CN110534559A - 一种碳化硅半导体器件终端及其制造方法 - Google Patents

一种碳化硅半导体器件终端及其制造方法 Download PDF

Info

Publication number
CN110534559A
CN110534559A CN201910829001.XA CN201910829001A CN110534559A CN 110534559 A CN110534559 A CN 110534559A CN 201910829001 A CN201910829001 A CN 201910829001A CN 110534559 A CN110534559 A CN 110534559A
Authority
CN
China
Prior art keywords
subring
well region
terminal
knot
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910829001.XA
Other languages
English (en)
Other versions
CN110534559B (zh
Inventor
温正欣
叶怀宇
张国旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN201910829001.XA priority Critical patent/CN110534559B/zh
Publication of CN110534559A publication Critical patent/CN110534559A/zh
Priority to PCT/CN2019/123744 priority patent/WO2021042611A1/zh
Application granted granted Critical
Publication of CN110534559B publication Critical patent/CN110534559B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及功率半导体技术领域,公开了一种碳化硅半导体器件终端及其制造方法,该终端结构包含数个阱区辅助环、一结终端扩展、数个结终端辅助环、数个基区辅助环和一钝化层。阱区辅助环位于阱区外侧,结终端扩展紧临阱区,其深度小于阱区的深度。结终端辅助环位于结终端扩展的外侧,基区辅助环位于结终端辅助环外侧。利用较少的光刻次数和离子注入次数,通过引入阱区辅助环、结终端辅助环和基区辅助环,优化高场区的电场分布,从而改善器件的阻断特性,提高了器件阻断电压对终端掺杂浓度的容忍度。本发明还提供了在碳化硅MOSFET器件中使用本终端结构的工艺方法。

Description

一种碳化硅半导体器件终端及其制造方法
技术领域
本发明涉及碳化硅半导体器件制备领域,具体涉及一种用于高压碳化硅功率器件的终端结构及制备方法,该结构适用于1200V至20kV的高压碳化硅功率器件,能够在较少次终端注入的条件下实现高终端掺杂容忍度,显著提高器件良品率。
背景技术
碳化硅具有优良的物理和电学特性,具有低本征载流子浓度、高热导率、高击穿场强等优点以及优异的物理化学稳定性。因此碳化硅成为高温大功率半导体器件的理想材料。
然而,碳化硅基功率器件在材料成本和制备成本上远高于传统硅基功率器件,限制了碳化硅基功率器件的发展和应用。
在实际的半导体器件中,由于器件尺寸有限,在器件边缘存在结的不连续,使得结边缘存在曲率,导致表面电场集中,使得结边缘电场强度高于体内平面结电场强度,发生提前击穿。这种效应严重影响了功率器件的阻断特性。为了减缓结边缘电场集中带来的不利影响,通常会在功率器件结边缘设置结终端结构。常见的终端结构主要有场板、场限环、结终端扩展(JTE)等。
场板结构通常用于较低电压的功率半导体器件,在高压功率半导体器件中通常和其他结构复合使用。场限环结构会占用大量的器件面积,并且对光刻精度的要求较高。结终端扩展则对终端掺杂浓度以及钝化层界面电荷十分敏感,由于碳化硅材料的选择性掺杂需要通过离子注入后退火激活实现,其激活率受到离子注入温度,掺杂浓度,激活温度和激活时间等多方面因素的影响,难以准确被掌握,因此结终端扩展制备高压碳化硅器件终端良品率较低。
本发明提出一种适用于高压碳化硅功率器件的终端结构及制备方法,利用较少的光刻次数和离子注入次数,形成适用于高压碳化硅功率器件终端结构,具有对终端掺杂浓度容忍性大,兼容现有碳化硅功率器件工艺等优点。
发明内容
(一)要解决的技术问题
为解决高压碳化硅功率半导体器件终端面积过大,击穿电压对掺杂浓度容忍度不高等问题,本发明提出一种适用于高压碳化硅器件的终端结构,该终端结构占据晶片面积较小,且击穿电压对终端掺杂浓度容忍度较高,同时与现有碳化硅功率器件工艺完全兼容。
(二)技术方案
本发明的技术方案综合考虑材料特性、工艺难度、器件性能和成本等方面,提供一种适用于高压碳化硅功率器件的终端结构。
该终端结构可在碳化硅MOSFET和碳化硅IGBT等器件中实现。图一左侧为器件元胞结构,右侧虚线框内为本发明所提出的新型器件终端结构。该终端包含数个阱区辅助环(3)、一结终端扩展(4)、数个结终端辅助环(5)、数个基区辅助环(6)和一钝化层(7)。如图1所示,阱区辅助环(3)位于阱区(2)外侧。结终端辅助环(5)位于结终端扩展(4)的外侧,基区辅助环(6)位于结终端辅助环(5)外侧。上述阱区辅助环(3)、结终端扩展(4)和结终端辅助环(5)和基区辅助环(6)的顶部有热氧化及PECVD形成的钝化层(7)。
所述阱区辅助环(3)与阱区(2)同时形成,因此和阱区(2)具有相同的掺杂浓度和深度,阱区辅助环的数目为3个以上,环宽度相等,环间距逐渐增大。可选的,阱区掺杂浓度为2×1017cm-3至2×1018cm-3,深度为0.6μm至1μm,阱区辅助环由5个环构成。
所述结终端扩展(4)的深度小于阱区(2)的深度。结终端辅助环(5)和结终端扩展(4)同时形成,因此具有相同的掺杂浓度和深度。结终端辅助环(5)的数目为3个以上,环宽度相等,环间距逐渐增大。可选的,结终端扩展(4)长度为20μm至400μm,掺杂浓度为5×1016cm-3至3×1017cm-3,深度为0.4μm至0.5μm,结终端辅助环由4个环构成
所述基区辅助环(6)与器件元胞内P型基区同时形成,因此和P型基区具有相同的掺杂浓度和深度。基区辅助环(6)的数目为3个以上,环宽度相等,环间距逐渐增大。可选的,基区辅助环(6)的掺杂浓度为1×1018cm-3至5×1019cm-3,深度为0.3μm至0.4μm,基区辅助环由4个环构成。
本发明的另一方面,提出了一种包含该终端结构的碳化硅MOSFET器件的基本工艺流程。包括以下步骤:
S1:在N型碳化硅衬底上外延生长N型碳化硅外延层;
S2:离子注入同时形成阱区(2)和阱区辅助环(3);
S3:离子注入形成N型掺杂源区;
S4:离子注入同时形成P型掺杂基区和基区辅助环(6);
S5:离子注入形成结终端扩展(4)和结终端辅助环(5),之后在高温下激活退火。
S6:热氧化形成栅氧,沉积多晶硅栅电极,刻蚀电极之后淀积钝化层(7)。后续欧姆接触、刻蚀等工艺形成最终器件。
(三)有益效果
本发明设计了一种适用于碳化硅功率器件的终端结构,使用该终端结构的碳化硅功率器件,仅需要在有源区离子注入的基础上,附加一次结终端扩展离子注入就可以形成。同时该终端还具有较小的终端面积,对终端掺杂浓度的容忍性较高等优点。
图1显示了为采用单JTE终端的碳化硅MOSFET器件示意图,图2为采用本发明实施例的碳化硅MOSFET器件终端结构示意图。图3显示了单JTE终端和采用本发明的终端结构的碳化硅MOSFET器件阻断电压与结终端扩展掺杂浓度的关系图,可以看到本发明的终端结构具有更大的掺杂浓度容忍范围。
图4显示了阻断状态下采用本发明的终端结构的3300V碳化硅MOSFET器件内部电势分布,可以看到阱区辅助环、结终端扩展、结终端辅助环和基区辅助环均承担了电势降。由于场限环终端的效率对场限环的掺杂浓度不敏感,而对各环的间距和深度敏感,因此虽然基区辅助环的掺杂浓度远高于结终端扩展的掺杂浓度,但在本发明的设计中只需确保其深度小于结终端扩展,就可以使基区辅助环起到进一步均匀分担电势的作用。
附图说明
图1为采用单JTE终端的碳化硅MOSFET器件示意图。
图2为采用本发明实施例的碳化硅MOSFET器件终端结构示意图;
图3为阻断状态下采用本发明的终端结构的3300V碳化硅MOSFET器件内部电势分布;
图4为单JTE终端和采用本发明的终端结构的碳化硅MOSFET器件阻断电压与结终端扩展掺杂浓度的关系图。
图5为本发明实施例所提供的器件制备工艺流程图;
图6为本发明实施例所提供的器件制备工艺步骤S2示意图;
图7为本发明实施例所提供的器件制备工艺步骤S3示意图;
图8为本发明实施例所提供的器件制备工艺步骤S4示意图;
图9为本发明实施例所提供的器件制备工艺步骤S5示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明实施例的一方面提供了一种碳化硅器件终端结构,图1为采用本发明实施例的碳化硅MOSFET结构示意图,其中虚线框内为本发明所提出的碳化硅器件终端结构。如图1所示,该终端包含数个阱区辅助环(3)、一结终端扩展(4)、数个结终端辅助环(5)、数个基区辅助环(6)和一钝化层(7)。阱区辅助环(3)位于阱区(2)外侧,所述结终端扩展(4)紧临阱区(2)其深度小于阱区(2)的深度。结终端辅助环(5)位于结终端扩展(4)的外侧,基区辅助环(6)位于结终端辅助环(5)外侧。上述阱区辅助环(3)、结终端扩展(4)和结终端辅助环(5)和基区辅助环(6)的顶部有热氧化及PECVD形成的钝化层(7)。
在本实施例中,阱区(2)和阱区辅助环(3)的掺杂浓度为2×1017cm-3至2×1018cm-3,深度为0.6μm至1μm;结终端扩展(4)长度为20μm至400μm,掺杂浓度为5×1016cm-3至3×1017cm-3,深度为0.4μm至0.5μm;基区辅助环(6)的掺杂浓度为1×1018cm-3至5×1019cm-3,深度为0.3μm至0.4μm。阱区辅助环(3)的数目设定为5个,各环宽度4μm,间距从内向外依次增加;结终端辅助环(5)的数目设定为4个,各环宽度4μm,间距从内向外依次增加,基区辅助环(6)的数目设定为4个,环宽4μm,间距从内向外依次增加。
本发明的器件终端是在结终端扩展的基础上,通过引入阱区辅助环、结终端辅助环和基区辅助环,优化高场区的电场分布,从而改善器件的阻断特性。
本发明实施例的另一方面,提供了在使用本发明终端的碳化硅MOSFET器件基本工艺流程,包括以下步骤:
步骤S1:在N型碳化硅衬底上生长N型外延层。
步骤S2:离子注入同时形成阱区(2)和阱区辅助环(3)。
在碳化硅表面首先沉积一层厚度为20nm至100nm的二氧化硅,光刻显影后蒸发金属,经过剥离形成阱区和阱区辅助环的注入掩膜,之后使用Al离子在500℃下注入同时形成阱区(2)和阱区辅助环(3),掺杂浓度为2×1017cm-3至2×1018cm-3,深度为0.6μm。离子注入完成后,使用硫酸双氧水混合液清理掉注入掩膜,形成如图4所示结构。
步骤S3:离子注入形成N型掺杂源区。
再次光刻显影后蒸发金属,经过剥离形成源区注入掩膜,之后使用N离子在500℃下注入形成N型源区,掺杂浓度为1×1018cm-3至5×1019cm-3,深度为0.25μm。离子注入完成后,使用硫酸双氧水混合液清理掉注入掩膜,形成如图5所示结构。
步骤S4:离子注入同时形成P型掺杂基区和基区辅助环(6)。
再次光刻显影后蒸发金属,经过剥离形成基区和基区辅助环的注入掩膜,之后使用Al离子在500℃下注入,同时形成基区和基区辅助环(6),掺杂浓度为1×1018cm-3至5×1019cm-3,深度为0.3μm至0.4μm。离子注入完成后,使用硫酸双氧水混合液清洗,去掉注入掩膜,形成如图6所示结构。
步骤S5:离子注入形成结终端扩展(4)和结终端辅助环(5),之后在高温下激活退火。
再次光刻显影后蒸发金属,经过剥离形成结终端扩展区域和结终端辅助环的注入掩膜,使用Al离子在500℃下注入,同时形成结终端扩展(4)和结终端保护环(5),掺杂浓度为5×1016cm-3至3×1017cm-3,深度为0.4μm至0.5μm。注入完成后,使用硫酸双氧水混合液清理掉注入掩膜,BOE溶液去除表面二氧化硅保护层。后续在晶片表面覆盖碳膜,在Ar气环境下进行高温激活退火2小时,退火温度1700℃以上。形成如图7所示结构。
步骤S6:热氧化形成栅氧,沉积多晶硅栅电极,刻蚀电极之后淀积钝化层(7)。后续欧姆接触、刻蚀等工艺形成最终器件。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明。凡在本发明的精神和原则之内,通过改变某个区域厚度或掺杂浓度,增加或减少辅助环数目,或者在本发明的基础上,再额外增加复合终端的数目,均应包含在本发明的保护范围之内。

Claims (6)

1.一种碳化硅半导体器件终端,其特征在于,包含:
数个阱区辅助环(3)、一结终端扩展(4)、数个结终端辅助环(5)、数个基区辅助环(6)和一钝化层(7)。其中,阱区辅助环(3)位于阱区(2)外侧,所述结终端扩展(4)紧临阱区(2)其深度小于阱区(2)的深度。结终端辅助环(5)位于结终端扩展(4)的外侧,基区辅助环(6)位于结终端辅助环(5)外侧。上述阱区辅助环(3)、结终端扩展(4)和结终端辅助环(5)和基区辅助环(6)的顶部有热氧化及PECVD形成的钝化层(7)。
2.根据权利要求1所述的碳化硅半导体器件终端,其特征在于,所述阱区辅助环(3)与阱区(2)具有相同的掺杂浓度和深度。阱区掺杂浓度为2×1017cm-3至2×1018cm-3,深度为0.6μm至1μm,阱区辅助环的数目在3个以上,环宽度相等,环间距逐渐增大。
3.根据权利要求1所述的碳化硅半导体器件终端,其特征在于,所述结终端扩展(4)的深度小于阱区(2)的深度,结终端扩展(4)长度为20μm至400μm,掺杂浓度为5×1016cm-3至3×1017cm-3,深度为0.4μm至0.5μm。
4.根据权利要求1所述的碳化硅半导体器件终端,其特征在于,结终端辅助环(5)和结终端扩展(4)同时形成,因此具有相同的掺杂浓度和深度,数目为3个以上,环宽度相等,环间距逐渐增大。
5.根据权利要求1所述的碳化硅半导体器件终端,其特征在于,所述基区辅助环(6)与器件元胞内P型基区同时形成,因此与P型基区具有相同的掺杂浓度和深度,基区辅助环的掺杂浓度为1×1018cm-3至5×1019cm-3,深度为0.3μm至0.4μm。基区辅助环(6)的数目为3个以上,环宽度相等,环间距逐渐增大。
6.一种如权利要求1-5任一项所述的碳化硅半导体器件终端的制造方法,其特征在于,包括以下步骤:
S1:在N型碳化硅衬底上外延生长N型碳化硅外延层;
S2:离子注入同时形成阱区(2)和阱区辅助环(3);
S3:离子注入形成N型掺杂源区;
S4:离子注入同时形成P型掺杂基区和基区辅助环(6);
S5:离子注入形成结终端扩展(4)和结终端辅助环(5),之后在高温下激活退火。
S6:热氧化形成栅氧,沉积多晶硅栅电极,刻蚀电极之后淀积钝化层(7)。后续欧姆接触、刻蚀等工艺形成最终器件。
CN201910829001.XA 2019-09-03 2019-09-03 一种碳化硅半导体器件终端及其制造方法 Active CN110534559B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910829001.XA CN110534559B (zh) 2019-09-03 2019-09-03 一种碳化硅半导体器件终端及其制造方法
PCT/CN2019/123744 WO2021042611A1 (zh) 2019-09-03 2019-12-06 一种碳化硅半导体器件终端及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910829001.XA CN110534559B (zh) 2019-09-03 2019-09-03 一种碳化硅半导体器件终端及其制造方法

Publications (2)

Publication Number Publication Date
CN110534559A true CN110534559A (zh) 2019-12-03
CN110534559B CN110534559B (zh) 2021-07-20

Family

ID=68666504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910829001.XA Active CN110534559B (zh) 2019-09-03 2019-09-03 一种碳化硅半导体器件终端及其制造方法

Country Status (2)

Country Link
CN (1) CN110534559B (zh)
WO (1) WO2021042611A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081759A (zh) * 2019-12-10 2020-04-28 深圳第三代半导体研究院 一种增强型碳化硅mosfet器件及其制造方法
WO2021042611A1 (zh) * 2019-09-03 2021-03-11 深圳第三代半导体研究院 一种碳化硅半导体器件终端及其制造方法
CN116110943A (zh) * 2023-04-11 2023-05-12 通威微电子有限公司 一种耐压器件及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479807A (zh) * 2010-11-26 2012-05-30 三菱电机株式会社 碳化硅半导体装置及其制造方法
US20140027781A1 (en) * 2012-07-26 2014-01-30 Cree, Inc. Monolithic bidirectional silicon carbide switching devices and methods of forming the same
CN104795435A (zh) * 2014-01-21 2015-07-22 瀚薪科技股份有限公司 碳化硅功率元件
US20150214164A1 (en) * 2013-04-04 2015-07-30 Monolith Semiconductor, Inc. Semiconductor devices comprising getter layers and methods of making and using the same
CN106252385A (zh) * 2015-06-05 2016-12-21 黄智方 半导体结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534559B (zh) * 2019-09-03 2021-07-20 深圳第三代半导体研究院 一种碳化硅半导体器件终端及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479807A (zh) * 2010-11-26 2012-05-30 三菱电机株式会社 碳化硅半导体装置及其制造方法
US20140027781A1 (en) * 2012-07-26 2014-01-30 Cree, Inc. Monolithic bidirectional silicon carbide switching devices and methods of forming the same
US20150214164A1 (en) * 2013-04-04 2015-07-30 Monolith Semiconductor, Inc. Semiconductor devices comprising getter layers and methods of making and using the same
CN104795435A (zh) * 2014-01-21 2015-07-22 瀚薪科技股份有限公司 碳化硅功率元件
CN106252385A (zh) * 2015-06-05 2016-12-21 黄智方 半导体结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG-XIN WEN,ETAL.: "Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension", 《CHIN.PHYS.B》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021042611A1 (zh) * 2019-09-03 2021-03-11 深圳第三代半导体研究院 一种碳化硅半导体器件终端及其制造方法
CN111081759A (zh) * 2019-12-10 2020-04-28 深圳第三代半导体研究院 一种增强型碳化硅mosfet器件及其制造方法
CN111081759B (zh) * 2019-12-10 2022-07-15 深圳第三代半导体研究院 一种增强型碳化硅mosfet器件及其制造方法
CN116110943A (zh) * 2023-04-11 2023-05-12 通威微电子有限公司 一种耐压器件及其制作方法

Also Published As

Publication number Publication date
WO2021042611A1 (zh) 2021-03-11
CN110534559B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
CN102569067B (zh) 一种平面高压超快软恢复二极管的制造方法
CN104051540B (zh) 超级结器件及其制造方法
CN104241338B (zh) 一种SiC金属氧化物半导体晶体管及其制作方法
CN101540343A (zh) 偏移场板结构的4H-SiC PiN/肖特基二极管及其制作方法
CN107331616A (zh) 一种沟槽结势垒肖特基二极管及其制作方法
CN110534559A (zh) 一种碳化硅半导体器件终端及其制造方法
CN106169417A (zh) 一种异质结终端的碳化硅功率器件及其制备方法
CN110350035A (zh) SiC MOSFET功率器件及其制备方法
CN109686781A (zh) 一种多次外延的超结器件制作方法
CN109545842A (zh) 碳化硅器件终端结构及其制作方法
CN110896098B (zh) 一种基于碳化硅基的反向开关晶体管及其制备方法
CN109860273A (zh) Mps二极管器件及其制备方法
CN106601826A (zh) 一种快恢复二极管及其制作方法
CN103000697A (zh) 一种SiC肖特基二极管及其制作方法
KR20130049916A (ko) 실리콘 카바이드 쇼트키 베리어 다이오드 및 이의 제조방법
CN110473911A (zh) 一种SiC MOSFET器件及其制作方法
CN109461768A (zh) 一种SiC结势垒肖特基二极管及其制造方法
CN107393814A (zh) 一种mos功率器件及其制备方法
CN109713029A (zh) 一种改善反向恢复特性的多次外延超结器件制作方法
CN110752260A (zh) 新型GaN结势垒肖特基二极管及其制备方法
CN106611798A (zh) 一种n型碳化硅半导体肖特基二极管结构
CN102931081B (zh) 带场阻挡层的半导体器件的制造方法
CN111799338B (zh) 一种沟槽型SiC JBS二极管器件及其制备方法
CN107275382A (zh) 一种基于台面多区复合jte终端结构的器件及其制作方法
CN205282480U (zh) 一种具有双缓冲层的fs型igbt器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230417

Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: SOUTH University OF SCIENCE AND TECHNOLOGY OF CHINA

Address before: 518000 1st floor, Taizhou building, South University of science and technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute