CN106252385A - 半导体结构 - Google Patents

半导体结构 Download PDF

Info

Publication number
CN106252385A
CN106252385A CN201510642881.1A CN201510642881A CN106252385A CN 106252385 A CN106252385 A CN 106252385A CN 201510642881 A CN201510642881 A CN 201510642881A CN 106252385 A CN106252385 A CN 106252385A
Authority
CN
China
Prior art keywords
jte
district
conduction type
semi
conducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510642881.1A
Other languages
English (en)
Other versions
CN106252385B (zh
Inventor
黄智方
张庭辅
徐华志
江政毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN106252385A publication Critical patent/CN106252385A/zh
Application granted granted Critical
Publication of CN106252385B publication Critical patent/CN106252385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thyristors (AREA)

Abstract

本发明提供一种半导体结构,包含:一基板,具有一第一传导类型的半导体材料;一外延层,设置于基板上,并具有第一传导类型的半导体材料;一主动区,为半导体结构的工作区域;以及一边缘保护区,用以保护该主动区。其中,边缘保护区中的JTE区为第二传导类型的半导体材料;反向掺杂区设置于JTE区中且为第一传导类型的半导体材料;以及反向掺杂区中第一传导类型的半导体材料浓度沿一方向递增。

Description

半导体结构
技术领域
本发明是关于一种半导体结构,尤指一种具有反向掺杂(counter-doped)的半导体结构。
背景技术
目前商用碳化硅的产品,如二极管、金属氧化物半导体场效应晶体管(MOSFETs),结型场效应晶体管(JFETs)的和双极晶体管(BJTs)等,其边缘保护区(Edge Termination)是关键的功能,是用以确保高电压的操作。
请参考图1~图5已知技术中,保护环(Guard Ring)和接面终极延伸(JunctionTermination Extension,以下简称JTE)是平面边缘端点的两个重要技术。图1为单一区的P型JTE、图2为单一区的P型JTE搭配外部P型保护环,图3为双区的P型JTE,图4为双区的P型JTE搭配P型内部保护环与外部保护环,图5为单一区的P型JTE搭配P型内部保护环与外部保护环。
已知技术提供了一种半导体结构,其包括N型碳化硅层11,其上具有一个P型掺杂区12以及P型JTE区13。
如图1与图2所示,其结构为单一的P型JTE,且图2的结构为单一区的P型JTE搭配外部保护环14;图3与图4为双区的P型JTE,且图4的结构为双区的P型JTE搭配外部保护环14;如图5所示,已知技术是利用内部P型保护环15提供相同的电荷,以使P型JTE的电荷浓度增加,达到调整电荷的目的。
发明内容
本发明的目的之一,是提供一种利用反向掺杂的半导体结构。
本发明的目的之一,是提供一种具有反向掺杂区设置于JTE区的内部。
本发明提供一种半导体结构,包含:一基板,具有一第一传导类型的半导体材料;一外延层,设置于基板上,并具有第一传导类型的半导体材料;一主动区,为所述半导体结构的工作区域;以及一边缘保护区,用以保护所述主动区,且所述边缘保护区包含:
一第一JTE区,设置于外延层中,第一JTE区为一第二传导类型的半导体材料;一第二JTE区,设置于外延层中并接触于第一JTE区,第二JTE区为第二传导类型的半导体材料;至少一第一反向掺杂区,为所述第一传导类型的半导体材料且设置于所述第二JTE区内;其中,所述第一传导类型的半导体材料与所述第二传导类型的半导体材料的传导类型相异;以及一掺杂区,设置于磊晶层中并接触第一JTE区,并具有第二传导类型之半导体材料;其中,第一JTE区中第二传导类型的半导体材料的浓度小于第二JTE区。
本发明提供一种半导体结构,其中,所述半导体结构包含:
一基板,具有一第一传导类型的半导体材料;
一外延层,设置于所述基板上,并具有所述第一传导类型的半导体材料;
一主动区,为所述半导体结构的工作的区域;以及
一边缘保护区,用以保护所述主动区,且所述边缘保护区包含:
一JTE区,设置于所述外延层中,所述JTE区为一第二传导类型的半导体材料;以及
至少一反向掺杂区,为所述第一传导类型的半导体材料且设置于JTE区内;所述反向掺杂区于所述JTE区具有一预设深度,且部分所述反向掺杂区超出所述JTE区的边缘并接触所述外延层;
其中,所述第一传导类型的半导体材料与所述第二传导类型的半导体材料的传导类型相异;所述反向掺杂区中所述第一传导类型的半导体材料浓度沿一方向递增。
本发明提供一种利用反向掺杂的半导体结构,其通过利用反向掺杂的方法降低原本JTE区的原有的半导体材料浓度,以减化工艺并依然可维持最大击穿电压值,且降低击穿电压对表面电荷的敏感度。
附图说明
图1~图5显示背景技术的半导体结构剖面示意图。
图6A显示本发明的半导体结构于一实施例剖面示意图。
图6B显示本发明的半导体结构于一实施例剖面示意图。
图7是背景技术、本发明的JTE区浓度与击穿电压的比较图。
图8是背景技术、本发明的表面电荷(Surface Charge)、与击穿电压的比较图。
图9是比较背景技术与本发明的耐电压程度的比较图。
图10显示本发明一实施例的半导体结构剖面示意图。
附图标号
11 N型碳化硅层11
12 P型掺杂区
13 P型JTE区
14 外部保护环
15 内部保护环
600a、600b、1000 半导体结构
60、160 基板
61、161 外延层
62~63、65、162~163、165 JTE区
64、164 掺杂区
CD1~CD4 反向掺杂区
D1 方向
O 介电层
T1、T2 电极
主动区 A
边缘保护区 E
具体实施方式
请同时参阅图6A显示本发明半导体结构于一实施例剖面示意图。半导体结构600a包含:基板60、外延层61、第一JTE区62、第二JTE区63、掺杂区64、反向掺杂区CD1~CD4。
在此请注意,半导体结构600a的第一JTE区62、第二JTE区63以及反向掺杂区CD1~CD4可视为边缘保护区(Termination)E,而掺杂区64与电极T2可视为主动区(Active Area)A,边缘保护区E是用以保护主动区A于高电压时的操作,主动区A是主要为半导体结构600工作区域。
然而,本实施例主动区A以PIN二极管结构为例,其主动区A亦可为肖特基二极管,金属氧化物半导体场效应晶体管(MOSFETs),结型场效应晶体管(JFETs),绝缘栅双极型晶体管(IGBTs)和双极晶体管(BJTs)等结构所实现。
又基板60为第一传导类型的半导体材料,在本实施例中,基板60为N型碳化硅(4H-SiC N+)基板所实现。外延层61设置于基板60上,并具有第一传导类型的半导体材料,在本实施例中,外延层61为一N型外延层(N-Epi-layer)所实现,但本发明不应以此为限。
第一JTE区62设置于外延层61中,第一JTE区62为一第二传导类型的半导体材料;相同地,第二JTE区63亦设置于外延层61中并接触于第一JTE区62,第二JTE区63为第二传导类型的半导体材料。掺杂区64设置于外延层6中并接触第一JTE区62,掺杂区64具有第二传导类型的半导体材料。
在本发明中第一传导类型的半导体材料与第二传导类型的半导体材料的传导类型相异,换言之,在本实施例中的外延层61为N型外延层时,则第一JTE区62与第二JTE区63为P型JTE区(P-JTE)。
再者,本发明是通过第二JTE区63中多个反向掺杂(Counter-doped)区进行浓度控制,在本实施例中具有四个反向掺杂区CD1~CD4,但本发明不应以此为限。
在第二JTE区63包含四个反向掺杂区CD1~CD4,且反向掺杂区CD1~CD4为第一传导类型的半导体材料,故在本实施例中为N型半导体材料,且反向掺杂区CD1~CD4的N型半导体材料其浓度可依需求进行调整;换言之,其第一JTE区62与第二JTE区63中第二传导类型的半导体材料浓度会依据反向掺杂区CD1~CD4的N型半导体材料的宽度或浓度调整。
需注意,图6A中第一JTE区62与第二JTE区63之间是绘示虚线区隔,其仅止表示第二JTE区63在设置反向掺杂区CD1~CD4后,其第一JTE区62与第二JTE区63的第二传导类型的半导体材料浓度具有区域性的差异,意即在反向掺杂区CD1~CD4所在的第二JTE区63的第二传导类型的半导体材料浓度会降低,故此时第一JTE区62与第二JTE区63中的第二传导类型的半导体材料浓度不会相同。
请注意,在本实施例中第一JTE区62与第二JTE区63的P型半导体材料的浓度,因反向掺杂区CD1~CD4的N型半导体材料浓度沿方向D1递增,如此一来,半导体结构600可通过第二JTE区63设置反向掺杂区CD1~CD4,使原有第二JTE区63的P型半导体材料其浓度,因掺杂了N型半导体材料而沿方向D1呈线性或非线性递减,且方向D1是远离第一JTE区62;故第一JTE区62与第二JTE区63的P型半导体材料浓度,因反向掺杂区CD1~CD4掺杂N型半导体材料,使第一JTE区62与第二JTE区63的P型半导体材料浓度具有多区域的效果。换言之,此时第一JTE区62中第二传导类型的半导体材料的浓度高于第二JTE区63。
在本实施例中,反向掺杂区CD1~CD4的浓度介于1×1011/cm2~1×1014/cm2,且第一反向掺杂区于第二JTE区63的深度为0.1um~3um。
在另一实施例中,反向掺杂区CD1~CD4的N型半导体材料宽度及浓度的大小顺序为CD4>CD3>CD2>CD1,换言之,位于第二JTE区63边缘的反向掺杂区CD4的N型半导体材料宽度或浓度大于其他反向掺杂区CD1~CD3。
在另一实施例中,邻近的反向掺杂区具有80%的浓度差异,意即反向掺杂区CD1的N型半导体材料浓度为反向掺杂区CD2的N型半导体材料浓度的80%。
另外,结构600a的反向掺杂区CD4的部分区域设置于第二JTE区63之外,且半导体结构600a更包含:电极T1、T2、介电层O。基板60设置于电极T1上,电极T2设置于部分掺杂区64;介电层O接触电极T2并设置于部分掺杂区64、第一JTE区62、第二JTE区63以及外延层61上。在本实施例中,电极T1为阴极(Cathode)所实现,电极T2为阳极(Anode)所实现。
接着请同时参考图6B,半导体结构600b与600a差异在于,半导体结构600b的边缘保护区E包含第三JTE区65。
基板60设置于电极T1上,电极T2设置于部分掺杂区64;介电层O接触电极T2并设置于部分掺杂区64、第一JTE区62、第二JTE区63、第三JTE区65以及外延层61上。
第三JTE区65设置于外延层61中,第三JTE区65与第一JTE区62及第二JTE区63相同,在本实施例都具有P型半导体材料,且第三JTE区65与第二JTE区63相邻。在一实施例中,其第一JTE区62、第二JTE区63以及第三JTE区65可在同一工艺中制造。
请注意,本实施例中具有两个第三JTE区65,是不设置于第一JTE区62及第二JTE区63中,且第三JTE区65可视为设置于第一JTE区62及第二JTE区63的外部保护环(Outer Guard Ring),主要减少第三JTE区65所在位置的电场,而反向掺杂区CD1~CD4为设置于第一JTE区62及第二JTE区63的内部保护环(Inner GuardRing)。在两个第三JTE区65之间具有一个分隔区域,故两个第三JTE区65是不连续的区域。
再者,反向掺杂区CD1~CD4之间的距离为0.1um~10um,且反向掺杂区CD4与相邻的第三JTE区65的距离为0.1um~10um,相邻的第三JTE区65之间距离为0.1um~10um;由于反向掺杂区CD4的部分区域设置于第二JTE区63之外,故反向掺杂区CD4可超出第二JTE区63的宽度为0.1um~10um。
请注意,因部分反向掺杂区CD4超出第二JTE区63,故与已知技术相比,本实施例的击穿电压会高于已知技术。
本发明的半导体结构600a与600b的特点是在p型的第二JTE区62加入反向掺杂区CD1~CD4,以降低第二JTE区的P型半导体材料的浓度。除此之外,反向掺杂区CD1~CD4浓度可通过区域的位置和宽度进行调整,使第一JTE区62及第二JTE区63达到多区域P型JTE区的效果。
接着请参考图7,图7是背景技术、本发明的JTE区浓度与击穿电压的比较图。其中,SZ-JTE是表示单一区的P型JTE结构(对比图1结构)、SZ-JTE为单一区P型JTE搭配外部P型保护环(对比图2结构)、TZ-JTE为双区的P型JTE(对比图3结构)、SM-JTE为双区的P型JTE搭配P型内部保护环与外部保护环(对比图4结构)、GA-JTE+OR为单一区的P型JTE搭配P型内部保护环与外部保护环(对比图5结构)以及CD-JTE+OR为本发明的600b的结构,横轴为JTE区浓度变化,纵轴为可达到的最大击穿电压。
如图7所示,CD-JTE+OR结构具有宽广的JTE浓度变化区域,因本发明具有多区段JTE区并搭配外环结构组合,使JTE浓度范围延长,即JTE区浓度在9×1012cm-2至20×1012cm-2时,其击穿电压均能维持于3500V以上;相对应地,以SZ-JTE结构为例,SZ-JTE结构则显示了一个狭窄的浓度与击穿电压的区域,即JTE区浓度超过9×1012cm-2后,其击穿电压为迅速下降。
接着请参考图8,图8是背景技术、本发明的表面电荷(Surface Charge)、与击穿电压的比较图。由于一般半导体结构在工艺中是存在正或负的表面电荷,当表面电荷带负电荷时,由图可知均不影响已知技术与本发明的击穿电压;但若表电荷为正电荷时,已知技术的半导体结构的击穿电压即快速降低,但本发明CD-JTE+OR半导体结构的特点在于可降低对表面电荷的敏感度,故本实例的击穿电压并不受影响仍维持在一范围中。
接着请参考图9,图9是比较背景技术与本发明的耐电压程度的比较图。其中,CD-JTE是代表本发明一实施例的结构,即具有反向掺杂区但不具有外部保护环的结构;CD-JTE+OR是代表本发明一实施例的结构,即具有反向掺杂区且具有外部保护环的结构。
在图9中可以了解,通过反向掺杂区进行JTE区对浓度调整后,则CD-JTE与CD-JTE+OR能比背景技术承受更高的电压,其击穿电压能维持在4500V左右;而背景技术的击穿电压在仅在4000V以下。
请注意,在一实施例中,其第一传导类型的半导体材料若为N型半导体材料时,则第二传导类型的半导体材料为P型半导体材料;反之,若第一传导类型的半导体材料若为P型半导体材料时,则第二传导类型的半导体材料为N型半导体材料。
请参考图10,图10显示本发明一实施例的半导体结构剖面示意图。本实例半导体结构1000与600b差异在于,半导体结构1000的第一传导类型的半导体材料为P型半导体材料,而第二传导类型的半导体材料为N型半导体材料。意即本实施例的基板160为P型碳化硅基板所实现,外延层161为一P型外延层所实现,掺杂区164、第一JTE区162、第二JTE区163以及第三JTE区165为N型半导体材料,反向掺杂区CD1~CD4为P型半导体材料,电极T1仍为阴极,电极T2为阳极所实现,其余结构与原理与前述相同,在此不另行赘述。
综上所述,本发明的半导体结构通过利用反向掺杂的方法,使原本JTE区的原有的半导体材料浓度降低,以减化工艺并依然可维持最大击穿电压值,且降低击穿电压对表面电荷的敏感度。

Claims (12)

1.一种半导体结构,其特征在于,所述半导体结构包含:
一基板,具有一第一传导类型的半导体材料;
一外延层,设置于所述基板上,并具有所述第一传导类型的半导体材料;
一主动区,为所述半导体结构的工作区域;以及
一边缘保护区,用以保护所述主动区,且所述边缘保护区包含:
一第一接面终极延伸JTE区,设置于所述外延层中,所述第一JTE区为一第二传导类型的半导体材料;
一第二JTE区,设置于所述外延层中并接触于所述第一JTE区,所述第二JTE区为所述第二传导类型的半导体材料;以及
至少一第一反向掺杂区,为所述第一传导类型的半导体材料且设置于所述第二JTE区内;
其中,所述第一传导类型的半导体材料与所述第二传导类型的半导体材料的传导类型相异。
2.根据权利要求1所述的结构,其特征在于,所述第一反向掺杂区中所述第一传导类型的半导体材料的浓度是依据所述第一反向掺杂区的宽度或浓度调整。
3.根据权利要求2所述的结构,其特征在于,所述第一反向掺杂区中的所述第一传导类型的半导体材料浓度沿一方向呈线性或非线性递增。
4.根据权利要求3所述的结构,其特征在于,所述方向是远离所述第一JTE区。
5.根据权利要求4所述的结构,其特征在于,所述第一反向掺杂区部分区域设置于所述第二JTE区之外。
6.根据权利要求5所述的结构,其特征在于,所述主动区包含:
一掺杂区,设置于所述外延层中并接触所述第一JTE区,并具有所述第二传导类型的半导体材料;以及
一第一电极,所述基板设置于所述第一电极上。
7.根据权利要求6所述的结构,其特征在于,所述结构更包含:
一第二电极,设置于部分所述掺杂区上;以及
一介电层,接触所述第二电极并设置于部分所述掺杂区、所述第一JTE区、所述第二JTE区以及所述外延层上;以及
至少一第三JTE区,设置于所述外延层中,具有所述第二传导类型的半导体材料,且所述第三JTE区与所述第二JTE区相邻。
8.根据权利要求5所述的结构,其特征在于,当所述第一传导类型材料为一N型传导类型材料时,第二传导类型材料为一P型传导类型材料;以及,当所述第一传导类型材料为一P型传导类型材料时,第二传导类型材料为一N型传导类型材料。
9.根据权利要求1所述的结构,其特征在于,所述第一反向掺杂区的浓度介于1×1011/cm2~1×1014/cm2,所述第一反向掺杂区于所述第二JTE区的深度为0.1um~3um。
10.根据权利要求7所述的结构,其特征在于,所述结构更包含:
两个第三JTE区,邻近的所述第三JTE区具有一分隔区域;
其中,邻近的所述第三JTE区是不连续的区域。
11.一种半导体结构,其特征在于,所述半导体结构包含:
一基板,具有一第一传导类型的半导体材料;
一外延层,设置于所述基板上,并具有所述第一传导类型的半导体材料;
一主动区,为所述半导体结构的工作的区域;以及
一边缘保护区,用以保护所述主动区,且所述边缘保护区包含:
一接面终极延伸JTE区,设置于所述外延层中,所述JTE区为一第二传导类型的半导体材料;以及
至少一反向掺杂区,为所述第一传导类型的半导体材料且设置于JTE区内;所述反向掺杂区于所述JTE区具有一预设深度,且部分所述反向掺杂区超出所述JTE区的边缘并接触所述外延层;
其中,所述第一传导类型的半导体材料与所述第二传导类型的半导体材料的传导类型相异;所述反向掺杂区中所述第一传导类型的半导体材料浓度沿一方向递增。
12.根据权利要求11所述的结构,其中,所述反向掺杂区的浓度介于1×1011/cm2~1×1014/cm2,所述第一反向掺杂区于所述JTE区的预设深度为0.1um~3um。
CN201510642881.1A 2015-06-05 2015-10-08 半导体结构 Active CN106252385B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104118288A TWI544622B (zh) 2015-06-05 2015-06-05 半導體結構
TW104118288 2015-06-05

Publications (2)

Publication Number Publication Date
CN106252385A true CN106252385A (zh) 2016-12-21
CN106252385B CN106252385B (zh) 2019-07-12

Family

ID=56556459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510642881.1A Active CN106252385B (zh) 2015-06-05 2015-10-08 半导体结构

Country Status (3)

Country Link
US (1) US9412807B1 (zh)
CN (1) CN106252385B (zh)
TW (1) TWI544622B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275391A (zh) * 2017-07-07 2017-10-20 泰科天润半导体科技(北京)有限公司 用于碳化硅半导体功率器件的复合终端结构及制备方法
CN108447896A (zh) * 2018-04-08 2018-08-24 深圳市太赫兹科技创新研究院 碳化硅功率器件终端结构的制造方法
CN110534559A (zh) * 2019-09-03 2019-12-03 深圳第三代半导体研究院 一种碳化硅半导体器件终端及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210273090A1 (en) * 2020-03-02 2021-09-02 Cree, Inc. Semiconductor die with improved edge termination
EP3975266A1 (en) * 2020-09-28 2022-03-30 Nexperia B.V. Semiconductor device with improved junction termination extension region

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070246791A1 (en) * 2006-04-20 2007-10-25 Hans-Joachim Schulze Power Semiconductor Device
CN103460392A (zh) * 2011-04-04 2013-12-18 三菱电机株式会社 半导体装置及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011681B2 (ja) * 2004-12-02 2012-08-29 日産自動車株式会社 半導体装置
US8835987B2 (en) * 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070246791A1 (en) * 2006-04-20 2007-10-25 Hans-Joachim Schulze Power Semiconductor Device
CN103460392A (zh) * 2011-04-04 2013-12-18 三菱电机株式会社 半导体装置及其制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275391A (zh) * 2017-07-07 2017-10-20 泰科天润半导体科技(北京)有限公司 用于碳化硅半导体功率器件的复合终端结构及制备方法
CN107275391B (zh) * 2017-07-07 2024-01-02 泰科天润半导体科技(北京)有限公司 用于碳化硅半导体功率器件的复合终端结构及制备方法
CN108447896A (zh) * 2018-04-08 2018-08-24 深圳市太赫兹科技创新研究院 碳化硅功率器件终端结构的制造方法
CN110534559A (zh) * 2019-09-03 2019-12-03 深圳第三代半导体研究院 一种碳化硅半导体器件终端及其制造方法
CN110534559B (zh) * 2019-09-03 2021-07-20 深圳第三代半导体研究院 一种碳化硅半导体器件终端及其制造方法

Also Published As

Publication number Publication date
CN106252385B (zh) 2019-07-12
TWI544622B (zh) 2016-08-01
US9412807B1 (en) 2016-08-09
TW201644047A (zh) 2016-12-16

Similar Documents

Publication Publication Date Title
US9337268B2 (en) SiC devices with high blocking voltage terminated by a negative bevel
JP6666224B2 (ja) 半導体装置
CN106252385A (zh) 半导体结构
US9368650B1 (en) SiC junction barrier controlled schottky rectifier
JP6242633B2 (ja) 半導体装置
JP6649183B2 (ja) 半導体装置
US9755014B2 (en) Semiconductor device with substantially equal impurity concentration JTE regions in a vicinity of a junction depth
TWI569457B (zh) 蕭特基二極體結構
KR20140015412A (ko) 오버랩 도핑 영역을 갖는 쇼트키 다이오드를 포함하는 반도체 디바이스 및 그 제조 방법
KR20130118306A (ko) 바이폴라 넌-펀치-쓰루 전력 반도체 디바이스
JP2016174030A (ja) 半導体装置
JP2013182905A (ja) 半導体装置
CN103311278B (zh) 快恢复二极管及制作该二极管的方法
US11276681B2 (en) Concept for silicon carbide power devices
CN106876441B (zh) 具有固定界面电荷场限环的功率器件
KR102507841B1 (ko) 반도체 소자 및 그 제조 방법
Wen et al. Design and characteristics of an etching field limiting ring for 10kV SiC power device
JP6930113B2 (ja) 半導体装置および半導体装置の製造方法
CN104037237A (zh) 一种具有环形块状埋层的沟槽式浮动结碳化硅sbd器件
Yuan et al. High performance of 5.7 kV 4H-SiC JBSs with optimized non-uniform field limiting rings termination
Deng et al. Design, Fabrication and Characterization of Ultra-High Voltage 4H-SiC MOSFET Transistors
CN106024762B (zh) 一种静电保护结构
CN104009099A (zh) 结势垒肖特基二极管及其制造方法
JP2015084444A (ja) 半導体装置
CN106298478A (zh) 一种功率器件分压结构及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20161221

Assignee: Han Xin Science and Technology Co., Ltd.

Assignor: Huang Zhifang

Contract record no.: 2018990000344

Denomination of invention: A semiconductor structure and method to isolate one first circuit and one second circuit

License type: Common License

Record date: 20181212

GR01 Patent grant
GR01 Patent grant