CN106206215B - 一种二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法 - Google Patents

一种二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法 Download PDF

Info

Publication number
CN106206215B
CN106206215B CN201610697857.2A CN201610697857A CN106206215B CN 106206215 B CN106206215 B CN 106206215B CN 201610697857 A CN201610697857 A CN 201610697857A CN 106206215 B CN106206215 B CN 106206215B
Authority
CN
China
Prior art keywords
molybdenum
cathode
powder
negative electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610697857.2A
Other languages
English (en)
Other versions
CN106206215A (zh
Inventor
王金淑
董丽然
张�杰
田明创
杨韵斐
赵冰心
张大业
张权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201610697857.2A priority Critical patent/CN106206215B/zh
Publication of CN106206215A publication Critical patent/CN106206215A/zh
Application granted granted Critical
Publication of CN106206215B publication Critical patent/CN106206215B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法,属于稀土难熔金属阴极材料技术领域。阴极基体中活性物质La2O3、Ta2O5成分的添加总量为3‑5wt%,其中Ta2O5的添加量为0.05‑0.5%;其余为Mo。将硝酸镧溶液、七钼酸铵溶液、柠檬酸溶液混合后添加氧化钽粉末,水浴加热,机械搅拌,烘干,最终形成干凝胶。干凝胶分解得到La2O3、Ta2O5掺杂MoO3粉末。氧化物混合粉末经过二次还原工艺获得的La2O3、Ta2O5掺杂钼粉。对粉体进行压制、烧结、碳化、激活、老练处理,获得具有良好发射性能的阴极材料。该材料热电子发射性能优异,满足微波炉磁控管中阴极的使用要求。

Description

一种二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法
技术领域
一种二元复合La2O3、Ta2O5掺杂钼阴极材料及制备方法,属于稀土难熔金属阴极材料技术领域。
技术背景
磁控管除应用在雷达、制导、导航以及电子对抗等军事领域外,其在民用市场也起着不可小觑的作用,如医疗、雷达、工业加热等方面;其中其与民生最密切相关的便是家用微波炉方面。由于磁控管是微波发生器,因此它是微波炉的核心器件;阴极被誉为磁控管的“心脏”,它的工作特性以及寿命均影响及制约着磁控管的性能。目前全球家用微波炉中使用的阴极材料均为钍钨(ThO2-W)阴极。但是Th是一种放射性元素,半衰期1.4×10e10年,Th对生产钍钨丝的工人具有辐射危害,并且废弃的钍钨(ThO2-W)阴极只能进行深埋处理,不能回收利用,这与我国大力倡导的“可持续发展”理念背道而驰;其次,Th已成为一种新型的、高效、安全的核能源材料,这使得钍钨(ThO2-W)阴极的成本增加。因此研究一种替代钍钨(ThO2-W)阴极的材料迫在眉睫。
前人已对单元掺杂或复合掺杂La2O3、Y2O3、Gd2O3、Lu2O3等稀土氧化物的钼阴极制备工艺及性能做了大量的研究[1-8],但是由于这些阴极工作在实际的磁控管中仍存在发射稳定性差、稀土活性物质蒸发等问题,从而制约了这些研究的推广及使用。以La2O3掺杂Mo 阴极为例,虽然La2O3掺杂Mo阴极具有良好的热电子发射性能,但是磁控管中的阴极表面发射出的电子在外加磁场的作用下会回轰阴极表面的活性物质以及Mo基体,导致La和 Mo元素大量蒸发,从而使得阴极的发射电流骤减,导致阴极发射稳定性差。因此需要研究一种有效缓解阴极表面活性物质和Mo蒸发的办法。
[1]王金淑,刘伟,李常才,崔云涛,张喜珠,杨帆,王茜,王凯风,周美玲,左铁镛,一种碳化镧-钨热阴极材料及其制备方法,ZL201110083258.9
[2]王金淑,刘伟,高非,任志远,周美玲,左铁镛,Y2O3-Lu2O3体系复合稀土-钼电子发射材料及其制备方法,ZL200810246837.9
[3]王金淑,刘伟,高非,任志远,周美玲,左铁镛,Y2O3-Gd2O3体系复合稀土-钼电子发射材料及其制备方法,ZL200810246838.3
[4]王金淑,周美玲,刘伟,稀土氧化物次级发射材料及其制备方法,ZL200510002278.3
[5]王金淑,周美玲,张久兴,李洪义,三元稀土钼次级发射材料及其制备方法,ZL02125595.4
[6]王金淑,刘伟,周美玲,含铈的稀土钼电子发射材料及其制备方法,ZL200510077234.7
[7]王金淑,刘伟,董丽然,汪强,李洁明,周美玲,左铁镛,一种碳化锆热阴极材料及其制备方法,2013,中国,201310528681.4
[8]王金淑,刘伟,董丽然,刘祥,汪强,周帆,周美玲,左铁镛,一种碳化稀土氧化镥掺杂钼阴极材料及其制备方法,201310723707.0。
发明内容
本发明是提供一种二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法,阴极基体中的La2O3、Ta2O5作为发射活性物质,Ta2O5又作为抑制La和Mo蒸发的有效物质,目前对于该种阴极在国内外的研究中均未见报道。该阴极具有良好热电子发射性能,阴极在1400℃发射电流密度达到1.69A/cm2,超过磁控管对阴极的热电子发射的要求(0.3-0.8A/cm2),且阴极装入微波炉磁控管中工作后,微波炉输出功率稳定在890W不再衰减,满足该微波炉额定功率700W的使用要求,并与ThO2-W阴极工作稳定后输出功率值950W相当。
本发明一种二元复合La2O3、Ta2O5掺杂钼阴极材料,其特征在于:对Mo基体进行掺杂活性物质La2O3和Ta2O5,其中活性物质La2O3、Ta2O5的添加总量占阴极材料总重量的3-5wt%, La2O3的添加量为阴极材料总重量的2.5-4.95%,其余活性物质为Ta2O5;其余阴极材料为Mo。
本发明所提供的二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法,其特征在于,包括以下步骤:
(1)按照权利要求1中所述的含量配比,称取硝酸镧、七钼酸铵、柠檬酸和氧化钽,其中七钼酸铵:柠檬酸的质量比为1:(0.8-1.5),将硝酸镧溶液、七钼酸铵溶液、柠檬酸溶液混合后添加氧化钽粉末;水浴加热,机械搅拌,烘干,最终形成干凝胶。
(2)将步骤(1)中获得的干凝胶分解,分解温度为500-650℃,得到La2O3、Ta2O5掺杂MoO3粉末。
(3)将步骤(2)中得到的氧化物混合粉末进行还原,在氢气气氛下进行还原,一次还原温度为500-600℃,二次还原温度为800-950℃。
(4)将步骤(3)中获得的La2O3、Ta2O5掺杂钼粉置于磨具中,压制成型,得到阴极坯体,在氢气气氛下进行烧结,烧结温度为1850-2150℃,保温1-3h,获得具有金属光泽的La2O3、 Ta2O5掺杂Mo块体;
(5)将步骤(4)获得的La2O3、Ta2O5掺杂Mo块体进行苯蒸汽碳化,碳化温度1450-1800℃,保温70-120s,得到碳化稀土氧化物掺杂Mo阴极材料;
(6)将步骤(5)中获得的碳化稀土氧化物掺杂Mo阴极材料进行激活老练处理,激活温度 1400-1650℃,保温10-30min,最终获得具有良好热电子发射性能的阴极材料。且阴极装入微波炉磁控管中工作后,微波炉输出功率稳定在890W,满足该微波炉额定800W的使用要求,并与ThO2-W阴极工作稳定后输出功率值相当。
本发明采用掺加高熔点的Ta及Ta的氧化物物的方法来改善La2O3掺杂Mo阴极的蒸发问题。其原理主要体现在:在高温碳化和激活工艺处理后,在阴极表面及La2O3周围会存在一定量的Ta、Ta2C、TaC、TaOx等高熔点且性质稳定物质,这些高熔点的物质可以有效降低La和Mo对真空空间裸露的有效面积,从而有效的减少电子轰击La和Mo的几率,从而降低La和Mo的蒸发。并且Ta还是一种良好的发射基体,对于阴极的发射性能有促进作用。
附图说明
图1为实施例1得到的阴极在各温度下的发射电流密度。
图2为实施例1得到的阴极在微波炉中工作时的功率曲线。
图3为ThO2-W阴极在微波炉中工作时的功率曲线。
具体实施方式
下面结合实施例对本发明做仅有说明,但本发明并不限于以下实施例。
实施例1制备活性物质添加总量为3wt%的阴极,其余为钼。将17.850g四水合七钼酸铵的溶液、0.784g硝酸镧的溶液、0.005g氧化钽粉末和21.242g柠檬酸的溶液混合,水浴搅拌得到湿凝胶,烘干、550℃分解。将分解后的粉末在氢气气氛下进行还原,还原工艺为一次还原温度为550℃,二次还原温度为850℃,得到La2O3、Ta2O5掺杂钼粉;将得到的粉末进行模压成型,压力150MPa,保压15min。将坯体进行烧结,烧结温度1850℃,保温3h。最终得到的阴极体,对阴极体进行苯蒸汽碳化处理,碳化温度1450℃,保温120s。对阴极进行激活处理,激活温度1600℃,保温11min。测试该阴极的发射性能,该阴极在 1400℃时的零场发射电流密度如表1所示。
实施例2制备活性物质添加总量为3.5wt%的阴极,其余为钼。将17.758g四水合七钼酸铵溶液、0.917g硝酸镧溶液、0.005g氧化钽粉末和21.132g柠檬酸溶液混合,水浴搅拌得到湿凝胶,烘干、550℃分解。将分解后的粉末在氢气气氛下进行还原,还原工艺为一次还原温度为580℃,二次还原温度为890℃,得到La2O3、Ta2O5掺杂钼粉。将得到的粉末进行模压成型,压力150MPa,保压15min。将坯体进行烧结,烧结温度1900℃,保温3h。最终得到的阴极体,对阴极体进行苯蒸汽碳化处理,碳化温度1500℃,保温100s。对阴极进行激活处理,激活温度1600℃,保温12min。测试该阴极的发射性能,该阴极在 1400℃时的零场发射电流密度如表1所示。
实施例3制备活性物质添加总量为4wt%的阴极,其余为钼。将17.666g四水合七钼酸铵溶液、1.050g硝酸镧溶液、0.005g氧化钽粉末和21.023g柠檬酸溶液混合,水浴搅拌得到湿凝胶,烘干、550℃分解。将分解后的粉末在氢气气氛下进行还原,还原工艺为一次还原温度为600℃,二次还原温度为900℃,得到La2O3、Ta2O5掺杂钼粉。将得到的粉末进行模压成型,压力160MPa,保压15min。将坯体进行烧结,烧结温度1950℃,保温2h。最终得到的阴极体,对阴极体进行苯蒸汽碳化处理,碳化温度1500℃,保温90s。对阴极进行激活处理,激活温度1600℃,保温14min。测试该阴极的发射性能,该阴极在 1400℃时的零场发射电流密度如表1所示。
实施例4制备活性物质添加总量为4.5wt%的阴极,其余为钼。将17.574g四水合七钼酸铵溶液、1.183g硝酸镧溶液、0.005g氧化钽粉末和20.913g柠檬酸溶液混合,水浴搅拌得到湿凝胶,烘干、550℃分解。将分解后的粉末在氢气气氛下进行还原,还原工艺为一次还原温度为550℃,二次还原温度为850℃,得到La2O3、Ta2O5掺杂钼粉。将得到的粉末进行模压成型,压力160MPa,保压15min。将坯体进行烧结,烧结温度2000℃,保温2h。最终得到的阴极体,对阴极体进行苯蒸汽碳化处理,碳化温度1550℃,保温80s。对阴极进行激活处理,激活温度1450℃,保温30min。测试该阴极的发射性能,该阴极在 1400℃时的零场发射电流密度如表1所示。
实施例5制备活性物质添加总量为5wt%的阴极,其余为钼。将17.482g四水合七钼酸铵溶液、1.316g硝酸镧溶液、0.005g氧化钽粉末和20.804g柠檬酸溶液混合,水浴搅拌得到湿凝胶,烘干、580℃分解。将分解后的粉末在氢气气氛下进行还原,还原工艺为一次还原温度为580℃,二次还原温度为930℃,得到La2O3、Ta2O5掺杂钼粉。将得到的粉末进行模压成型,压力170MPa,保压15min。将坯体进行烧结,烧结温度2050℃,保温1h。最终得到的阴极体,对阴极体进行苯蒸汽碳化处理,碳化温度1550℃,保温70s。对阴极进行激活处理,激活温度1450℃,保温30min。测试该阴极的发射性能,该阴极在 1400℃时的零场发射电流密度如表1所示。
实施例6制备活性物质添加总量为3wt%的阴极,其余为钼。将17.850g四水合七钼酸铵溶液、0.771g硝酸镧溶液、0.010g氧化钽粉末和21.242g柠檬酸溶液混合,水浴搅拌得到湿凝胶,烘干、550℃分解。将分解后的粉末在氢气气氛下进行还原,还原工艺为一次还原温度为550℃,二次还原温度为850℃,得到La2O3、Ta2O5掺杂钼粉。将得到的粉末进行模压成型,压力170MPa,保压15min。将坯体进行烧结,烧结温度2100℃,保温1h。最终得到的阴极体,对阴极体进行苯蒸汽碳化处理,碳化温度1600℃,保温40s。对阴极进行激活处理,激活温度1500℃,保温25min。测试该阴极的发射性能,该阴极在 1400℃时的零场发射电流密度如表1所示。
实施例7制备活性物质添加总量为4wt%的阴极,其余为钼。将17.666g四水合七钼酸铵溶液、1.037g硝酸镧溶液、0.010g氧化钽粉末和21.023g柠檬酸溶液混合,水浴搅拌得到湿凝胶,烘干、550℃分解。将分解后的粉末在氢气气氛下进行还原,还原工艺为一次还原温度为550℃,二次还原温度为850℃,得到La2O3、Ta2O5掺杂钼粉。将得到的粉末进行模压成型,压力180MPa,保压15min。将坯体进行烧结,烧结温度2150℃,保温1h。最终得到的阴极体,对阴极体进行苯蒸汽碳化处理,碳化温度1600℃,保温40s。对阴极进行激活处理,激活温度1600℃,保温25min。测试该阴极的发射性能,该阴极在 1400℃时的零场发射电流密度如表1所示。
表1各实施例得到的二元复合La2O3、Ta2O5掺杂钼阴极在1400℃时的发射电流密度jm

