳化硅陶瓷吸收体及其制备方法 Download PDF

Info

Publication number
CN106278277B
CN106278277B CN201610698361.7A CN201610698361A CN106278277B CN 106278277 B CN106278277 B CN 106278277B CN 201610698361 A CN201610698361 A CN 201610698361A CN 106278277 B CN106278277 B CN 106278277B
Authority
CN
China
Prior art keywords
silicon carbide
sharp cone
cone distal
carbide ceramics
gained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610698361.7A
Other languages
English (en)
Other versions
CN106278277A (zh
Inventor
金宇龙
董胜奎
翁浙巍
沈小兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Luopu Technology Co Ltd
Original Assignee
Nanjing Luopu Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Luopu Technology Co Ltd filed Critical Nanjing Luopu Technology Co Ltd
Priority to CN201610698361.7A priority Critical patent/CN106278277B/zh
Publication of CN106278277A publication Critical patent/CN106278277A/zh
Application granted granted Critical
Publication of CN106278277B publication Critical patent/CN106278277B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种尖锥形碳化硅陶瓷吸收体及其制备方法。具体而言,本发明的尖锥形碳化硅陶瓷吸收体由以重量百分比计的下列组分制成:40~60%的SiC、5~15%的SiO2、15~20%的MgO、0~10%的BaCO3、0~3%的MnO2、0~2%的CoO、0~2%的V2O5、0~2%的Al2O3、5~10%的半精炼石蜡、1~5%的PE塑化剂。上述组分经高温混炼后,注塑成型为尖锥形,经脱脂和烧结,制得最终产品。本发明采用注塑成型法制备具备宽带吸收性能的角锥型陶瓷吸收体,工艺简单,材料性能稳定,具有导热系数好,半球发射率高,真空适用性强等特点。

Description

一种尖锥形碳化硅陶瓷吸收体及其制备方法
技术领域
本发明属于功能材料技术领域,具体涉及一种尖锥形碳化硅陶瓷吸收体及其制备方法。
背景技术
作为一种高温电介质型吸收剂,碳化硅材料已有多年研究和应用的历史,主要应用于吸波涂料、规则形状的负载等,但作为宽带吸收部件(如四棱锥吸收器)国内外鲜有研究。随着雷达天线技术及电子测量技术的发展,对于大带宽并且能够承受大功率的吸收部件的需求与日俱增。
吸波箱是基于现代天线测试技术提出的,它是一种小型的微波暗室,同样具备暗室所要求的屏蔽和吸波性能。一般的吸波箱主要针对小型天线(如Bluetooth、Wi-Fi、OTA以及RFID等简单产品)的测试,对吸收率要求较低,带宽窄,不耐功率(≤1kW),制造成本低。
吸波箱的屏蔽部分主要采用钢板焊接或钢板拼装而成,吸波部分主要是在屏蔽壳体内部贴装聚氨酯泡沫吸波材料,它的致命弱点是易老化、易燃烧、耐功率性差,并且多采用化学黏合剂进行安装,环保性较差,虽然近几年做出了适当改进,如Rantec公司采用包覆橡胶薄膜的方法提高耐候性,但收效甚微。聚氨酯泡沫吸波材料氧指数低(一般为28%),在遇明火的时候会燃烧,最近的2012年某研究所新装微波暗室发生严重火灾,损失严重,其使用的就是易燃的软质聚氨酯泡沫材料。软质聚氨酯海绵吸波材料使用若干年后,大多会出现垂头现象,使微波吸收性能急剧变差,所以一般吸波箱寿命较短。
一般吸波箱配合高低温综合试验箱使用,其吸波材料经常处于高温高湿以及温度冲击环境条件下,情况会更糟,具有腐蚀性的炭黑粒子会从泡沫体中渗出,直接腐蚀箱体和待测件。2013年中国电科第五研究所对T/R组件进行环境试验,经常发现T/R组件中线路被腐蚀的问题。
现在,对于部分小功率雷达天线的环境试验测试采取的方法一般是在天线的正对面摆上一只吸波屏风或连接一台普通的吸波箱进行雷达天线测试。如果是大功率情况下(≥15kW/m2),为了安全起见,不开功率或给予很小的功率进行环境试验,而这并不能真实表征产品工作状态下的性能。针对开机状态下(特别是大功率条件下)的环境试验测试所用到的吸波箱未有报道,常规途径未能获得国内外相关资料,可以认为该项技术目前在国内仍处于空白,可以确信主要原因是缺少能够应用于大功率场合的吸波材料。
此外,在卫星天线真空状态测试过程中,应该严格控制整个吸波箱的可凝挥发物,且吸波体要有良好的导热率。一般的吸波体如聚氨酯会掉碳粉很难满足要求,而碳化硅陶瓷吸收体可满足使用要求。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种具有高吸收、耐功率、真空适用能力强、导热良好、生产工艺简单、成本低的尖锥形碳化硅陶瓷吸收体及其制备方法,具体提供了一种以SiC、SiO2、MgO、BaCO3、MnO2、CoO、V2O5、Al2O3、半精炼石蜡和PE塑化剂为原料的尖锥形大功率碳化硅陶瓷吸收体及其制备方法,吸收体在1~18GHz内可获得大于20dB的吸收,耐功率不小于30kW(平均功率),材料具有导热系数5.5w·m-1-1,涂层半球发射率0.85以上,真空总质量损失TML≤1%。
为了达到以上目的,本发明采用如下技术方案:
一种尖锥形碳化硅陶瓷吸收体,其由以重量百分比计的下列组分制成:40~60%的SiC、5~15%的SiO2、15~20%的MgO、0~10%的BaCO3、0~3%的MnO2、0~2%的CoO、0~2%的V2O5、0~2%的Al2O3、5~10%的半精炼石蜡、1~5%的PE塑化剂。
优选的,上述尖锥形碳化硅陶瓷吸收体由以重量百分比计的下列组分制成:55~60%的SiC、5~15%的SiO2、15~18的MgO、0~3%的BaCO3、0~0.5%的MnO2、0~0.8%的CoO、0~1%的V2O5、0~1.2%的Al2O3、5~10%的半精炼石蜡、1~3.5%的PE塑化剂。
优选的,上述尖锥形碳化硅陶瓷吸收体的外形为四棱锥形,锥体高度为50~90毫米,底面边长为10~20毫米。
在上述尖锥形碳化硅陶瓷吸收体中,所述半精炼石蜡是一种板块状白色固体,其相对密度随熔点的上升而增加,化学稳定性好,含油量适中,具有良好的防潮和绝缘性能,可塑性好,广泛用于各个行业领域,与广大人民群众生活息息相关。
在上述尖锥形碳化硅陶瓷吸收体中,所述PE塑化剂是一种高分子材料助剂,其种类繁多,最常见的品种是低密度聚乙烯,工业上应用广泛。
一种上述尖锥形碳化硅陶瓷吸收体的制备方法,其包括以下步骤:
a)按照预定的重量百分比称取各种组分,并置于混炼机中混炼,得到块料;
b)将步骤a)中所得块料置于粉碎机中粉碎,得到颗粒料;
c)将步骤b)中所得颗粒料置于注塑成型机的料筒中注塑成型,坯体脱模冷却至室温,得到陶瓷生坯;
d)将步骤c)中所得陶瓷生坯置于汽油介质中预脱脂,取出后自然晾干,得到预脱脂生坯;
e)将步骤d)中所得预脱脂生坯置于烧结炉中完全脱脂,得到完全脱脂生坯;
f)将步骤e)中所得完全脱脂生坯置于莫来石承烧盒中烧结,得到最终的尖锥形碳化硅陶瓷吸收体。
优选的,在上述制备方法中,步骤a)中所述混炼的程序为先将半精炼石蜡和PE塑化剂熔化,再逐一加入其他组分,温度为100~120℃,转速为30~40转/分钟,时间为0.5~3小时。
优选的,在上述制备方法中,步骤b)中所述颗粒料的粒径为1~5毫米。
优选的,在上述制备方法中,步骤c)中所述注塑成型机的注塑温度为100~200℃,成型压力为5~10MPa。
优选的,在上述制备方法中,步骤d)中所述预脱脂的浸泡时间为24~36小时。
优选的,在上述制备方法中,步骤e)中所述完全脱脂的温度为800~1000℃,时间为3~5小时。
优选的,在上述制备方法中,步骤f)中所述烧结的升温速度在3℃/分钟以内,温度为1280~1380℃,时间为3~5小时。
与现有技术相比,采用上述技术方案的本发明具有以下有益效果:
1、本发明通过调整碳化硅的百分含量,获得吸收比高的陶瓷体,经检测具有较宽的吸收频带,吸收率高,耐功率及导热性好,真空适用性强等特点;
2、通过选择塑化成型工艺,成功制备了尖锥形陶瓷吸收体,该工艺避免了磨加工的工序,节省了大量劳动成本;
3、该体系可以在空气中烧结,助剂的使用可以细化晶粒,使晶粒生长均匀,瓷体气孔率降低,电性能得到提高,同时降低了烧结温度,从而节约烧结成本;
4、本发明的产品适合批量化生产,成本较低,具有较大的经济价值。
附图说明
图1为本发明的尖锥形碳化硅陶瓷吸收体的外形图。
图2为本发明实施例2所得尖锥形碳化硅陶瓷吸收体的扫描电镜图(SEM)。
具体实施方式
以下将结合附图和具体实施例来进一步说明本发明中的技术方案。除非另有说明,下列实施例中所使用的仪器、材料、试剂等均可通过商业手段获得。
实施例1:尖锥形碳化硅陶瓷吸收体的制备及性能测试。
a)按照下列重量百分比称取各种组分:55%的SiC、7%的SiO2、18%的MgO、3%的BaCO3、0.5%的MnO2、0.8%的CoO、1%的V2O5、1.2%的Al2O3、10%的半精炼石蜡、3.5%的低密度聚乙烯颗粒,并将上述各种组分置于混炼机中混炼,温度为100℃,转速为30转/分钟,时间为3小时,出料时为色泽均匀的块料;
b)将步骤a)中所得混合料置于粉碎机中粉碎,得到颗粒料,粒径为2~4毫米;
c)将步骤b)中所得颗粒料置于注塑成型机的料筒中注塑成型,注塑温度为150℃,成型压力为10MPa,坯体脱模冷却至室温,得到陶瓷生坯;
d)将步骤c)中所得陶瓷生坯置于汽油介质中进行预脱脂,浸泡时间为24小时,取出后自然晾干,得到预脱脂生坯;
e)将步骤d)中所得预脱脂生坯置于烧结炉中进行完全脱脂,脱脂温度为800℃,保温3小时,得到完全脱脂生坯;
f)将步骤e)中所得完全脱脂生坯置于莫来石承烧盒中,升温速度为3℃/分钟,于1280℃下烧结5小时,得到最终的尖锥形碳化硅陶瓷吸收体,四棱锥体的高度为90毫米,底面尺寸为20毫米×20毫米,其外形图如图1所示。
利用GJB 5239-2004规定的弓形法测定样品的微波吸收性能,结果显示在4~8GHz带宽内优于-30dB。
实施例2:尖锥形碳化硅陶瓷吸收体的制备及性能测试。
a)按照下列重量百分比称取各种组分:60%的SiC、5%的SiO2、15%的MgO、3%的BaCO3、0.5%的MnO2、0.8%的CoO、1%的V2O5、1.2%的Al2O3、10%的半精炼石蜡、3.5%的低密度聚乙烯颗粒,并将上述各种组分置于混炼机中混炼,温度为100℃,转速为30转/分钟,时间为2小时,出料时为色泽均匀的块料;
b)将步骤a)中所得料块置于粉碎机中粉碎,得到颗粒料,粒径为2~4mm;
c)将步骤b)中所得颗粒料置于注塑成型机的料筒中注塑成型,注塑成型机的注塑温度为150℃,成型压力为10MPa,坯体脱模冷却至室温,得到陶瓷生坯;
d)将步骤c)中所得陶瓷生坯置于汽油介质中预脱脂,浸泡时间为36小时,取出后自然晾干,得到预脱脂生坯;
e)将步骤d)中所得预脱脂生坯置于烧结炉中完全脱脂,脱脂温度为800℃,保温3小时,得到完全脱脂生坯;
f)将步骤e)中所得完全脱脂生坯置于莫来石承烧盒中,升温速度为3℃/分钟,于1380℃下烧结5小时,得到最终的尖锥形碳化硅陶瓷吸收体,四棱锥体的高度为50毫米,底面尺寸为10毫米×10毫米。
利用GJB 5239-2004规定的弓形法测定样品的微波吸收性能,结果显示在8~12GHz带宽内优于-25dB。
对样品的横断面进行SEM扫描,其结果如图2所示。从图2中可知,陶瓷吸收体的微观结构均匀,体系中含有较多的玻璃相。

Claims (6)

1.一种尖锥形碳化硅陶瓷吸收体,其由以重量百分比计的下列组分制成:55~60%的SiC、5~15%的SiO2、15~18%的MgO、0~3%的BaCO3、0~0.5%的MnO2、0~0.8%的CoO、0~1%的V2O5、0~1.2%的Al2O3、5~10%的半精炼石蜡、1~3.5%的PE塑化剂,且所述BaCO3、MnO2、CoO、V2O5以及Al2O3的含量均不为0;所述尖锥形碳化硅陶瓷吸收体的外形为四棱锥形,锥体高度为50~90毫米,底面边长为10~20毫米;所述尖锥形碳化硅陶瓷吸收体由以下制备方法制备:
a)按照预定的重量百分比称取各种组分,并置于混炼机中混炼,得到块料;
b)将步骤a)中所得块料置于粉碎机中粉碎,得到颗粒料;
c)将步骤b)中所得颗粒料置于注塑成型机的料筒中注塑成型,坯体脱模冷却至室温,得到陶瓷生坯;
d)将步骤c)中所得陶瓷生坯置于汽油介质中预脱脂,取出后自然晾干,得到预脱脂生坯;
e)将步骤d)中所得预脱脂生坯置于烧结炉中完全脱脂,得到完全脱脂生坯;
f)将步骤e)中所得完全脱脂生坯置于莫来石承烧盒中烧结,得到最终的尖锥形碳化硅陶瓷吸收体;所述烧结的升温速度在3℃/分钟以内,温度为1280~1380℃,时间为3~5小时。
2.根据权利要求1所述的尖锥形碳化硅陶瓷吸收体,其特征在于,步骤a)中所述混炼的程序为先将半精炼石蜡和PE塑化剂熔化,再逐一加入其他组分,温度为100~120℃,转速为30~40转/分钟,时间为0.5~3小时。
3.根据权利要求1所述的尖锥形碳化硅陶瓷吸收体,其特征在于,步骤b)中所述颗粒料的粒径为1~5毫米。
4.根据权利要求1所述的尖锥形碳化硅陶瓷吸收体,其特征在于,步骤c)中所述注塑成型机的注塑温度为100~200℃,成型压力为5~10MPa。
5.根据权利要求1所述的尖锥形碳化硅陶瓷吸收体,其特征在于,步骤d)中所述预脱脂的浸泡时间为24~36小时。
6.根据权利要求1所述的尖锥形碳化硅陶瓷吸收体,其特征在于,步骤e)中所述完全脱脂的温度为800~1000℃,时间为3~5小时。
CN201610698361.7A 2016-08-21 2016-08-21 一种尖锥形碳化硅陶瓷吸收体及其制备方法 Active CN106278277B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610698361.7A CN106278277B (zh) 2016-08-21 2016-08-21 一种尖锥形碳化硅陶瓷吸收体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610698361.7A CN106278277B (zh) 2016-08-21 2016-08-21 一种尖锥形碳化硅陶瓷吸收体及其制备方法

Publications (2)

Publication Number Publication Date
CN106278277A CN106278277A (zh) 2017-01-04
CN106278277B true CN106278277B (zh) 2019-05-24

Family

ID=57661044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610698361.7A Active CN106278277B (zh) 2016-08-21 2016-08-21 一种尖锥形碳化硅陶瓷吸收体及其制备方法

Country Status (1)

Country Link
CN (1) CN106278277B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109181639B (zh) * 2018-09-10 2021-04-30 哈尔滨工业大学 一种SiC@SiO2@铁氧体高温吸波复合材料及其制备方法
CN111170743B (zh) * 2020-01-19 2021-08-31 中国科学院上海硅酸盐研究所 一种碳化硅红外辐射陶瓷材料及其制备方法
CN114315366A (zh) * 2021-12-18 2022-04-12 航天长屏科技有限公司 一种基于3d打印的碳化硅陶瓷吸波角锥及其制备方法
CN114641200B (zh) * 2022-04-02 2023-05-05 四川农业大学 一种氮掺杂微波吸收材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603198A (zh) * 2012-03-07 2012-07-25 南京工业大学 一种无机电磁波吸收材料及其制备方法
CN104341156A (zh) * 2014-10-17 2015-02-11 西安科技大学 一种碳化硅基复合材料吸收微波发热体组合物及其制备方法
CN104445934A (zh) * 2014-11-11 2015-03-25 中国人民解放军国防科学技术大学 一种耐高温的尖劈形吸波材料及其制备方法
CN104446490A (zh) * 2014-11-14 2015-03-25 山东大学 一种注射成型反应烧结SiC陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603198A (zh) * 2012-03-07 2012-07-25 南京工业大学 一种无机电磁波吸收材料及其制备方法
CN104341156A (zh) * 2014-10-17 2015-02-11 西安科技大学 一种碳化硅基复合材料吸收微波发热体组合物及其制备方法
CN104445934A (zh) * 2014-11-11 2015-03-25 中国人民解放军国防科学技术大学 一种耐高温的尖劈形吸波材料及其制备方法
CN104446490A (zh) * 2014-11-14 2015-03-25 山东大学 一种注射成型反应烧结SiC陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN106278277A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN106278277B (zh) 一种尖锥形碳化硅陶瓷吸收体及其制备方法
JP5241868B2 (ja)
EP3162778B1 (en) Method for preparing porous ceramics
CN105698542A (zh) 一种抗锂电池高温腐蚀层状匣钵及其制备方法
GB2091239A (en) Process for producing cordiertite ceramic products
KR20110128802A (ko) 티탄산알루미늄계 세라믹스 소결체의 제조 방법 및 티탄산알루미늄계 세라믹스 소결체
CN111606703B (zh) 一种氧化锌电阻片及其制备方法和用途
EP2520349A1 (en) Filter used for filtering molten metal and preparation method thereof
CN110204309A (zh) 一种含锆堇青石莫来石复相材料及其制备方法
CN109400137A (zh) 锂电池正极材料烧成用耐火坩埚及其制备方法
KR101503633B1 (ko) 리튬이온 전지용 양극활물질용 열처리 용기
CN107573066B (zh) 一种陶瓷承烧板及其制备方法
CN108059450B (zh) 一种环保型堇青石-莫来石窑具及其制作方法
CN101752046B (zh) 电流-电压非线性电阻体及其制造方法
CN113072391A (zh) 一种全固废基多孔陶瓷吸音材料及其制备方法
CN107867828A (zh) 一种Al2O3陶瓷材料的制备方法及其作为微波陶瓷窗材料的应用
CN103693957B (zh) 一种微波介质陶瓷的制备方法
CN109293379B (zh) 氧化铬砖及其制备方法
CN107473734B (zh) 一种高耐电强度的线性介质陶瓷及其制备方法
KR20200078759A (ko) 알루미늄 티타네이트 세라믹스 제조방법
CN113354426A (zh) 一种免烧镁钙碳砖及其制备方法
CN108911721B (zh) 骨料型氧化铬耐火材料及其制备方法
CN104788094A (zh) 一种钛酸铋陶瓷材料的制备方法
CN106486638B (zh) 一种电池绝缘环及其制备方法及使用该绝缘环的动力电池
CN115108848A (zh) 一种铁铝尖晶石砖及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant