CN106278250A - 一种无铅正温度系数热敏电阻陶瓷的制备方法 - Google Patents

一种无铅正温度系数热敏电阻陶瓷的制备方法 Download PDF

Info

Publication number
CN106278250A
CN106278250A CN201610749886.9A CN201610749886A CN106278250A CN 106278250 A CN106278250 A CN 106278250A CN 201610749886 A CN201610749886 A CN 201610749886A CN 106278250 A CN106278250 A CN 106278250A
Authority
CN
China
Prior art keywords
tio
unleaded
pottery
preparation
semistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610749886.9A
Other languages
English (en)
Inventor
朱兴文
任慧茹
牛伟鉴
李晨
姜亦杨
姜文中
周晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610749886.9A priority Critical patent/CN106278250A/zh
Publication of CN106278250A publication Critical patent/CN106278250A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种大气氛下烧结的高居里温度、高升阻比、低室温电阻率无铅正温度系数热敏电阻陶瓷的制备方法的制备方法,该方法采用以下配方:x(Bi1/2Na1/2)TiO3 yCaTiO3‑(1‑x‑y)BaTiO3+aLi2CO3+bSb2O3粉体,其中,x=0.01~0.12,y=0~0.20,a=0~0.5 mol%,b=0~0.20 mol%,Nb2O5、La2O3、Sm2O3、Nd2O3化合物中的一种或多种为半导化剂;Al2O3和TiO2为烧结助剂,采用的工艺是:将上述所列材料压制的圆片在大气气氛中1250‑1380℃下保温10~30分钟烧结,使其充分烧结和实现固相反应;对烧结后的圆片表面进行研磨,上电极,制得PTCR陶瓷材料。该陶瓷材料的室温电阻率低至30Ω•cm,居里温度Tc高达155℃,升阻比高达106以上。该无铅材料已达到实用化要求。

Description

一种无铅正温度系数热敏电阻陶瓷的制备方法
技术领域
本发明涉及一种大气气氛下烧结的高居里温度(Tc>150℃)、高升阻比(R max/Rmin>1.0×106)、低室温电阻率(ρ:~30Ω·cm)无铅正温度系数热敏电阻陶瓷的制备方法。
背景技术
铁电BaTiO3的居里温度TC为120℃,通过添加适量施主杂质可使其半导化同时具有正温度系数热敏电阻效应(PTC效应)。PTC材料在汽车、家电、通信、自动化控制等领域具有广泛的应用。目前广泛使用的PTC加热元件均采用BaTiO3-PbTiO3体系,TC越高,材料中的铅含量越多。用量最大的空调加热用PTC元件,居里温度在250℃左右,元件中PbO的含量超过30wt%。众所周知,重金属元素Pb对人体有毒害作用,对环境的影响尤甚。据估计,1克铅会导致1平方米的土壤污染,这种污染是长期性的,今后对废弃含铅PTC元件的处置将面临较大难题。因此,开发高Tc温度无铅PTC材料对目前的经济及社会发展有重要意义。
PTCR材料的无铅化研究始于上世纪80年代末,以铁电(Na,Bi)TiO3(简称BNT)与BaTiO3固溶,获得(Ba,Bi,Na)TiO3系高温PTCR材料。BNT是一种具有复合钙钛矿结构的驰豫型铁电体,其居里温度为320℃。研究表明,在大气气氛下烧结,随(Na,Bi)TiO3固溶量的增加,PTC材料的室温电阻率急剧上升至绝缘。而在非氧化气氛如N2或在还原气氛下烧结,即使BNT含量达30mol%,PTCR材料的电阻率仍可达到实用化要求。但需要气氛保护的烧结制造方法增加了工艺成本。本发明将在BNT-BaTiO3二元系PTCR材料的基础上引入第三元——CaTiO3,并添加Li2CO3作为助烧剂,以期在大气气氛中烧结制备一种室温电阻率在30Ω·cm左右、居里温度在150℃附近、升阻比最高达到106以上的无铅PTC材料。
发明内容
本发明的目的在于提供一种大气氛下烧结的高居里温度(Tc>150℃)、高升阻比(Rmax/Rmin>1.0×106)、低室温电阻率(ρ:~30Ω·cm)无铅正温度系数热敏电阻陶瓷的制备方法。
为达到上述目的,本发明采用下述技术方案:
一种无铅正温度系数热敏电阻陶瓷的制备方法,其特征在于该方法的具体步骤为:
a.将x(Bi1/2Na1/2)TiO3-yCaTiO3-(1-x-y)BaTiO3+aLi2CO3+bSb2O3粉体,其中,x=0.01~0.12,y=0~0.20,a=0~0.5mol%,b=0~0.20mol%;Nb2O5、La2O3、Sm2O3、Nd2O3化合物中的一种或多种为半导化剂,其掺入量为所述粉体的0.05~0.50atom%;再掺入所述粉体的0~0.50atom%的Al2O3和0~3.5atom%的TiO2为烧结助剂,以玛瑙球和酒精或去离子水为介质,球磨12~72小时,烘干后得到混合粉末;
b.在步骤a所得混合粉末中加入该混合粉末重量的3.0~12.0wt%的浓度为10wt%的聚乙烯醇PVA水溶液,造粒;
c.将步骤b所得颗粒压制成的圆片;
d.将步骤c所得圆片在1250-1380℃温度下、保温10~30分钟,即得到无铅正温度系数热敏电阻陶瓷。
上述的半导化剂为Nb2O5、La2O3、Sm2O3、Nd2O3化合物中的至少一种。
上述的CaTiO3和(Bi1/2Na1/2)TiO3粉体由如下方法获得:按原子比Bi2O3:Na2O:TiO2=0.5∶0.5∶1.0和按原子比CaCO3:TiO2=1.0:1.0的比例称取两组分析纯的原料,以玛瑙球和酒精为介质,将上述两组原料分别混合,在磨机中球磨3~72小时,将烘干后混合料分别放在980℃和1400℃温度下充分煅烧,煅烧时间为0.5~4.0小时,分别获得(Bi1/2Na1/2)TiO3和CaTiO3粉体。
与现有技术相比,本发明的有益效果是:本发明在空气气氛下制备的PTCR无铅陶瓷材料的电性能可以实现以下参数要求:居里温度Tc>150℃,室温电阻率<30Ω·cm,PTC升阻比Rmax/Rmin>1.8×106,电阻温度系数α>34%/℃。
附图说明
图1.BNT=4.0mol%、Ca2+=0~20mol%样品的R—T曲线;
图2.BNT=6.0mol%、Ca2+=0~20mol%样品的R—T曲线;;
图3.BNT=4.0mol%、Ca2+=6.0mol%、Li+=0~0.3mol%样品的R—T曲线;
图4.不同Sb含量试样(Sb3+=0~0.15mol%)样品的R—T曲线。
具体实施方式
结合以下具体实施实例,对本发明作进一步详细说明。
实施例1
按0.04(Bi1/2Na1/2)TiO3-yCaTiO3-(0.96-y)BaTiO3+0.165mol%Nb2O5+0.167mol%Al2O3+1.0mol%TiO2+0.2mol%Li2CO3进行配料,其中y=0.02、0.04、0.06、0.08、0.10、0.12、0.14、0.16、0.18、0.20,按分子式中的摩尔比计算重量后称重,称量质量如下表1:
表1.配料表一(单位:g)
编号 BNT BaTiO3 CaTiO3 Nb2O5 Al2O3 TiO2 Li2CO3
B4-C-00 8.4740 223.8645 0 0.4386 0.1703 0.7987 0.1478
B4-C-02 8.4740 219.2007 2.7189 0.4386 0.1703 0.7987 0.1478
B4-C-04 8.4740 214.5368 5.4377 0.4386 0.1703 0.7987 0.1478
B4-C-06 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.1478
B4-C-08 8.4740 205.2091 10.8755 0.4386 0.1703 0.7987 0.1478
B4-C-10 8.4740 200.5453 13.5944 0.4386 0.1703 0.7987 0.1478
B4-C-12 8.4740 195.8814 16.3132 0.4386 0.1703 0.7987 0.1478
B4-C-14 8.4740 191.2176 19.0321 0.4386 0.1703 0.7987 0.1478
B4-C-16 8.4740 186.5538 21.7510 0.4386 0.1703 0.7987 0.1478
B4-C-18 8.4740 181.8899 24.4698 0.4386 0.1703 0.7987 0.1478
B4-C-20 8.4740 177.2261 27.1887 0.4386 0.1703 0.7987 0.1478
按照配料表一中的配方称重,预合成BNT、CaTiO3后再按比例加入BaTiO3、Nb2O5、Al2O3、TiO2、Li2CO3,以玛瑙球和去离子水为介质,球磨24小时,烘干后的粉末加8wt%的浓度为10wt%的聚乙烯醇(PVA)造粒,以10MPa的压力压制Φ10×2.0mm的圆片,保压15s,将压制好的圆片在空气气氛下进行烧结,烧结温度为1350℃,并在该温度下保温10min,使其充分烧结和实现固相反应;烧结后的样品经表面打磨光滑以后,于超声波里冲洗8min,以Ag-Zn浆料电极涂覆,并将电极在490℃烧结保温8min,将电极固化,最终获得PTCR陶瓷样品。以2℃/min的升温速率加热陶瓷样品,测得其电阻-温度特性,其结果如表2和图1所示。
表2.不同Ca含量试样的电性能
结论:引入第三元CaTiO3可大幅降低样品室温电阻率,同时提高材料的PTC效应。Ca2+含量为0.06mol时,PTC性能最好:室温电阻率低至36Ω·cm,居里温度达148℃,升阻比高达1.87E+06,非线性系数约16.8%
实施例2
按0.06(Bi1/2Na1/2)TiO3-yCaTiO3-(0.94-y)BaTiO3+0.165mol%Nb2O5+0.167mol%Al2O3+1.0mol%TiO2+0.2mol%Li2CO3进行配料,y=0.02、0.04、0.06、0.08、0.10、0.12、0.14、0.16、0.18、0.20,按分子式中的摩尔比计算重量后称重,称量质量如下表3:
表3.配料表二(单位:g)
按照配料表二中的配方称重,预合成BNT、CaTiO3后再按比例加入BaTiO3、Nb2O5、Al2O3、TiO2、Li2CO3,以玛瑙球和去离子水为介质,球磨24小时,烘干后的粉末加8wt%的浓度为10wt%的聚乙烯醇(PVA)造粒,以10MPa的压力压制Φ10×2.0mm的圆片,保压15s,将压制好的圆片在空气气氛下进行烧结,烧结温度为1330℃,并在该温度下保温10min,使其充分烧结和实现固相反应;烧结后的样品经表面打磨光滑以后,于超声波里冲洗8min,以Ag-Zn浆料电极涂覆,并将电极在490℃烧结保温8min,将电极固化,最终获得PTCR陶瓷样品。以2℃/min的升温速率加热陶瓷样品,测得其电阻-温度特性,其结果如表4和图2所示。
表4.BNT含量0.06试样的电性能
结论:随着Ca2+含量的增加,室温电阻率上升,居里温度、升阻比下降。从中可以看出,Ca2+含量为0.02mol时,PTC性能最好:室温电阻率低至176Ω·cm,居里温度达154℃,升阻比高达8.98E+05,非线性系数约24.2%。与实施例1相比,材料的居里温度上升了6℃,室温电阻上升了约5倍。
实施例3
按0.04(Bi1/2Na1/2)TiO3-0.06CaTiO3-0.90BaTiO3+aLi2CO3+0.165mol%Nb2O5+0.167mol%Al2O3+1.0mol%TiO2进行配料,其中a=0~0.003,按分子式中的摩尔比计算重量后称重,称量质量如下表5:
表5.配料表三(单位:g)
编号 BNT BaTiO3 CaTiO3 Nb2O5 Al2O3 TiO2 Li2CO3
L-00 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0
L-01 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.0739
L-02 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.1478
L-03 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.2217
按照配料表三中的配方称重,预合成BNT、CaTiO3后再按比例加入BaTiO3、Nb2O5、Al2O3、TiO2、Li2CO3,以玛瑙球和去离子水为介质,球磨24小时,烘干后的粉末加8wt%的浓度为10wt%的聚乙烯醇(PVA)造粒,以10MPa的压力压制Φ10×2.0mm的圆片,保压15s,将压制好的圆片在空气气氛下进行烧结,烧结温度为1350℃,并在该温度下保温10min,使其充分烧结和实现固相反应;烧结后的样品经表面打磨光滑以后,于超声波里冲洗8min,以Ag-Zn浆料电极涂覆,并将电极在490℃烧结保温8min,将电极固化,最终获得PTCR陶瓷样品。以2℃/min的升温速率加热陶瓷样品,测得其电阻-温度特性,其结果如表6和图3所示。
表6.不同Li含量试样的电性能
结论:添加Li2CO3,使得样品具有良好的PTC性能。随着Li含量的增加,室温电阻增大,非线性系数减小。综合来看,Li含量约0.2mol%时,样品性能最好:室温电阻率低至36Ω·cm,居里温度、升阻比分别高达148℃、1.87E+06,同时非线性系数约16.8%
实施例4
0.04(Bi1/2Na1/2)TiO3-0.06CaTiO3-0.90BaTiO3+0.2mol%Li2CO3+bSb2O3+0.165mol%Nb2O5+0.167mol%Al2O3+1.0mol%TiO2进行配料,b=0~0.15mol%,按分子式中的摩尔比计算重量后称重,称量质量如下表7:
表7.配料表四(单位:g)
编号 BNT BaTiO3 CaTiO3 Nb2O5 Al2O3 TiO2 Li2CO3 Sb2O3
S-00 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.1478 0
S-01 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.1478 0.0029
S-02 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.1478 0.0875
S-03 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.1478 0.1460
S-04 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.1478 0.2040
S-05 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.1478 0.2915
S-06 8.4740 209.8730 8.1566 0.4386 0.1703 0.7987 0.1478 0.4375
按照配料表四中的配方称重,预合成BNT、CaTiO3后再按比例加入BaTiO3、Nb2O5、Al2O3、TiO2、Li2CO3、Sb2O3,以玛瑙球和去离子水为介质,球磨24小时,烘干后的粉末加8wt%的浓度为10wt%的聚乙烯醇(PVA)造粒,以10MPa的压力压制Φ10×2.0mm的圆片,保压15s,将压制好的圆片在空气气氛下进行烧结,烧结温度为1330℃,并在该温度下保温10min,使其充分烧结和实现固相反应;烧结后的样品经表面打磨光滑以后,于超声波里冲洗8min,以Ag-Zn浆料电极涂覆,并将电极在490℃烧结保温8min,将电极固化,最终获得PTCR陶瓷样品。以2℃/min的升温速率加热陶瓷样品,测得其电阻-温度特性,其结果如表8和图4所示。
表8.不同Sb2O3含量试样的电性能
结论:上述样品是在1330℃下烧结的,从中可以看出,添加少量Sb2O3有助于降低烧结温度,提高样品PTC性能。其中,Sb2O3含量为0.01mol%时,样品PTC性能最好,室温电阻率低至33Ω·cm,居里温度达146℃,升阻比高达4.02E+05,非线性系数约17.1%。

Claims (3)

1.一种无铅正温度系数热敏电阻陶瓷的制备方法,其特征在于该方法的具体步骤为:
a.将x(Bi1/2Na1/2)TiO3-yCaTiO3-(1-x-y)BaTiO3+aLi2CO3+bSb2O3粉体,其中,x=0.01~0.12,y=0~0.20,a=0~0.5mol%,b=0~0.20mol%;Nb2O5、La2O3、Sm2O3、Nd2O3化合物中的一种或多种为半导化剂,其掺入量为所述粉体的0.05~0.50atom%;再掺入所述粉体的0~0.50atom%的Al2O3和0~3.5atom%的TiO2为烧结助剂,以玛瑙球和酒精或去离子水为介质,球磨12~72小时,烘干后得到混合粉末;
b.在步骤a所得混合粉末中加入该混合粉末重量的3.0~12.0wt%的浓度为10wt%的聚乙烯醇PVA水溶液,造粒;
c.将步骤b所得颗粒压制成的圆片;
d.将步骤c所得圆片在1250-1380℃温度下、保温10~30分钟,即得到无铅正温度系数热敏电阻陶瓷。
2.根据权利要求1所述的无铅正温度系数热敏电阻陶瓷的制备方法,其特征在于所述的半导化剂为Nb2O5、La2O3、Sm2O3、Nd2O3化合物中的至少一种。
3.根据权利要求1所述的无铅正温度系数热敏电阻陶瓷的制备方法,其特征在于所述的CaTiO3和(Bi1/2Na1/2)TiO3粉体由如下方法获得:按原子比Bi2O3:Na2O:TiO2=0.5:0.5:1.0和按原子比CaCO3:TiO2=1.0:1.0的比例称取两组分析纯的原料,以玛瑙球和酒精为介质,将上述两组原料分别混合,在磨机中球磨3~72小时,将烘干后混合料分别放在980℃和1400℃温度下充分煅烧,煅烧时间为0.5~4.0小时,分别获得(Bi1/2Na1/2)TiO3和CaTiO3粉体。
CN201610749886.9A 2016-08-29 2016-08-29 一种无铅正温度系数热敏电阻陶瓷的制备方法 Pending CN106278250A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610749886.9A CN106278250A (zh) 2016-08-29 2016-08-29 一种无铅正温度系数热敏电阻陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610749886.9A CN106278250A (zh) 2016-08-29 2016-08-29 一种无铅正温度系数热敏电阻陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN106278250A true CN106278250A (zh) 2017-01-04

Family

ID=57677529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610749886.9A Pending CN106278250A (zh) 2016-08-29 2016-08-29 一种无铅正温度系数热敏电阻陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106278250A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928747A (zh) * 2019-03-22 2019-06-25 上海大学 提高ptcr陶瓷材料温度系数和ntc效应的方法
CN111056836A (zh) * 2019-12-30 2020-04-24 江苏钧瓷科技有限公司 一种高Tc低阻无铅PTC材料的制备方法
CN115108827A (zh) * 2021-03-17 2022-09-27 华中科技大学 一种正温度系数热敏电阻及其制备方法
CN116344130A (zh) * 2023-04-20 2023-06-27 丹东国通电子元件有限公司 一种106高升阻比的130度无铅热敏电阻及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137679A (zh) * 1995-06-02 1996-12-11 上海大地通信电子有限公司 正温度系数陶瓷热敏电阻的生产工艺
CN1653560A (zh) * 2002-05-23 2005-08-10 皇家飞利浦电子股份有限公司 基于钛酸钡的介电材料组合物
CN1847194A (zh) * 2005-04-04 2006-10-18 Tdk株式会社 电子部件、电介质陶瓷组合物及其制造方法
CN101519306A (zh) * 2009-02-24 2009-09-02 上海大学 高居里温度无铅正温度系数热敏电阻陶瓷的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137679A (zh) * 1995-06-02 1996-12-11 上海大地通信电子有限公司 正温度系数陶瓷热敏电阻的生产工艺
CN1653560A (zh) * 2002-05-23 2005-08-10 皇家飞利浦电子股份有限公司 基于钛酸钡的介电材料组合物
CN1847194A (zh) * 2005-04-04 2006-10-18 Tdk株式会社 电子部件、电介质陶瓷组合物及其制造方法
CN101519306A (zh) * 2009-02-24 2009-09-02 上海大学 高居里温度无铅正温度系数热敏电阻陶瓷的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DUNMIN LIN ET AL.: ""Structure and electrical properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics"", 《SOLID STATE IONICS》 *
张骥华: "《功能材料及其应用 第1版》", 31 January 2009, 北京:机械工业出版社 *
徐国跃: "《电子陶瓷材料及元件基础》", 30 September 2001, 南京航空航天大学材料学院 *
徐政 等: "《现代功能陶瓷 第1版》", 30 September 1998, 北京:国防工业出版社 *
池汝安: "《稀土选矿与提取技术》", 31 January 1996, 北京:科学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928747A (zh) * 2019-03-22 2019-06-25 上海大学 提高ptcr陶瓷材料温度系数和ntc效应的方法
CN109928747B (zh) * 2019-03-22 2022-01-07 上海大学 提高ptcr陶瓷材料温度系数和ntc效应的方法
CN111056836A (zh) * 2019-12-30 2020-04-24 江苏钧瓷科技有限公司 一种高Tc低阻无铅PTC材料的制备方法
CN115108827A (zh) * 2021-03-17 2022-09-27 华中科技大学 一种正温度系数热敏电阻及其制备方法
CN115108827B (zh) * 2021-03-17 2023-07-04 华中科技大学 一种正温度系数热敏电阻及其制备方法
CN116344130A (zh) * 2023-04-20 2023-06-27 丹东国通电子元件有限公司 一种106高升阻比的130度无铅热敏电阻及其制备方法

Similar Documents

Publication Publication Date Title
CN101383208B (zh) 一种高电压梯度氧化锌压敏电阻阀片的制备方法
CN106278250A (zh) 一种无铅正温度系数热敏电阻陶瓷的制备方法
CN102476949A (zh) 一种低温制备电性能可控的氧化锌压敏电阻材料的方法
JP6880425B2 (ja) 無鉛高絶縁セラミックコーティングを有する酸化亜鉛避雷器バルブブロック及びそれを調製するための方法
CN101792307B (zh) 一种氧化锌压敏陶瓷复合粉体的制备方法
CN106145933A (zh) 一种高居里温度(Tc &gt; 190℃)低铅PTCR陶瓷材料制备方法
CN101830698B (zh) 一种高居里点低电阻率无铅ptcr陶瓷材料及其制备方法
CN101284731B (zh) 高使用温度、高稳定无铅正温度系数电阻材料及其制备方法
CN101519306A (zh) 高居里温度无铅正温度系数热敏电阻陶瓷的制备方法
CN101880158A (zh) IVB族元素改性CaCu3Ti4O12基压敏材料及制备方法
CN104370539A (zh) 一种高使用温度无铅ptcr陶瓷及其制备方法
CN101624284B (zh) 掺杂bkt-bt系无铅ptcr陶瓷材料及制备方法
CN101284730A (zh) 非Bi系低压ZnO压敏陶瓷材料的制造方法
CN111410529A (zh) 添加CeO2改善PTC加热陶瓷功率老化的方法
CN111056836A (zh) 一种高Tc低阻无铅PTC材料的制备方法
CN104557024A (zh) 高居里温度无铅钛酸钡基ptcr陶瓷材料及制备和应用
CN105174936B (zh) 一种高电位梯度和强通流能力的氧化锌电阻片生产工艺
CN101412625B (zh) 高居里点无铅ptc热敏陶瓷电阻材料
CN110922182A (zh) 高梯度、低泄漏电流陶瓷的制备方法
CN105523759A (zh) 一种热敏陶瓷电阻及其制备方法
CN104844196B (zh) 一种高居里温度ptc热敏陶瓷材料
CN108863344B (zh) 一种高性能ZnO压敏陶瓷的制备工艺
CN113149636A (zh) 低铅ptc材料
CN102531579B (zh) 陶瓷介质材料及其制备方法和陶瓷电容器及其制备方法
CN101792316B (zh) 高居里点的无铅ptcr热敏陶瓷材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhu Xingwen

Inventor after: Ren Huiru

Inventor after: Niu Weijian

Inventor after: Li Chen

Inventor after: Jiang Yiyang

Inventor after: Jiang Wenzhong

Inventor after: Zhou Xiao

Inventor before: Zhu Xingwen

Inventor before: Ren Huiru

Inventor before: Niu Weijian

Inventor before: Li Chen

Inventor before: Jiang Yiyang

Inventor before: Jiang Wenzhong

Inventor before: Zhou Xiao

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104