Claims (1)

1.一种二元复合La2O3、Ta2O5掺杂钼阴极材料的制备方法,其特征在于,二元复合La2O3、Ta2O5掺杂钼阴极材料为:对Mo基体进行掺杂活性物质La2O3、Ta2O5,其中活性物质的添加总量占阴极材料总重量的3-5wt%,La2O3的添加量为2.5-4.95%,其余活性物质为Ta2O5;其余阴极材料为Mo;包括以下步骤:
(1)按照二元复合La2O3、Ta2O5掺杂钼阴极材料中镧、钽、钼的摩尔比,称取硝酸镧、七钼酸铵、柠檬酸和氧化钽,七钼酸铵:柠檬酸的质量比为1:(0.8-1.5),将硝酸镧溶液、七钼酸铵溶液、柠檬酸溶液混合后添加氧化钽粉末;水浴加热,机械搅拌,最终形成干凝胶;
(2)将步骤(1)中获得的干凝胶分解,分解温度为500-650℃,得到La2O3、Ta2O5掺杂MoO3粉末;
(3)将步骤(2)中得到的氧化物混合粉末进行还原,在氢气条件下,一次还原温度为500-600℃,二次还原温度为800-950℃,获得的La2O3、Ta2O5掺杂钼粉;
(4)将步骤(3)中获得的La2O3、Ta2O5掺杂钼粉置于磨具中,压制成型,得到阴极坯体,在氢气气氛下进行烧结,烧结温度为1850-2150℃,保温1-3h,获得具有金属光泽的La2O3、Ta2O5掺杂Mo块体;
(5)将步骤(4)获得的La2O3、Ta2O5掺杂Mo块体进行苯蒸汽碳化,碳化温度1450-1800℃,保温70-120s,得到碳化稀土氧化物掺杂Mo阴极材料;
(6)将步骤(5)中获得的碳化稀土氧化物掺杂Mo阴极材料进行激活老练处理,激活温度1400-1650℃,保温10-30min。
CN201610697857.2A 2016-08-21 2016-08-21 一种二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法 Active CN106206215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610697857.2A CN106206215B (zh) 2016-08-21 2016-08-21 一种二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610697857.2A CN106206215B (zh) 2016-08-21 2016-08-21 一种二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106206215A CN106206215A (zh) 2016-12-07
CN106206215B true CN106206215B (zh) 2018-03-09

Family

ID=57523341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610697857.2A Active CN106206215B (zh) 2016-08-21 2016-08-21 一种二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106206215B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115383121A (zh) * 2022-08-24 2022-11-25 北京工业大学 一种基于中途循环破碎控制稀土复合难熔金属粉体细化程度的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007595A3 (nl) * 1993-10-07 1995-08-16 Philips Electronics Nv Hogedruk-metaalhalogenide-ontladingslamp.
JP3069063B2 (ja) * 1997-09-05 2000-07-24 東芝ホクト電子株式会社 電子レンジ用マグネトロン
EP1037244A3 (en) * 1999-03-12 2003-01-08 TDK Corporation Electron-emitting material and preparing process
CN1089813C (zh) * 1999-07-12 2002-08-28 北京工业大学 电子管阴极材料及其制备方法
KR100863253B1 (ko) * 2002-12-06 2008-10-15 삼성전자주식회사 마그네트론과 전자렌지 및 고주파가열기
CN100447929C (zh) * 2005-01-20 2008-12-31 北京工业大学 稀土氧化物次级发射材料及其制备方法
US9502201B2 (en) * 2008-12-08 2016-11-22 A.L.M.T. Corp. Tungsten electrode material and thermionic emission current measuring device
CN103849804B (zh) * 2014-03-01 2016-08-31 深圳市威勒科技股份有限公司 一种微波炉磁控管用无辐射多元复合钨阴极材料及其制备工艺

Also Published As

Publication number Publication date
CN106206215A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN103008676B (zh) 一种高分散超细钼基粉末的制备方法
US2491284A (en) Electrode for electron discharge devices and method of making the same
CN103366963B (zh) 高温片式钽电容器及其制作方法
CN102394208B (zh) 浸渍型氧化钇-钨基钇、钪酸盐阴极材料及其制备方法
CN106206215B (zh) 一种二元复合La2O3、Ta2O5掺杂钼阴极材料及其制备方法
CN205793592U (zh) 用于中子管制造的自成靶
CN110303165A (zh) 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法
CN105977030B (zh) 一种超大容量的钽电容器的制备方法
CN103632847B (zh) 一种轴向模压钽电容器及其制造方法
CN106128763A (zh) 一种大容量新型高能固体电解质铌电容器的制备方法
CN104299869B (zh) 一种浸渍型Re3W-Sc2O3混合基阴极材料及其制备方法
CN101447376B (zh) Y2O3-Lu2O3体系复合稀土-钼电子发射材料及其制备方法
Saiki et al. Development of Solar‐Pumped Lasers and Its Application
CN105489905A (zh) 一种钙钛矿型空气电池电极催化层的制备方法
CN103700557B (zh) 一种碳化稀土氧化镥掺杂钼阴极材料及其制备方法
CN107706407A (zh) 一种纯相锂离子电池负极材料Mo4O11的合成方法
CN109637913B (zh) 一种钡钨阴极用发射活性盐及其制备
CN106328468B (zh) 磁控管用La2O3掺杂Mo阴极材料的制备方法
Wang et al. Recent progress of cathodes in high-power continuous wave magnetron tubes
US3425111A (en) Method of making cathodes by neutron bombardment
CN111739771A (zh) 一种用于热阴材料的含钪锶活性物质
JP2013073984A (ja) 電解コンデンサの電極用の焼結体シートおよびその製造方法
CN101628336B (zh) 一种含钪扩散阴极材料的制备方法
CN101447377B (zh) Y2O3-Gd2O3体系复合稀土-钼电子发射材料及其制备方法
Liu et al. Development and application of tungsten electrode materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant