CN106268809A - 一种优先暴露(110)晶面的氧化铜纳米片高效co催化剂的制备方法 - Google Patents

一种优先暴露(110)晶面的氧化铜纳米片高效co催化剂的制备方法 Download PDF

Info

Publication number
CN106268809A
CN106268809A CN201610861537.6A CN201610861537A CN106268809A CN 106268809 A CN106268809 A CN 106268809A CN 201610861537 A CN201610861537 A CN 201610861537A CN 106268809 A CN106268809 A CN 106268809A
Authority
CN
China
Prior art keywords
catalyst
preparation
nano
cuo
crystal face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610861537.6A
Other languages
English (en)
Inventor
郭瑶
刘洋
彭洪根
王翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201610861537.6A priority Critical patent/CN106268809A/zh
Publication of CN106268809A publication Critical patent/CN106268809A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

一种优先暴露(110)晶面的氧化铜纳米片高效CO催化剂的制备方法,该催化剂是采用微波法和沉淀法制备的氧化铜纳米棒、纳米花及颗粒,经H2O2处理后得到优先暴露(110)晶面的氧化铜纳米片材料。催化剂活性组分为CuO。在常压、反应气组成为1% CO,21% O2,N2平衡气,空速为1,800 ml/(g h),在140 oC以下即可完全转化CO,相较于处理前的CuO纳米棒、纳米花、纳米颗粒,温度降低了30 oC。催化剂的制备方法简单易行,对较低活性的CuO纳米材料进行简单快速处理,即可大幅度提高其活性,具有实用价值。

Description

一种优先暴露(110)晶面的氧化铜纳米片高效CO催化剂的制 备方法
技术领域
本发明涉及一种一氧化碳低温催化氧化催化剂及其制备方法,属于环境保护和大气污染治理领域。
技术背景
CO低温催化氧化在很多领域具有极高的实际应用价值,从而受到了广泛关注。如用于矿山井下的救生舱和防毒面具、机动车尾气消除、CO气体灵敏检测器及封闭式CO2激光器等方面,在采矿、冶金以及军事领域,CO防毒面具或呼吸保护装置均得到了广泛的使用。
目前,一氧化碳消除催化剂目前主要有负载型Au、Pd、Pt等贵金属催化剂和非贵金属催化剂,如氧化铜、氧化锰及氧化铈催化剂等。由于贵金属价格昂贵、资源匮乏,发展廉价、高效、稳定的过渡金属氧化物催化剂,是当今的研究主流。其中以氧化铜纳米材料为主要成分的催化剂,以其突出的表面效应以及对一氧化碳低温催化氧化的高活性,成为了研究热点课题之一。
中国专利CN101633519公开了一种纯相纳米晶CuO块体材料,但其采用了机械研磨和等离子体煅烧等方法,属于粉末冶金的技术领域。中国专利CN102583500公开了一种稳定的高比表面CuO纳米溶胶的制备方法,得到的氧化铜纳米材料为纳米片结构,但其制备过程中加入了Zn(NO3)2。中国专利CN102773099公开了一种Cu-Cu2O-CuO三元铜基固溶催化剂及其制备方法,但是其配方中含有铜单质和氧化亚铜,且用于有机硅单体合成领域。中国专利CN101264923公开了一种稻草状结构CuO及其制备方法,但是这种纳米稻草是有多簇氧化铜纳米线从衬底直接生长而成。且该材料用于发射场阴极材料。
发明内容
本发明的目的在于针对现有技术不足提供一种优先暴露(110)晶面的氧化铜纳米片高效CO催化剂的制备方法。
本发明的催化剂为氧化铜纳米片催化剂,活性组分为氧化铜,催化剂的比表面为35 ~ 45 m2/g。
本发明所述制备方法包含以下步骤:
1. CuO纳米颗粒的制备:首先配置0.5-1.5 mol/L的铜盐溶液,在室温下,加入到2mol/L的Na2CO3水溶液中,控制pH为8~10范围内并连续搅拌2~6 h,过滤、洗涤、干燥,最后在空气气氛300 oC焙烧4 h得到CuO纳米颗粒;
2. CuO纳米花的制备,首先配置0.5-1.5 mol/L的铜盐溶液,在室温下,加入到2 mol/L的Na2CO3水溶液中在pH为8~10范围内搅拌并在500 W功率下,于70 oC~110 oC微波加热处理10 min,过滤、洗涤、干燥,最后在空气气氛300 oC焙烧4 h得到CuO纳米花;
3. 优先暴露(110)晶面CuO纳米片催化剂的制备:将前述制备好的氧化铜纳米颗粒及氧化铜纳米花,浸入质量分数为1% ~30%浓度的H2O2溶液中,在超声条件下处理30 ~120min,沉淀物经过滤滤、洗涤后,于110 oC干燥12 h,制得成品优先暴露(110)晶面的CuO纳米片催化剂。
本发明中的催化剂主要应用于常压、低温,CO氧化反应。
本发明的有益效果是:本发明采用H2O2处理法制备催化剂,得到的催化剂比表面积更大,表面活泼氧更多,优先暴露(110)活泼晶面;本发明催化剂的原料简单易得,而且可以通过处理其它成品CuO材料制得,材料来源广,成本低廉。制备过程方便,使用条件简单,对一氧化碳的低温催化氧化效果明显,而且稳定性好,因此具有很好的工业化前景。所述催化剂制备方法简单易于操作,而且可以通过处理其它成品CuO材料制得,材料来源广,成本低廉,适合规模化生产;催化剂一氧化碳的起燃和完全燃烧温度较低,具有较高的实用价值。
附图说明
图1 为不同浓度H2O2处理CuO纳米花CO活性测试结果图;
图2 为30% H2O2处理CuO纳米颗粒CO活性测试结果图;
图3为不同浓度H2O2处理氧化铜纳米花;
图4为纳米颗粒(B) XRD测试结果图;
图5为H2O2处理前后氧化铜纳米花(A, B)和氧化铜纳米颗粒(C, D) SEM照片;
图6为氧化铜纳米花(A, B)和H2O2处理后(C, D)HRTEM照片。
具体实施方式
为了更清楚的说明本发明,列举以下实施例,但其对本发明的范围无任何限制。
实施例1
将2.02 g Cu(NO3)2·3H2O和5 mL DMF溶于10 mL蒸馏水中,形成均匀的透明溶液,将混合溶液置于MCR-3微波反应器中,以500 W微波功率70 oC下加入1 mol/L Na2CO3溶液30 mL,继续反应10 min,沉淀物经抽滤、洗涤后,110 oC下干燥过夜,300 oC空气氛焙烧4 h。取焙烧后的材料粉末1 g于烧杯中,加入10 mL浓度为10% (1%、5%、15%)的H2O2溶液,在超声震荡的条件下处理60 min,沉淀物经过滤、洗涤,110 oC干燥得到成品催化剂,测得催化剂比表面积为47 m2/g。
实施例2
将2.02 g Cu(NO3)2·3H2O溶于10 ml蒸馏水中,形成均匀的透明溶液,在磁力搅拌的条件下逐滴加入到30 mL 的1 mol/L Na2CO3溶液当中,至pH约为8.30,继续搅拌4 h,过滤、洗涤、干燥,然后在300 oC马弗炉中焙烧4 h。取焙烧后的材料粉末1 g于烧杯中,加入30 mL浓度为30%的H2O2溶液,在超声震荡的条件下处理60 min,沉淀物经过滤、洗涤,110 oC干燥得到成品催化剂,测得催化剂比表面积为87 m2/g。
上述制备催化剂用于催化一氧化碳燃烧反应
取0.1 g 颗粒大小为10-20目的催化剂1-3置于内径6 mm的石英管反应器中,通入1%CO, 21% O2, N2平衡气的反应气体,空速为1,800 ml/(g h),结果见图1和图2。
从图1中可以看出,随着H2O2浓度增大,催化剂活性逐渐提高,到浓度超过10%后,活性基本不再发生变化,说明10 mL浓度为10%的H2O2处理氧化铜纳米花,已经足够使材料完全转变为纳米片结构。XRD (图3)和SEM (图5 A, B)结果也证明了这个结论,结果见图3。
从图2中可以看出,30%的H2O2处理后,氧化铜纳米颗粒的活性有了明显提高,说明其结构发生了变化,XRD (图4)和SEM (图6C, D)结果证明了这个结论。
从图3中可以看出,随着H2O2浓度的增加,氧化铜纳米花和纳米颗粒的XRD均表现出了,(110)晶面特征衍射峰增强,(-111)晶面特征衍射峰减弱的现象。当处理氧化铜纳米花的H2O2浓度超过10%后,其特征峰不再发生变化。当处理氧化铜纳米颗粒的H2O2浓度达到30%后,其特征峰强度在同系列中变化最大。这也与其活性测试结果相吻合。、
从图6中可以看出,H2O2处理前,氧化铜纳米花的主要暴露晶面为(111)晶面和(-111)晶面。而H2O2处理后,氧化铜纳米花结构转变为纳米片,其主要暴露晶面为(110)晶面和(111)晶面,这与XRD结果是相一致的。

Claims (1)

1.一种优先暴露(110)晶面的氧化铜纳米片高效CO催化剂的制备方法,其特征在于:
A. CuO纳米颗粒的制备:首先配置0.5-1.5 mol/L的铜盐溶液,在室温下,加入到2mol/L的Na2CO3水溶液中,控制pH为8~10范围内并连续搅拌2~6 h,过滤、洗涤、干燥,最后在空气气氛300 oC焙烧4 h得到CuO纳米颗粒;
B. CuO纳米花的制备,首先配置0.5-1.5 mol/L的铜盐溶液,在室温下,加入到2 mol/L的Na2CO3水溶液中在pH为8~10范围内搅拌并在500 W功率下,于70 oC~110 oC微波加热处理10 min,过滤、洗涤、干燥,最后在空气气氛300 oC焙烧4 h得到CuO纳米花;
C. 优先暴露(110)晶面CuO纳米片催化剂的制备:将前述制备好的氧化铜纳米颗粒及氧化铜纳米花,浸入质量分数为1% ~30%浓度的H2O2溶液中,在超声条件下处理30 ~120min,沉淀物经过滤滤、洗涤后,于110 oC干燥12 h,制得成品优先暴露(110)晶面的CuO纳米片催化剂。
CN201610861537.6A 2016-09-29 2016-09-29 一种优先暴露(110)晶面的氧化铜纳米片高效co催化剂的制备方法 Pending CN106268809A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610861537.6A CN106268809A (zh) 2016-09-29 2016-09-29 一种优先暴露(110)晶面的氧化铜纳米片高效co催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610861537.6A CN106268809A (zh) 2016-09-29 2016-09-29 一种优先暴露(110)晶面的氧化铜纳米片高效co催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN106268809A true CN106268809A (zh) 2017-01-04

Family

ID=57715377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610861537.6A Pending CN106268809A (zh) 2016-09-29 2016-09-29 一种优先暴露(110)晶面的氧化铜纳米片高效co催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106268809A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947995A (zh) * 2017-04-28 2017-07-14 合肥工业大学 一种单相CuO纳米片阵列薄膜及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084410A (zh) * 2015-08-15 2015-11-25 淮北师范大学 一种可调控球状CuO微纳米分级结构的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084410A (zh) * 2015-08-15 2015-11-25 淮北师范大学 一种可调控球状CuO微纳米分级结构的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGGEN PENG ET AL: ""Treating Copper(II) Oxide Nanoflowers with Hydrogen Peroxide: A Novel and Facile Strategy To Prepare High Performance Copper(II) Oxide Nanosheets with Exposed (110) Facets"", 《CHEM. CAT. CHEM.》 *
张帆 等: ""纳米CuO的制备及其表面改性"", 《辽宁化工》 *
罗元香 等: ""纳米CuO的制备及对NH4ClO4热分解的催化性能"", 《无机化学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947995A (zh) * 2017-04-28 2017-07-14 合肥工业大学 一种单相CuO纳米片阵列薄膜及其制备方法
CN106947995B (zh) * 2017-04-28 2018-12-21 合肥工业大学 一种单相CuO纳米片阵列薄膜及其制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties
CN105597777B (zh) 一种有序介孔碳负载Cu-Mn双金属脱硝催化剂及其制备方法
Amu-Darko et al. Metal-organic frameworks-derived In2O3/ZnO porous hollow nanocages for highly sensitive H2S gas sensor
CN106975479B (zh) 一种海胆状CeO2-MnO2复合氧化物催化剂的制备方法
JP2013063895A (ja) 多孔質シリカ内包粒子の製造方法および多孔質シリカ、多孔質シリカ内包粒子
CN107364897A (zh) 一种铁酸锌纳米材料的制备方法
Chen et al. Synthesis of ZnO and Au tethered ZnO pyramid-like microflower for photocatalytic degradation of orange II
Goodall et al. Structure–property–composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants
CN104707658A (zh) 一种Pd/金属有机骨架化合物催化剂及其制备方法和应用
CN109174141A (zh) 一种复合纳米光催化材料的制备方法
JP2005343782A (ja) テルル化ビスマスナノ粒子の製造方法及びテルルナノ粒子の製造方法
CN110465291B (zh) 一种单原子贵金属型催化剂Ru/Cr2O3及其制备方法和应用
Guo et al. MOF-derived Co3O4 hierarchical porous structure for enhanced acetone sensing performance with high sensitivity and low detection limit
Xu et al. Fabricaion of improved novel p–n junction BiOI/Bi2Sn2O7 nanocomposite for visible light driven photocatalysis
CN111921522A (zh) 一种室温催化氧化甲醛的掺锑氧化锡-氧化锰复合催化剂及其制备方法
CN110575832A (zh) 银-二氧化钛-纳米金刚石复合光催化剂的制备方法及其应用
CN107497442A (zh) 一种制备高效稀土元素负载铜铝基催化剂的方法及其所制备的催化剂
CN109622005A (zh) 一种多孔碳负载型含氮双金属催化剂的制备方法及其电化学应用
CN104003433A (zh) 一种纳米氧化铜材料的制备方法
CN108273528A (zh) 一种制备纳米棒状高碘氧铋光催化剂的方法
CN108325525A (zh) 一种催化氧化低浓度甲烷的催化剂及其制备方法以及应用
CN112076757A (zh) 一种醋酸刻蚀制备多孔LaCoO3钙钛矿催化剂的方法
CN110871074A (zh) 多孔纳米片基NiCo2O4纳米管用于高效碳烟催化消除
CN106179215A (zh) 水生植物生物炭‑碳纳米管复合材料的制备方法与应用
CN114558580B (zh) 水滑石基CoNiV复合氧化物催化剂的制备方法及逃逸氨脱除应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170104