CN106229544A - 一种高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备方法 - Google Patents

一种高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备方法 Download PDF

Info

Publication number
CN106229544A
CN106229544A CN201610881724.0A CN201610881724A CN106229544A CN 106229544 A CN106229544 A CN 106229544A CN 201610881724 A CN201610881724 A CN 201610881724A CN 106229544 A CN106229544 A CN 106229544A
Authority
CN
China
Prior art keywords
composite nano
nano fiber
composite
fiber
high performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610881724.0A
Other languages
English (en)
Inventor
赵永男
陈淑华
王惠
余建国
高海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201610881724.0A priority Critical patent/CN106229544A/zh
Publication of CN106229544A publication Critical patent/CN106229544A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种Ni/C复合纳米纤维锂离子电池负极材料及其制备方法,该复合纳米纤维采用静电纺丝结合后期热处理方法制得,合成工艺简单,所得纤维平均直径为100~200nm,生成的镍纳米颗粒均匀地分布在碳纳米纤维内部,被石墨化碳层所包覆。该材料中镍的质量分数为30%达到最佳效果。本发明用于制备电池负极极片,具有倍率性能好、安全性能高的优点,与其他的锂离子电池负极材料相比,该类型原材料在自然界中含量丰富,生产成本也较其他负极材料低廉。

Description

一种高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备 方法
技术领域
本发明涉及一种新型高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备方法,属于锂离子电池技术领域。
技术背景
由于锂离子电池具有高的能量密度,优良的循环稳定性以及良好的环境友好性,目前已在手机、笔记本电脑和数码相机等便携式电子器件中普及。近年来为了减少能源危机和环境污染,锂离子电池开始涉足大型的储能和动力设备,开发能量密度高、循环寿命长和安全性能好的新型锂离子电池的电极材料迫在眉睫。负极材料对锂离子电池的安全性能起到关键作用。石墨是目前主流的商业化锂电负极材料,作为市场上应用最广泛的锂电池负极材料,石墨的理论比容量仅为372mA h·g-1,包括天然石墨,碳纳米管等。由于石墨本身结构特性的制约,石墨负极材料的发展也遇到了瓶颈,比如比容量已经到达极限、不能满足大型动力电池所要求的持续大电流放电能力等,从而限制了它们的实际应用。因此寻找比容量相对较高、循环稳定性好和价格相对便宜的负极材料成为人们的研究重点。
近几十年来,镍纳米颗粒以及其复合材料已经受到广泛的关注,由于他们在各领域应用的潜力,包括磁性、光学、电子、催化和超级电容器等。然而,他们很少作为主要活性锂存储材料。这主要是因为镍纳米粒子不能直接与锂反应,在NiO作为锂电负极材料的锂存储机理-转换机理中,镍纳米颗粒的形成暗示着电化学锂存储过程的结束。虽然镍纳米颗粒不能与锂反应,但是它能催化电池中反应的进行,进而提高了锂离子电池的性能。本专利结合镍纳米颗粒催化反应和碳纳米纤维的广泛应用的特点对镍颗粒和碳纳米纤维复合作为锂离子电池负极材料进行了研究,以期改善锂离子电池负极材料的性能。
发明内容
本发明的目的是针对上述技术分析,提供一种用于锂离子电池的新型负极材料,将过渡金属纳米颗粒与碳纳米纤维作为锂离子电池负极材料的理念,以改善锂离子电池负极材料的性能。
本发明的技术方案:
为实现上述发明目的,本发明采用以下技术方案:一种用于锂离子电池负极的Ni/C复合纳米纤维材料,所述复合纳米纤维均匀掺杂包含有镍纳米颗粒,且表层被石墨化碳层包袱,该复合纳米纤维的直径为100~400nm。
所述Ni/C复合纳米纤维材料中镍能被其他的过渡金属铁、钴等代替。
一种上述高性能锂离子电池负极材料Ni/C复合纳米纤维的其制备方法,其步骤如下:
(1)纺丝溶液的制备,将3.4020g聚丙烯腈(PAN)缓慢溶解到30mL二甲基甲酰胺(DMF)中,并搅拌至完全溶解;然后再加入1.7010g四水乙酸镍继续搅拌到完全溶解,得到均匀、透明、稳定的绿色纺丝溶液;
(2)将(1)中得到的纺丝溶液移入到静电纺丝装置中,进行静电纺丝得到聚合物-镍盐复合前驱体纤维;
(3)将(2)收集到的复合前驱体纤维在空气中经过预氧化后,再在惰性气体氩气气氛条件下,经过碳化处理得到Ni/C复合纳米纤维。
步骤(1)中所述纺丝溶液中乙酸镍的质量分数为~5.07%;聚丙烯腈的质量分数为~10.14%;
步骤(2)中所述静电纺丝工艺参数为:电压25kV,喷射针头直径0.3mm,溶液推进速率0.1mL/h,固化距离为15cm,温度为20~30℃,湿度小于40%;
步骤(3)中所述预氧化具体参数为:温度为280℃,保温时间4h,升温速率为1℃/min;
步骤(3)中所述碳化处理具体参数为:温度为700℃,气氛为氩气,保温时间为2h,升温速率为2℃/min;
本发明的优点是:首先将过渡金属盐与碳源用静电纺丝复合成纳米纤维,经过热处理得到过渡金属纳米颗粒与碳纳米纤维复合材料应用于锂离子电池行业,该材料表现出较高的容量和优异的循环稳定性,在100mA·g-1的电流密度下,首次充电容量可达729.8mAh·g-1,循环100圈后容量仍能保持在483.6mA h·g-1,与纯碳纳米纤维材料相比,所述Ni/C复合纳米纤维锂离子电池负极材料具有容量更高,倍率好和性能更稳定的特点。
附图说明
图1:实施例1中所制备的Ni/C复合纳米纤维的SEM照片;
图2:实施例1中所制备的Ni/C复合纳米纤维的TEM照片;
图3:实施例1中所制备的Ni/C复合纳米纤维的HRTEM照片;
图4:实施例1-5中所制备的Ni/C复合纳米纤维的XRD照片;
图5:实施例1-5中所制备的Ni/C复合纳米纤维的组装成扣式电池的循环性能曲线图;
图6:实施例1-4中所制备的Ni/C复合纳米纤维的组装成扣式电池的倍率性能曲线图。
具体实施方式
实施例1
1)Ni/C复合纳米纤维前驱体的制备:将3.4020g聚丙烯腈(PAN)缓慢溶解到30mL二甲基甲酰胺(DMF)中,并搅拌至完全溶解;然后再加入1.7010g四水乙酸镍继续搅拌到完全溶解,得到均匀、透明、稳定的绿色纺丝溶液,将得到的纺丝溶液移入到静电纺丝装置中,进行静电纺丝得到聚合物-镍盐复合前驱体纤维;
(2)Ni/C复合纳米纤维的制备:将收集到的复合前驱体纤维在平板玻璃上铺平固定好,放入马弗炉中,在空气中以1℃/min的升温速率至280℃煅烧4h后,再移入管式炉中,在惰性气体氩气气氛条件下,以2℃/min的升温速率至700℃煅烧2h,得到Ni/C复合纳米纤维。如图1所示,所制备的Ni/C复合纳米纤维的直径为100~400nm。如图2所示,镍纳米颗粒均匀地掺杂在复合纳米纤维中。图3为Ni/C复合纳米纤维的HRTEM照片,可以看出镍纳米颗粒表层被石墨化碳层包袱。对上述样品进行了组成和结构的分析,图4为Ni/C复合纳米纤维的XRD谱图,从图中可观察到,~26°的峰为石墨化碳的衍射峰,其它衍射峰与镍的标准卡片PDF#04-0850相匹配,所以样品为Ni/C复合纳米纤维。
实施例2
与实施例1相同,只是将四水合乙酸镍的用量变为3.4020g。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达1181.9mA h·g-1,循环100圈后容量仍能保持在307.9mA h·g-1
实施例3
与实施例1相同,只是将四水合乙酸镍的用量变为0.8505g。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达922.6mA h·g-1,循环100圈后容量仍能保持在453.3mA h·g-1
实施例4
与实施例1相同,只是将四水合乙酸镍的用量变为0g。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达618.3mA h·g-1,循环100圈后容量仍能保持在344.2mA h·g-1
实施例5
与实施例1相同,只是将四水合乙酸镍的用量变为0.4253g。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达1115.5mA h·g-1,循环100圈后容量仍能保持在291.6mA h·g-1
实施例6
与实施例1相同,只是将预氧化温度设为250℃。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达989.3mA h·g-1,循环100圈后容量仍能保持在410.8mA h·g-1
实施例7
与实施例1相同,只是将预氧化温度设为260℃。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达619.4mA h·g-1,循环100圈后容量仍能保持在241mA h·g-1
实施例8
与实施例1相同,只是将预氧化温度设为270℃。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达677.3mA h·g-1,循环100圈后容量仍能保持在253.4mA h·g-1
实施例9
与实施例1相同,只是将碳化温度设为500℃。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达893.3mA h·g-1,循环100圈后容量仍能保持在227mA h·g-1
实施例10
与实施例1相同,只是将碳化温度设为600℃。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达870.9mA h·g-1,循环100圈后容量仍能保持在282.4mA h·g-1
实施例11
与实施例1相同,只是将碳化温度设为800℃。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达516.7mA h·g-1,循环100圈后容量仍能保持在210.8mA h·g-1
实施例12
与实施例1相同,只是将碳化温度设为900℃。该复合材料作为锂离子电池负极材料,在100mA·g-1的电流密度下,首次放电容量可达526mA h·g-1,循环100圈后容量仍能保持在225.7mA h·g-1

Claims (5)

1.一种高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备方法,其步骤如下:
(1)纺丝溶液的制备,将3.4020g聚丙烯腈(PAN)缓慢溶解到30mL二甲基甲酰胺(DMF)中,并搅拌至完全溶解;然后再加入1.7010g四水合乙酸镍继续搅拌到完全溶解,得到均匀、透明、稳定的绿色纺丝溶液;
(2)将(1)中得到的纺丝溶液移入到静电纺丝装置中,进行静电纺丝得到聚合物-镍盐复合前驱体纤维;
(3)将(2)收集到的复合前驱体纤维在空气中经过预氧化后,再在惰性气体氩气气氛条件下,经过碳化处理得到Ni/C复合纳米纤维。
2.如权利要求1所述的一种高性能锂离子电池负极材料Ni/C复合纳米纤维的制备方法,其特征在于:(1)中所述纺丝溶液中乙酸镍的质量分数为0~10%;所得Ni/C复合纳米纤维中镍的质量分数为0~35%。
3.如权利要求1所述的一种高性能锂离子电池负极材料Ni/C复合纳米纤维的制备方法,其特征在于:(2)中所述静电纺丝工艺参数为:电压25kV,喷射针头直径0.3mm,溶液推进速率0.1mL/h,固化距离为15cm,温度为20~30℃,湿度小于40%。
4.如权利要求1所述的一种高性能锂离子电池负极材料Ni/C复合纳米纤维的制备方法,其特征在于:(3)中所述预氧化具体参数为:温度为250~280℃,保温时间4h,升温速率为1℃/min;碳化处理具体参数为:温度为500~700℃,气氛为氩气,保温时间为2h,升温速率为2℃/min。
5.如权利要求1所述的一种高性能锂离子电池负极材料Ni/C复合纳米纤维在锂离子电池负极中的应用。
CN201610881724.0A 2016-10-08 2016-10-08 一种高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备方法 Pending CN106229544A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610881724.0A CN106229544A (zh) 2016-10-08 2016-10-08 一种高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610881724.0A CN106229544A (zh) 2016-10-08 2016-10-08 一种高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备方法

Publications (1)

Publication Number Publication Date
CN106229544A true CN106229544A (zh) 2016-12-14

Family

ID=58075986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610881724.0A Pending CN106229544A (zh) 2016-10-08 2016-10-08 一种高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN106229544A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346790A (zh) * 2018-02-09 2018-07-31 中南大学 一种内含核壳结构钴基硫化物纳米球的碳纤维的制备方法及其应用
CN109037554A (zh) * 2018-06-26 2018-12-18 长沙矿冶研究院有限责任公司 一种应用于锂硫电池的Ni/C复合纳米纤维膜及其制备方法和锂硫电池
CN109119580A (zh) * 2018-07-23 2019-01-01 皖西学院 一种Ni/rGO复合结构纳米线及其应用
CN110055623A (zh) * 2019-05-10 2019-07-26 陕西科技大学 一种高导电性镍/碳纳米纤维柔性电极材料及其制备方法
CN111564619A (zh) * 2020-05-21 2020-08-21 宁波大学 一种碳包覆纳米镍锂电池材料的制备方法
CN114853095A (zh) * 2022-04-22 2022-08-05 陕西科技大学 一种Cf/SiCnws/Ni复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436996A (zh) * 2013-08-05 2013-12-11 江苏科技大学 Ni/C复合纳米纤维微波吸收剂、制备方法及其应用
CN104064368A (zh) * 2014-06-20 2014-09-24 四川能宝电源制造有限公司 用于超级电容电池的Ni/C负极浆料及负极极片制备方法
CN104577202A (zh) * 2013-10-17 2015-04-29 奇瑞汽车股份有限公司 一种高电压锂离子电池的化成方法、制备方法及电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436996A (zh) * 2013-08-05 2013-12-11 江苏科技大学 Ni/C复合纳米纤维微波吸收剂、制备方法及其应用
CN104577202A (zh) * 2013-10-17 2015-04-29 奇瑞汽车股份有限公司 一种高电压锂离子电池的化成方法、制备方法及电池
CN104064368A (zh) * 2014-06-20 2014-09-24 四川能宝电源制造有限公司 用于超级电容电池的Ni/C负极浆料及负极极片制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346790A (zh) * 2018-02-09 2018-07-31 中南大学 一种内含核壳结构钴基硫化物纳米球的碳纤维的制备方法及其应用
CN108346790B (zh) * 2018-02-09 2021-04-20 中南大学 一种内含核壳结构钴基硫化物纳米球的碳纤维的制备方法及其应用
CN109037554A (zh) * 2018-06-26 2018-12-18 长沙矿冶研究院有限责任公司 一种应用于锂硫电池的Ni/C复合纳米纤维膜及其制备方法和锂硫电池
CN109119580A (zh) * 2018-07-23 2019-01-01 皖西学院 一种Ni/rGO复合结构纳米线及其应用
CN110055623A (zh) * 2019-05-10 2019-07-26 陕西科技大学 一种高导电性镍/碳纳米纤维柔性电极材料及其制备方法
CN111564619A (zh) * 2020-05-21 2020-08-21 宁波大学 一种碳包覆纳米镍锂电池材料的制备方法
CN111564619B (zh) * 2020-05-21 2022-06-24 宁波大学 一种碳包覆纳米镍锂电池材料的制备方法
CN114853095A (zh) * 2022-04-22 2022-08-05 陕西科技大学 一种Cf/SiCnws/Ni复合材料的制备方法
CN114853095B (zh) * 2022-04-22 2024-02-06 陕西科技大学 一种Cf/SiCnws/Ni复合材料的制备方法

Similar Documents

Publication Publication Date Title
CN106229544A (zh) 一种高性能锂离子电池负极材料Ni/C复合纳米纤维及其制备方法
CN106252636A (zh) 一种锂离子电池中空NiO/C纳米纤维负极材料及其制备方法
CN108767247B (zh) 一种碳基金属有机框架mof化合物衍生材料制备方法与应用
CN102468485B (zh) 一种钛酸锂复合材料、其制备方法和应用
Bin et al. Manipulating particle chemistry for hollow carbon-based nanospheres: synthesis strategies, mechanistic insights, and electrochemical applications
CN108321376A (zh) 一种n掺杂多孔碳纳米纤维@二氧化锡锂离子电池负极材料及其制备方法
Miao et al. Engineering a nanotubular mesoporous cobalt phosphide electrocatalyst by the Kirkendall effect towards highly efficient hydrogen evolution reactions
CN106252651B (zh) 一种锂离子电池多孔复合负极材料及其制备方法
CN104201363A (zh) 一种碳包覆 Li3VO4锂离子电池负极材料及其制备方法
CN105514369A (zh) 一种中空SnO2/Co3O4杂化纳米管及其制备方法和应用
CN111146424B (zh) 一种金属硫化物/碳复合材料及其制备方法及其应用
CN106887567A (zh) 一种碳包覆硅/石墨烯复合材料及其制备方法
CN107464924A (zh) 一种片状氧缺陷钒酸锂正极材料及其制备方法
Wang et al. Carbon-coated SnO2@ carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries
CN107317011A (zh) 一种氮掺杂的有序多孔碳包覆硅纳米复合材料的制备方法
CN106654190A (zh) 一维In2O3/C纤维复合材料、其制备方法和应用
CN108172770A (zh) 具有单分散结构特征的碳包覆NiPx纳米复合电极材料及其制备方法
CN108598479A (zh) 改性天然石墨锂离子电池负极材料及其制造方法和用途
CN106159243A (zh) 一种锂电池负极材料及其制备方法
CN105161678B (zh) 一种用于锂电池电极的多层复合二氧化钛纳米管材料
CN107579250A (zh) 一种复合碳材料导电剂
CN107634206A (zh) 一种锂离子电池柔性负极材料及其制备方法
CN113161533A (zh) 一种MOF衍生的ZnO@C复合材料及其应用
CN112968173A (zh) 多孔碳包覆硫空位复合电极材料、其制备方法及采用该材料的圆形电极
Ji et al. Electrospinning preparation of one-dimensional Co 2+-doped Li 4 Ti 5 O 12 nanofibers for high-performance lithium ion battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161214