CN106245092A - 一种黑色二氧化钛纳米管阵列的快速制备方法 - Google Patents

一种黑色二氧化钛纳米管阵列的快速制备方法 Download PDF

Info

Publication number
CN106245092A
CN106245092A CN201610651407.XA CN201610651407A CN106245092A CN 106245092 A CN106245092 A CN 106245092A CN 201610651407 A CN201610651407 A CN 201610651407A CN 106245092 A CN106245092 A CN 106245092A
Authority
CN
China
Prior art keywords
titanium dioxide
tube array
nano
heat treatment
dioxide nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610651407.XA
Other languages
English (en)
Other versions
CN106245092B (zh
Inventor
薛晋波
申倩倩
胡文岳
崔拴霞
张芮境
杨薛峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201610651407.XA priority Critical patent/CN106245092B/zh
Publication of CN106245092A publication Critical patent/CN106245092A/zh
Application granted granted Critical
Publication of CN106245092B publication Critical patent/CN106245092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及一种黑色二氧化钛纳米管阵列的快速制备方法,是根据二氧化钛的结构特征,采用乙二醇和氟化氨做原料,去离子水做溶剂,采用阳极氧化法制备二氧化钛纳米管阵列,然后采用铝粉包裹热处理,制备出黑色二氧化钛纳米管阵列产物,此制备方法工艺先进,数据精确翔实,产物为黑色膜状,薄膜截面呈矩形,二氧化钛纳米管阵列排列整齐均匀,与钛基底结合牢固,对紫外光和可见光有明显的吸收作用,可在太阳能发电、光伏产品中使用,是先进的黑色二氧化钛纳米管阵列的快速制备方法。

Description

一种黑色二氧化钛纳米管阵列的快速制备方法
技术领域
本发明涉及一种黑色二氧化钛纳米管阵列的快速制备方法,属无机功能材料制备及应用的技术领域。
背景技术
太阳能作为一种清洁能源,是解决能源短缺和环境污染的首选能源,太阳能可通过转换材料被转换成电能和化学能;二氧化钛具有稳定的化学性能,资源丰富,无毒性,被广泛应用于太阳能电池、光催化领域;常规颗粒状TiO2,因其在基底上的负载而使得有效的比表面积减少,应用过程中产生的光生电子-空穴对易于复合,已成为性能提升与应用的关键因素;高度有序的TiO2纳米管阵列具有高的规整度、大的比表面积、优异的电子传输速率,可应用于太阳能电池和光催化领域;由于TiO2半导体禁带宽度较宽Eg=3.2eV,只能吸收太阳光5%的紫外光部分,限制了TiO2在可见光方面的实际应用;基于这个原因,用铝粉包裹二氧化钛纳米管阵列进行退火,制备得到黑色二氧化钛纳米管阵列,扩宽了二氧化钛纳米管阵列的光吸收谱,提高了二氧化钛纳米管阵列对可见光的光响应;还有的用高温氢气还原的方法制备黑色二氧化钛,但这种方法安全性差,速度慢;黑色二氧化钛纳米管的制备还处于研究中。
发明内容
发明目的
本发明的目的是针对背景技术的状况,采用乙二醇、铝粉、氟化铵做原料,铂片、钛片做电极,经过热处理制备出黑色二氧化钛纳米管阵列,以提高二氧化钛纳米管阵列的光吸收性能,增强二氧化钛纳米管阵列对可见光的光响应,并在太阳能电池板上得到应用。
技术方案
本发明使用的化学物质材料为:乙二醇、氟化氨、铝粉、丙酮、无水乙醇、去离子水、铂片、钛片、氩气,其组合准备用量如下:以克、毫升、毫米、厘米3为计量单位
制备方法如下:
(1)配制电解液
称取氟化氨2.22g±0.001g,量取乙二醇294mL±0.001mL、去离子水6mL±0.001mL,加入烧杯中,然后置于超声波分散器内,超声波频率60KHz,超声波分散时间15min,使其充分溶解,配制成电解液;
(2)预处理铂片、钛片
①清洗钛片
将钛片置于烧杯中,加入丙酮100mL,浸泡清洗15min,清洗后晾干;
将晾干的的钛片置于另一烧杯中,加入无水乙醇100mL,浸泡清洗15min,清洗后晾干;
将晾干的钛片置于另一烧杯中,加入去离子水100mL,浸泡清洗15min,清洗后晾干;
②清洗铂片
将铂片置于烧杯中,加入丙酮100mL,浸泡清洗15min,清洗后晾干;
将晾干的铂片置于另一烧杯中,加入无水乙醇100mL,浸泡清洗15min,清洗后晾干;
将晾干的铂片置于另一烧杯中,加入去离子水100mL,浸泡清洗15min,清洗后晾干;
(3)阳极氧化制备二氧化钛纳米管阵列
阳极氧化制备二氧化钛纳米管阵列是在玻璃电解槽内进行的,是在电解液内,以钛片作阳极、铂片作阴极,在50V电压下,在磁子搅拌过程中,在钛片上氧化生成二氧化钛纳米管阵列;
①安装电极
在电解槽内,在左部位置安装阳极钛片,并由导电吊丝吊装;
在电解槽内,在右部位置安装阴极铂片,并由导电吊丝吊装;
②将配置的电解液加入电解槽内,电解液要淹没钛片和铂片高度的9/10;
③将磁子搅拌器置于玻璃电解槽内底部;
④开启直流电源,电压为50V并恒压,电解液温度为25℃,电解时间为60min,电解过程中磁子搅拌器搅拌电解液;
在电解阳极氧化过程中,在钛片上生成二氧化钛纳米管阵列,并发生化学反应,反应式如下:
式中:TiO2:二氧化钛
NH3·H2O:水合氨
TiF4:四氟化钛
O2:氧气
阳极氧化后关闭直流电源,迅速取出钛片,用去离子水冲洗;
(4)干燥
将生成二氧化钛纳米管阵列的钛片置于石英容器中,然后置于真空干燥箱中干燥,真空度6Pa,干燥温度60℃,干燥时间20min;
(5)真空热处理退火
黑色二氧化钛纳米管阵列的热处理是在真空热处理炉中进行的,是在抽真空、输氩气、加热状态下完成的;
①清理清洁真空热处理炉
打开真空热处理炉,用氩气驱除炉内有害气体,使炉内洁净;
②包裹二氧化钛纳米管阵列
将二氧化钛纳米管阵列用铝粉均匀包裹;
③将包裹铝粉的二氧化钛纳米管阵列置于石英容器内,然后置于真空热处理炉中,密闭;
抽取炉内空气,使炉内压强达6Pa;
向炉内输入氩气,氩气输入速度100cm3/min,使炉内压强恒定在0.101MPa;
开启加热器,加热温度450℃,恒温保温时间240min;
④热处理后停止加热,停止输氩气,使黑色二氧化钛纳米管阵列随炉冷却至25℃;
⑤热处理后,开炉,取出黑色二氧化钛纳米管阵列;
⑥清理清洁黑色二氧化钛纳米管阵列,即为终产物;
(6)检测、分析、表征
对制备的黑色二氧化钛纳米管阵列的色泽、形貌、成分、化学物理性能进行检测、分析、表征;
用扫描电子显微镜对黑色二氧化钛纳米管阵列进行形貌分析;
用扫描电子显微镜配带的能谱仪对黑色二氧化钛纳米管阵列进行微区元素成分分析;
用X射线衍射仪对黑色二氧化钛纳米管阵列进行物相分析;
用X射线光电子能谱仪对黑色二氧化钛纳米管阵列进行光电子能谱分析;
用紫外-可见分光光度计对黑色二氧化钛纳米管阵列进行紫外可见光吸收分析;
结论:黑色二氧化钛纳米管阵列呈黑色管状,管长≤7μm,管径≤110nm,黑色二氧化钛纳米管阵列对可见光在400-700nm波长有明显的吸收;
(7)产物储存
对制备的黑色二氧化钛纳米管阵列储存于棕色的玻璃容器中,密闭储存,要防潮、防晒、防酸碱盐侵蚀,储存温度20℃,相对湿度≤10%。
有益效果
本发明与背景技术相比具有明显的先进性,是根据二氧化钛的化学物理性能和结构特征,采用乙二醇和氟化氨做原料,去离子水做溶剂,采用阳极氧化法制备二氧化钛纳米管阵列,然后采用铝粉包裹热处理,制备出黑色二氧化钛纳米管阵列;此制备方法工艺先进,数据精确翔实,产物为黑色膜状,薄膜截面呈矩形,黑色二氧化钛纳米管阵列排列整齐均匀,与钛基底结合牢固,对紫外光和可见光有明显的吸收作用,可在太阳能发电、光伏产品中使用,是先进的黑色二氧化钛纳米管阵列的快速制备方法。
附图说明
图1、二氧化钛纳米管阵列电解状态图
图2、黑色二氧化钛纳米管阵列真空热处理状态图
图3、黑色二氧化钛纳米管阵列形貌图
图4、黑色二氧化钛纳米管X射线衍射图谱
图5、黑色二氧化钛纳米管X射线光电子能谱图
图6、黑色二氧化钛纳米管紫外可见光吸收图谱
图7、黑色二氧化钛纳米管微区元素成分分析图
图1中所示、附图标记清单如下:
1、玻璃电解槽,2、直流稳压电源,3、第一电控箱,4、磁子搅拌器,5、第一导电吊丝,6、第二导电吊丝,7、阳极钛片,8、阴极铂片,9、电解液,10、第一显示屏,11、第一指示灯,12、第一电源开关,13、直流电源电压控制器,14、直流电源电流控制器,15、第二电控箱,16、第二显示屏,17、第二指示灯,18、第二电源开关,19、加热温度控制器,20、真空泵控制器,21、真空热处理炉,22、炉盖,23、出气管阀,24、工作台,25、石英容器,26、黑色二氧化钛纳米管阵列,27、氩气瓶,28、氩气阀,29、氩气管,30、氩气,31、真空泵,32、真空阀,33、真空管,34、导线。
具体实施方式
以下结合附图对本发明做进一步说明:
图1所示,为制备二氧化钛纳米管阵列电解状态图,各部位置、连接关系要正确,按量配比,按序操作。
制备使用的化学物质的量值是按预先设置的范围确定的,以克、毫升、毫米、厘米3为计量单位。
二氧化钛纳米管阵列的制备是在烧杯内进行的,是在乙二醇、氟化氨、去离子水的电解液内,以钛片作阳极,铂片作阴极,在50V直流电压下,在磁子搅拌过程中,在钛片上生成二氧化钛纳米管阵列;
电解槽1为玻璃体矩形,电解槽1上部为直流稳压电源2、下部为第一电控箱3;电解槽1内底部置放磁子搅拌器4;电解槽1内盛放电解液9;直流稳压电源2左下部垂直设有第一导电吊丝5,并连接阳极钛片7,并深入电解液9内,直流稳压电源2右下部垂直设有第二导电吊丝6,并连接阴极铂片8,并深入电解液9内,电解液9要淹没阳极钛片7、阴极铂片8高度的9/10;在第一电控箱3上设有第一显示屏10、第一指示灯11、第一电源开关12、直流电源电压控制器13、直流电源电流控制器14。
图2所示,为黑色二氧化钛纳米管阵列真空热处理状态图,各部位置、连接关系要正确,按序操作。
黑色二氧化钛纳米管阵列的热处理是在真空热处理炉中进行的,是在抽真空、输氩气、加热状态下完成的;
真空热处理炉21为立式矩形,真空热处理炉21上部为炉盖22,下部为第二电控箱15;真空热处理炉21内底部设有工作台24,在工作台24上部置放石英容器25,石英容器25内置放黑色二氧化钛纳米管阵列26;在真空热处理炉21右上部设有出气管阀23;在真空热处理炉21左部设有氩气瓶27,氩气瓶27上部设有氩气阀28、氩气管29,并向真空热处理炉21内输入氩气30;在真空热处理炉21右部设有真空泵31,真空泵31上部设有真空阀32、真空管33,并连通真空热处理炉21炉腔;在第二电控箱15上设有第二显示屏16、第二指示灯17、第二电源开关18、加热温度控制器19、真空泵控制器20;第二电控箱15通过导线34与真空泵31连接。
图3所示,为黑色二氧化钛纳米管阵列形貌图,图中可见,二氧化钛纳米管表面光滑,颜色为黑色;二氧化钛纳米管阵列整体光滑平整,排布均匀,管径≤110nm。
图4所示,为黑色二氧化钛纳米管阵列X射线衍射图谱,图中所示,纵坐标为衍射强度,横坐标为衍射角,图中可见,制备的薄膜为单一的锐钛矿相。
图5所示,为黑色二氧化钛纳米管X射线光电子能谱图,上图可见,在黑色二氧化钛纳米管阵列中钛元素的价态为Ti4+,下图可见,氧元素的价态为O2-
图6所示,为黑色二氧化钛纳米管阵列紫外可见光吸收图谱,图中可见,上曲线为铝粉包裹退火曲线,下曲线为空气中退火曲线,制备的二氧化钛纳米管阵列对400-700nm的可见光有明显的吸收。
图7所示,为黑色二氧化钛纳米管微区元素成分分析图,图中所示,纵坐标为X射线计数,横坐标为X射线能量,图中可见,所制备的黑色二氧化钛纳米管阵列没有Al元素掺入。

Claims (3)

1.一种黑色二氧化钛纳米管阵列的快速制备方法,其特征在于:
使用的化学物质材料为:乙二醇、氟化氨、铝粉、丙酮、无水乙醇、去离子水、铂片、钛片、氩气,其组合准备用量如下:以克、毫升、毫米、厘米3为计量单位
制备方法如下:
(1)配制电解液
称取氟化氨2.22g±0.001g,量取乙二醇294mL±0.001mL、去离子水6mL±0.001mL,加入烧杯中,然后置于超声波分散器内,超声波频率60KHz,超声波分散时间15min,使其充分溶解,配制成电解液;
(2)预处理铂片、钛片
①清洗钛片
将钛片置于烧杯中,加入丙酮100mL,浸泡清洗15min,清洗后晾干;
将晾干的的钛片置于另一烧杯中,加入无水乙醇100mL,浸泡清洗15min,清洗后晾干;
将晾干的钛片置于另一烧杯中,加入去离子水100mL,浸泡清洗15min,清洗后晾干;
②清洗铂片
将铂片置于烧杯中,加入丙酮100mL,浸泡清洗15min,清洗后晾干;
将晾干的铂片置于另一烧杯中,加入无水乙醇100mL,浸泡清洗15min,清洗后晾干;
将晾干的铂片置于另一烧杯中,加入去离子水100mL,浸泡清洗15min,清洗后晾干;
(3)阳极氧化制备二氧化钛纳米管阵列
阳极氧化制备二氧化钛纳米管阵列是在玻璃电解槽内进行的,是在电解液内,以钛片作阳极、铂片作阴极,在50V电压下,在磁子搅拌过程中,在钛片上氧化生成二氧化钛纳米管阵列;
①安装电极
在电解槽内,在左部位置安装阳极钛片,并由导电吊丝吊装;
在电解槽内,在右部位置安装阴极铂片,并由导电吊丝吊装;
②将配置的电解液加入电解槽内,电解液要淹没钛片和铂片高度的9/10;
③将磁子搅拌器置于玻璃电解槽内底部;
④开启直流电源,电压为50V并恒压,电解液温度为25℃,电解时间为60min,电解过程中磁子搅拌器搅拌电解液;
在电解阳极氧化过程中,在钛片上生成二氧化钛纳米管阵列,并发生化学反应,反应式如下:
式中:TiO2:二氧化钛
NH3·H2O:水合氨
TiF4:四氟化钛
O2:氧气
阳极氧化后关闭直流电源,迅速取出钛片,用去离子水冲洗;
(4)干燥
将生成二氧化钛纳米管阵列的钛片置于石英容器中,然后置于真空干燥箱中干燥,真空度6Pa,干燥温度60℃,干燥时间20min;
(5)真空热处理退火
黑色二氧化钛纳米管阵列的热处理是在真空热处理炉中进行的,是在抽真空、输氩气、加热状态下完成的;
①清理清洁真空热处理炉
打开真空热处理炉,用氩气驱除炉内有害气体,使炉内洁净;
②包裹二氧化钛纳米管阵列
将二氧化钛纳米管阵列用铝粉均匀包裹;
③将包裹铝粉的二氧化钛纳米管阵列置于石英容器内,然后置于真空热处理炉中,密闭;
抽取炉内空气,使炉内压强达6Pa;
向炉内输入氩气,氩气输入速度100cm3/min,使炉内压强恒定在0.101MPa;
开启加热器,加热温度450℃,恒温保温时间240min;
④热处理后停止加热,停止输氩气,使黑色二氧化钛纳米管阵列随炉冷却至25℃;
⑤热处理后,开炉,取出黑色二氧化钛纳米管阵列;
⑥清理清洁黑色二氧化钛纳米管阵列,即为终产物;
(6)检测、分析、表征
对制备的黑色二氧化钛纳米管阵列的色泽、形貌、成分、化学物理性能进行检测、分析、表征;
用扫描电子显微镜对黑色二氧化钛纳米管阵列进行形貌分析;
用扫描电子显微镜配带的能谱仪对黑色二氧化钛纳米管阵列进行微区元素成分分析;
用X射线衍射仪对黑色二氧化钛纳米管阵列进行物相分析;
用X射线光电子能谱仪对黑色二氧化钛纳米管阵列进行光电子能谱分析;
用紫外-可见分光光度计对黑色二氧化钛纳米管阵列进行紫外可见光吸收分析;
结论:黑色二氧化钛纳米管阵列呈黑色管状,管长≤7μm,管径≤110nm,黑色二氧化钛纳米管阵列对可见光在400-700nm波长有明显的吸收;
(7)产物储存
对制备的黑色二氧化钛纳米管阵列储存于棕色的玻璃容器中,密闭储存,要防潮、防晒、防酸碱盐侵蚀,储存温度20℃,相对湿度≤10%。
2.根据权利要求1所述的一种黑色二氧化钛纳米管阵列的快速制备方法,其特征在于:
电解槽(1)为玻璃体矩形,电解槽(1)上部为直流稳压电源(2)、下部为第一电控箱(3);电解槽(1)内底部置放磁子搅拌器(4);电解槽(1)内盛放电解液(9);直流稳压电源(2)左下部垂直设有第一导电吊丝(5),并连接阳极钛片(7),并深入电解液(9)内,直流稳压电源(2)右下部垂直设有第二导电吊丝(6),并连接阴极铂片(8),并深入电解液(9)内,电解液(9)要淹没阳极钛片(7)、阴极铂片(8)高度的9/10;在第一电控箱(3)上设有第一显示屏(10)、第一指示灯(11)、第一电源开关(12)、直流电源电压控制器(13)、直流电源电流控制器(14)。
3.根据权利要求1所述的一种黑色二氧化钛纳米管阵列的快速制备方法,其特征在于:
黑色二氧化钛纳米管阵列的热处理是在真空热处理炉中进行的,是在抽真空、输氩气、加热状态下完成的;
真空热处理炉(21)为立式矩形,真空热处理炉(21)上部为炉盖(22),下部为第二电控箱(15);真空热处理炉(21)内底部设有工作台(24),在工作台(24)上部置放石英容器(25),石英容器(25)内置放黑色二氧化钛纳米管阵列(26);在真空热处理炉(21)右上部设有出气管阀(23);在真空热处理炉(21)左部设有氩气瓶(27),氩气瓶(27)上部设有氩气阀(28)、氩气管(29),并向真空热处理炉(21)内输入氩气(30);在真空热处理炉(21)右部设有真空泵(31),真空泵(31)上部设有真空阀(32)、真空管(33),并连通真空热处理炉(21)炉腔;在第二电控箱(15)上设有第二显示屏(16)、第二指示灯(17)、第二电源开关(18)、加热温度控制器(19)、真空泵控制器(20);第二电控箱(15)通过导线(34)与真空泵(31)连接。
CN201610651407.XA 2016-08-10 2016-08-10 一种黑色二氧化钛纳米管阵列的快速制备方法 Active CN106245092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610651407.XA CN106245092B (zh) 2016-08-10 2016-08-10 一种黑色二氧化钛纳米管阵列的快速制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610651407.XA CN106245092B (zh) 2016-08-10 2016-08-10 一种黑色二氧化钛纳米管阵列的快速制备方法

Publications (2)

Publication Number Publication Date
CN106245092A true CN106245092A (zh) 2016-12-21
CN106245092B CN106245092B (zh) 2018-04-27

Family

ID=58078610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610651407.XA Active CN106245092B (zh) 2016-08-10 2016-08-10 一种黑色二氧化钛纳米管阵列的快速制备方法

Country Status (1)

Country Link
CN (1) CN106245092B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107175162A (zh) * 2017-05-19 2017-09-19 深圳先进技术研究院 一种液相剥离法制备微纳米材料的装置和方法
CN109457287A (zh) * 2018-12-29 2019-03-12 太原理工大学 一种硫氮共掺杂型黑色二氧化钛纳米管阵列及其制备方法
CN110624527A (zh) * 2019-10-14 2019-12-31 上海纳米技术及应用国家工程研究中心有限公司 三维有色二氧化钛光催化材料的制备方法及其产品和应用
CN113308727A (zh) * 2020-02-26 2021-08-27 新疆知信科技有限公司 二氧化钛纳米管、基于二氧化钛纳米管的复合电极、及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433828A (zh) * 2008-12-19 2009-05-20 天津大学 铝掺杂二氧化钛纳米管可见光催化剂及制备方法
WO2010094113A1 (en) * 2009-02-20 2010-08-26 3R VALO, societe en commandite, représentée par son commandité Gestion Valeo s.e.c. Ammonia electrolyzer
CN102247828A (zh) * 2011-05-13 2011-11-23 西北有色金属研究院 一种氢化处理的TiO2纳米管阵列及其制备方法
CN103866370A (zh) * 2012-12-11 2014-06-18 中国科学院上海硅酸盐研究所 一种制备低氧氧化钛纳米管阵列的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433828A (zh) * 2008-12-19 2009-05-20 天津大学 铝掺杂二氧化钛纳米管可见光催化剂及制备方法
WO2010094113A1 (en) * 2009-02-20 2010-08-26 3R VALO, societe en commandite, représentée par son commandité Gestion Valeo s.e.c. Ammonia electrolyzer
CN102247828A (zh) * 2011-05-13 2011-11-23 西北有色金属研究院 一种氢化处理的TiO2纳米管阵列及其制备方法
CN103866370A (zh) * 2012-12-11 2014-06-18 中国科学院上海硅酸盐研究所 一种制备低氧氧化钛纳米管阵列的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOULEI CUI等: "Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107175162A (zh) * 2017-05-19 2017-09-19 深圳先进技术研究院 一种液相剥离法制备微纳米材料的装置和方法
CN107175162B (zh) * 2017-05-19 2019-11-05 深圳先进技术研究院 一种液相剥离法制备微纳米材料的装置和方法
CN109457287A (zh) * 2018-12-29 2019-03-12 太原理工大学 一种硫氮共掺杂型黑色二氧化钛纳米管阵列及其制备方法
CN109457287B (zh) * 2018-12-29 2021-01-01 太原理工大学 一种硫氮共掺杂型黑色二氧化钛纳米管阵列及其制备方法
CN110624527A (zh) * 2019-10-14 2019-12-31 上海纳米技术及应用国家工程研究中心有限公司 三维有色二氧化钛光催化材料的制备方法及其产品和应用
CN113308727A (zh) * 2020-02-26 2021-08-27 新疆知信科技有限公司 二氧化钛纳米管、基于二氧化钛纳米管的复合电极、及其制备方法、应用

Also Published As

Publication number Publication date
CN106245092B (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
CN106245092B (zh) 一种黑色二氧化钛纳米管阵列的快速制备方法
CN104941614B (zh) 接触式还原法制备黑色二氧化钛的方法
CN101058483B (zh) 一种制备纳米多孔氧化钛厚膜的方法
CN100534910C (zh) TiO2纳米管阵列的制备方法
Zhao et al. TiO2 hollow spheres as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells: the effect of sphere diameter
CN105084427B (zh) 一类基于原位生长三维多级结构四氧化三钴微纳米材料的染料敏化太阳能电池对电极
CN104689838A (zh) 一种形貌及晶面可控的BiOCl光催化剂的制备方法
CN105788870A (zh) 介孔空心球状二氧化钛/三氧化钨复合材料在薄膜电极制备中的应用
Shen et al. Clean and time-effective synthesis of anatase TiO2 nanocrystalline by microwave-assisted solvothermal method for dye-sensitized solar cells
CN103739013A (zh) 直径可控多孔球形二氧化钛及制备和应用
CN105895378B (zh) 染料敏化太阳能电池双层二氧化钛光阳极的制备方法
CN104018206A (zh) 一种碳氮掺杂TiO2纳米管的制备方法
CN107611225B (zh) 一种提高锡酸钡基染料敏化太阳能电池光电转化效率的双表面处理方法
CN107326385A (zh) 一种硼掺杂三氧化二铁光电极的制备方法
CN105696047A (zh) 一种氧化亚铜纳米薄膜的快速制备方法
CN106431005A (zh) 一种钛酸锶‑二氧化钛复合纳米管阵列薄膜及其制备方法与应用
CN106702462A (zh) 铁酸镧纳米颗粒修饰的二氧化钛纳米管阵列的制备方法
CN108531939B (zh) Pt修饰Fe2O3包裹CuFeO2光阴极及制备方法
CN103866314B (zh) 可见光响应的黑色二氧化钛纳米薄膜的制备方法及应用
CN109126757A (zh) 一种原位自生长黑色氧化钛涂层的制备方法
CN105858822A (zh) 一种具有楔形结构红色二氧化钛光电极及其制备与应用
CN105417578B (zh) 一种菜花状板钛矿型二氧化钛的制备方法
CN109457287A (zh) 一种硫氮共掺杂型黑色二氧化钛纳米管阵列及其制备方法
CN106098385B (zh) 一种染料敏化太阳能电池光阳极的制备方法
CN105271421A (zh) 一种钨基纳米球粒子粉体的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant