CN106169468A - 可扩展的电压源 - Google Patents

可扩展的电压源 Download PDF

Info

Publication number
CN106169468A
CN106169468A CN201610322917.2A CN201610322917A CN106169468A CN 106169468 A CN106169468 A CN 106169468A CN 201610322917 A CN201610322917 A CN 201610322917A CN 106169468 A CN106169468 A CN 106169468A
Authority
CN
China
Prior art keywords
voltage source
stacking
extendible
layer
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610322917.2A
Other languages
English (en)
Inventor
D·富尔曼
W·古特
V·科伦科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azur Space Solar Power GmbH
Original Assignee
Azur Space Solar Power GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azur Space Solar Power GmbH filed Critical Azur Space Solar Power GmbH
Priority to CN202111000142.4A priority Critical patent/CN113745210A/zh
Publication of CN106169468A publication Critical patent/CN106169468A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0814Diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Ceramic Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种可扩展的电压源,具有相互串联连接的部分电压源,其中的每一个具有一个半导体二极管,每个半导体二极管具有p掺杂的吸收层,p吸收层被p掺杂的钝化层钝化,p掺杂的钝化层具有比p吸收层的带隙更大的带隙,半导体二极管具有n吸收层,n吸收层被n掺杂的钝化层钝化,n掺杂的钝化层具有比n吸收层的带隙更大的带隙;在每两个彼此相继的部分电压源之间构造有一个隧道二极管,其具有多个半导体层,所述半导体层具有比p/n吸收层的带隙更大的带隙;部分电压源和隧道二极管单片地集成在一起且共同构成第一堆叠,在从堆叠的上侧向着下侧的光入射方向上,半导体二极管的p吸收层和n吸收层的总厚度从最上面的二极管向着最下面的二极管增加。

Description

可扩展的电压源
技术领域
本发明涉及一种可扩展的(skalierbar)电压源。
背景技术
由US 4 127 862、US 6 239 354 B1、DE 10 2010 001 420 A1、由NaderM.Kalkhoran等人写的文章《Cobalt disilicide intercell ohmic contacts formultijunction photovoltaic energy converters》(用于多结光电能量转换器的硅化钴电池间的欧姆接触),应用物理学快报(Appl.Phys.Lett.)64,1980(1994)以及由A.Bett等人写的文章《III-V Solar cells under monochromatic illumination》(单色光照射下的III-V族太阳能电池),2008年第33届IEEE光电专家会议(PVSC'08,33rd IEEE)论文集,第1-5页,ISBN:978-1-4244-1640-0已知了可扩展的电压源或由III-V族材料构成的太阳能电池。
发明内容
在此背景下,本发明的任务在于:给出一种装置,所述装置对现有技术作出进一步改进。
所述任务通过具有权利要求1的特征的可扩展的电压源来解决。本发明的有利的实施方式是从属权利要求的主题。
根据本发明的主题提出可扩展的电压源,所述可扩展的电压源具有数量为N的相互串联连接的部分电压源,所述部分电压源构造为半导体二极管,其中所述部分电压源中的每一个具有一个半导体二极管,所述半导体二极管具有p-n结,所述半导体二极管具有p掺杂的吸收层(Absorptionsschicht),其中p吸收层被p掺杂的钝化层钝化,所述p掺杂的钝化层具有比所述p吸收层的带隙更大的带隙,所述半导体二极管具有n吸收层,其中所述n吸收层被n掺杂的钝化层钝化,所述n掺杂的钝化层具有比所述n吸收层的带隙更大的带隙,并且各个部分电压源的部分电源电压相互间具有小于20%的偏差;在每两个彼此相继的部分电压源之间构造有一个隧道二极管,其中所述隧道二极管具有多个半导体层,所述半导体层具有比所述p/n吸收层的带隙更大的带隙,并且具有更大带隙的半导体层分别由具有经改变的化学计量的材料和/或不同于所述半导体二极管的p/n吸收层的元素成分的材料组成;所述部分电压源和所述隧道二极管单片地集成在一起并且共同构成具有上侧及下侧的第一堆叠(Stapel),并且所述部分电压源的数量N大于等于3;光在上侧处入射到所述第一堆叠上,并且堆叠上侧处的照射面的尺寸基本上是所述第一堆叠在上侧处的面的尺寸,并且所述第一堆叠具有小于12μm的总厚度;在300K的情况下,只要所述第一堆叠被光子流照射,则所述第一堆叠具有大于3伏特的电源电压,其中在从所述第一堆叠的上侧向所述第一堆叠的下侧的光入射方向上,半导体二极管的p吸收层和n吸收层的总厚度从最上面的二极管向着最下面的二极管增加,并且所述电压源在堆叠的下侧附近具有环绕的、台阶形的边缘。
要注意的是,表述“基本上”结合堆叠上侧处的照射面与第一堆叠在上侧处的面的尺寸的比较应理解为,面积的区别尤其小于20%,或者优选小于10%,或者优选小于5%,或者最优选两个面积相等。
还要注意的是,用于照射堆叠上侧的“光”的表述应理解为具有吸收层的吸收范围内的波长光谱的光。可以理解,具有一个确定的、即吸收的波长的——也就是吸收层的吸收范围内的波长的单色光也是适合的。
可以理解,优选以确定波长的光照射所述第一堆叠的整个上侧,即整个表面或几乎整个表面。应注意,深入的研究以出人意料的方式表明:与现有技术不同地,借助当前的单片堆叠方式以有利的方式得到了3V以上的电源电压。
根据本发明的装置的一个优点在于:通过多个部分电压源的串联连接也能够制造具有4伏以上或更大的电压值的电压源,借助单片集成结构能够制造简单的且成本上有利的及可靠的电压源。另一优点是:借助堆叠形式的布置与迄今硅二极管的侧向布置相比实现了较大的面积节省。尤其由发射二极管或光源仅需照射所述堆叠的小得多的接收面。
在一种扩展构型中,各个部分电压源的部分电源电压相互间偏差小于10%。由此实质地改进了作为可扩展的电压源、尤其作为参考电压源的适用性。可以理解,术语“可扩展”涉及整个堆叠的电源电压的幅值。
在另一种扩展构型中,所述半导体二极管分别具有相同的半导体材料,其中,在此二极管的半导体材料具有相同的晶体组成(kristalline Zusammensetzung),优选化学计量几乎相同,或者优选化学计量完全相同。同样有利的是,所述第一堆叠被布置在衬底上。在一种实施方式中,所述半导体材料和/或所述衬底由III-V族材料组成。尤其优选的是,所述衬底包括锗或砷化镓,和/或,所述衬底上的半导体层具有砷和/或磷。换句话说,所述半导体层包括含砷的层和含磷的层,即由GaAs或AlGaAs或InGaAs组成的层作为砷化物层的示例以及InGaP作为磷化物层的示例。
优选的是,在所述第一堆叠的下侧上构造第二电压连接端,尤其是,所述第二电压连接端构造成穿过衬底。
在另一种实施方式中,所述半导体二极管由与所述衬底相同的材料组成。优点是,尤其这两部分的膨胀系数相同。有利的是,所述半导体二极管基本上由III-V族材料组成。尤其优选地使用GaAs。
在一种优选的实施方式中,在所述第一堆叠的上侧上构造有第一电压连接端,所述第一电压连接端被构造为边缘附近的环绕的金属接触部或被构造为边缘处的单个接触面。
此外优选的是,所述第一堆叠具有小于2mm2或小于1mm2的基面。研究已表明:有利的是,所述基面以四边形构造。优选所述堆叠的基面以正方形构造。
进一步的研究已表明,为了达到特别高的电压有利的是,构造第二堆叠并且将两个堆叠相互串联地连接,从而所述第一堆叠的电源电压和所述第二堆叠的电源电压相加。优选地,所述第一堆叠与所述第二堆叠并排布置在共同的载体上。
在一种扩展构型中,所述第一堆叠的电源电压与所述第二堆叠的电源电压偏差小于15%。
此外优选的是,在堆叠的最下面的半导体二极管的下面构造有半导体镜。研究已表明:能够将多个堆叠并排构造在一个半导体晶片或半导体衬底片上,其方式是,在整面地、优选外延地制造所述层之后,实施所谓的台面蚀刻为此,借助掩膜工艺产生漆掩膜,然后优选实施湿化学蚀刻以产生台面沟槽。所述台面蚀刻优选终止在衬底中或终止在衬底上。
在一种实施方式中,在各个二极管的p吸收层与n吸收层之间构造有本征层。这里,本征层应理解为具有低于1E16 1/cm2、优选小于5E15 1/cm2、最优选小于1.5E15 1/cm2的掺杂的半导体层。
在一种扩展构型中优选的是,每个堆叠在下侧附近具有环绕的、台阶形的边缘,其中在两个堆叠直接相邻的情况下在堆叠结构的外侧上构成环绕的边缘作为共同的环绕边缘,从而所述电压源具有环绕的边缘。
边缘优选是阶台形的或者构造为阶台。在此,边缘或阶台的表面优选大部分具有平面,其中,边缘或阶台的表面的法线构造为平行或几乎平行于第一堆叠的表面的法线或者相应堆叠的表面的法线。要注意的是,边缘或阶台的侧面构造为基本或恰好垂直于边缘或阶台的表面。
边缘或阶台的棱边分别与第一堆叠的四个侧面中的每一个或者分别多个堆叠的侧面距离至少5μm且最大500μm。棱边到直接相邻的侧面的距离范围分别优选在10μm与300μm之间。所述距离范围尤其在50μm与250μm之间。
第一堆叠的侧面和尤其堆叠的所有侧面优选构造为平的,并且尤其构造为垂直的或几乎垂直的。侧面上的法线相对于相邻边缘面的法线或者堆叠表面的法线优选在80°与110°之间的角度范围内,即,侧面的法线与直接相邻的边缘面的法线彼此基本正交。所述角度范围优选在85°与105°之间。
附图说明
以下参照附图来详细解释本发明。在此,相同的部分标以相同的名称。所示出的实施方式是高度示意性的,即距离和侧向延展与垂直延展不是按比例的,只要没有其他说明,相互间也不具有可推导的几何关系。其中示出了:
图1:根据本发明的具有一个堆叠的可扩展的电压源的第一实施方式,
图2:具有多个堆叠的可扩展的电压源的第二实施方式,
图3:具有总共5个二极管的一种实施形式,所述5个二极管具有不同的吸收区厚度,
图4:具有环绕的台阶形的阶台的堆叠。
具体实施方式
图1的示图表示第一实施方式的示意图,所述第一实施方式具有可扩展的电压源VQ,所述可扩展的电压源VQ具有第一堆叠ST1,所述第一堆叠具有上侧和下侧并且具有数量N等于3的二极管。所述第一堆叠ST1具有由第一二极管D1和第一隧道二极管T1和第二二极管D2和第二隧道二极管T2和第三二极管D3构成的串联电路。在堆叠ST1的上侧处构造有第一电压连接端VSUP1,并且在堆叠ST1的下侧处构造有第二电压连接端VSUP2。在此,所述第一堆叠ST1的电源电压VQ1由各个二极管D1至D3的部分电压组成。为此,所述第一堆叠ST1经受光子流——即光L。
二极管D1至D3与隧道二极管T1及T2的第一堆叠ST1被实施为单片构造的、优选由相同的半导体材料构成的块。
在图2的示图中构造第一堆叠ST1和第二堆叠ST2的有利的相互串联的另一种实施方式。以下仅解释与图1的示图的区别。所述第二堆叠ST2如所述第一堆叠ST1那样具有由三个二极管和构造在这些二极管之间的隧道二极管组成的串联电路。两个堆叠ST1及ST2相互串联地连接,从而只要两个堆叠ST1与ST2经受光子流L,则所述第一堆叠ST1的电源电压VQ1与所述第二堆叠ST2的电源电压VQ2相加。
在一种未示出的实施方式中,所述两个堆叠ST1及ST2彼此具有不同数量的分别以串联电路连接的二极管。在另一种未示出的实施方式中,至少第一堆叠ST1和/或第二堆叠ST2具有多于三个以串联电路连接的二极管。由此能够扩展电压源VQ的电压幅值。优选地,数量N在4与8之间的范围中。在另一种未示出的实施方式中,所述两个堆叠ST1及ST2相互并联连接。
在图3的示图中示出了半导体层有利地相互串联成所述第一堆叠ST1的实施方式。以下仅解释与图1的示图的区别。所述第一堆叠ST1总共包括五个串联连接的部分电压源,所述部分电压源被构造为二极管D1至D5。光L入射到第一二极管D1的表面OB上。所述表面OB几乎或完全被照射。在两个彼此相继的二极管D1-D5之间分别构造有一个隧道二极管T1-T4。随着各个二极管D1至D5离所述表面OB的距离增加,吸收区的厚度增大,从而最下面的二极管D5具有最厚的吸收区。所述第一堆叠ST1的总厚度总共小于等于12μm。在最下面的二极管D5的下面构造有衬底SUB。
在图4的示图中示出了半导体层有利地相互串联成所述第一堆叠ST1的实施方式,其具有环绕的台阶形的阶台。以下仅解释与图3的示图的区别。在所述第一堆叠ST1的表面OB上,在边缘R处构造有金属的第一连接接触部K1。所述第一连接接触部K1与所述第一电压连接端VSUP1相连接,未示出。所述衬底SUB具有上侧OS,其中所述衬底SUB的上侧OS材料锁合地与最下面的、即第五二极管D5连接。在此应理解,在将第五二极管布置在所述衬底上以及材料锁合地与所述衬底的上侧OS连接之前,在所述衬底上外延地产生一个薄的核化层和一个缓冲层。所述衬底SUB的上侧OS具有比所述第一堆叠ST1的下侧处的面更大的表面。由此构成了环绕的阶台STU。所述阶台STU的边缘与第一堆叠ST1的直接相邻的侧面距离大于5μm且小于500μm,以附图标记STU的长度示出。在所述衬底SUB的下侧处构造有整面的金属的第二接触部K2。所述第二连接接触部K2与所述第二电压连接端VSUP2相连接(未示出)。

Claims (16)

1.一种可扩展的电压源(VQ),所述可扩展的电压源具有:
数量为N的相互串联连接的部分电压源,所述部分电压源构造为半导体二极管,其中,所述部分电压源中的每一个具有一个半导体二极管(D1,D2,D3,D4,D5),所述半导体二极管具有p-n结,所述半导体二极管(D1,D2,D3,D4,D5)具有p掺杂的吸收层,所述半导体二极管(D1,D2,D3,D4,D5)具有n吸收层,其中,所述n吸收层被n掺杂的钝化层钝化,所述n掺杂的钝化层具有比所述n吸收层的带隙更大的带隙,并且各个部分电压源的部分电源电压相互间具有小于20%的偏差,
在每两个彼此相继的部分电压源之间构造有一个隧道二极管(T1,T2;T3,T4),其中,所述隧道二极管(T1,T2;T3,T4)具有多个半导体层,所述半导体层具有比所述p/n吸收层的带隙更大的带隙,并且具有更大带隙的半导体层分别由具有经改变的化学计量的材料和/或不同于所述半导体二极管(D1,D2,D3,D4,D5)的所述p/n吸收层的元素成分的材料组成,
所述部分电压源和所述隧道二极管(T1,T2;T3,T4)单片地集成在一起并且共同构成具有上侧和下侧的第一堆叠(ST1),并且所述部分电压源的数量N大于等于3,
在以光(L)照射所述第一堆叠(ST1)的情况下,其中,所述光(L)在所述上侧处入射到所述第一堆叠(ST1)上所述表面(OB)上,并且在堆叠上侧处经照射的表面(OB)的尺寸基本上相当于所述第一堆叠在上侧处的面的尺寸,并且所述第一堆叠(ST1)具有小于12μm的总厚度,
在300K的情况下,只要所述第一堆叠(ST1)被光(L)照射,则所述第一堆叠(ST1)具有大于3伏特的电源电压(VQ1),其中,在从所述第一堆叠(ST1)的上侧向所述堆叠的下侧的光入射方向上,半导体二极管的p吸收层和n吸收层的总厚度从最上面的二极管(D1)向着最下面的二极管(D3-D5)增加,
其特征在于,
所述半导体二极管(D1,D2,D3,D4)的每个p吸收层被p掺杂的钝化层钝化,所述p掺杂的钝化层具有比所述p吸收层的带隙更大的带隙,并且所述电压源在所述堆叠的下侧附近具有环绕的、台阶形的边缘。
2.根据权利要求1所述的可扩展的电压源(VQ),其特征在于,所述部分电压源的部分电源电压相互间具有小于10%的偏差。
3.根据权利要求1或2所述的可扩展的电压源(VQ),其特征在于,所述半导体二极管(D1,D2,D3,D4,D5)分别具有相同的半导体材料。
4.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,所述第一堆叠(ST1)布置在衬底(SUB)上,并且所述衬底(SUB)包括半导体材料。
5.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,所述第一堆叠(ST1)具有小于2mm2或小于1mm2的基面。
6.根据权利要求5所述的可扩展的电压源(VQ),其特征在于,所述基面以四边形构造。
7.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,在所述第一堆叠(ST1)的上侧上构造有第一电压连接端(VSUP1),所述第一电压连接端被构造为所述边缘(R)附近的环绕的第一金属接触部(K1)或被构造为所述边缘(R)处的单个接触面(K1)。
8.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,在所述第一堆叠(ST1)的下侧上构造有第二电压连接端(VSUP2)。
9.根据权利要求4所述的可扩展的电压源(VQ),其特征在于,所述第二电压连接端(VSUP2)构造成穿过所述衬底。
10.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,构造有第二堆叠(ST2),并且所述第一堆叠(ST1)与所述第二堆叠(ST2)被并排布置在共同的载体上,并且两个堆叠(ST1,ST2)相互串联地连接,从而所述第一堆叠(ST1)的电源电压(VQ1)与所述第二堆叠(ST2)的电源电压(VQ2)相加。
11.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,在各个二极管的p吸收层与n吸收层之间构造有本征层。
12.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,所述半导体材料和/或所述衬底由III-V族材料组成。
13.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,所述衬底包括锗或砷化镓。
14.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,在所述堆叠的最下面的半导体二极管的下面构造有半导体镜。
15.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,所述堆叠(ST1)的半导体层同时包括含有砷化物的层和含有磷化物的层。
16.根据以上权利要求中任一项所述的可扩展的电压源(VQ),其特征在于,所述边缘的棱边与所述堆叠的直接相邻的侧面距离至少5μm且最大500μm。
CN201610322917.2A 2015-05-18 2016-05-16 可扩展的电压源 Pending CN106169468A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111000142.4A CN113745210A (zh) 2015-05-18 2016-05-16 可扩展的电压源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015006379.0 2015-05-18
DE102015006379.0A DE102015006379B4 (de) 2015-05-18 2015-05-18 Skalierbare Spannungsquelle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111000142.4A Division CN113745210A (zh) 2015-05-18 2016-05-16 可扩展的电压源

Publications (1)

Publication Number Publication Date
CN106169468A true CN106169468A (zh) 2016-11-30

Family

ID=55963120

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111000142.4A Pending CN113745210A (zh) 2015-05-18 2016-05-16 可扩展的电压源
CN201610322917.2A Pending CN106169468A (zh) 2015-05-18 2016-05-16 可扩展的电压源

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202111000142.4A Pending CN113745210A (zh) 2015-05-18 2016-05-16 可扩展的电压源

Country Status (6)

Country Link
US (1) US10872887B2 (zh)
EP (1) EP3096361B1 (zh)
JP (1) JP6312161B2 (zh)
CN (2) CN113745210A (zh)
DE (1) DE102015006379B4 (zh)
TW (1) TWI649891B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015012007A1 (de) 2015-09-19 2017-03-23 Azur Space Solar Power Gmbh Skalierbare Spannungsquelle
DE102016001387A1 (de) * 2016-02-09 2017-08-10 Azur Space Solar Power Gmbh Empfängerbaustein
US9865504B2 (en) 2016-03-04 2018-01-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and manufacturing method thereof
DE102017011643B4 (de) * 2017-12-15 2020-05-14 Azur Space Solar Power Gmbh Optische Spannungsquelle
DE102019003069B4 (de) * 2019-04-30 2023-06-01 Azur Space Solar Power Gmbh Stapelförmige hochsperrende lll-V-Halbleiterleistungsdioden

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800630A (en) * 1993-04-08 1998-09-01 University Of Houston Tandem solar cell with indium phosphide tunnel junction
US6150603A (en) * 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
US20040079408A1 (en) * 2002-10-23 2004-04-29 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US20040166681A1 (en) * 2002-12-05 2004-08-26 Iles Peter A. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US20060048811A1 (en) * 2004-09-09 2006-03-09 Krut Dimitri D Multijunction laser power converter
CN101010811A (zh) * 2004-05-12 2007-08-01 Rwe太空太阳能有限责任公司 具有集成的保护二极管的太阳能电池
CN101057342A (zh) * 2004-09-11 2007-10-17 阿祖尔太空太阳能有限责任公司 用于互连太阳能电池串的太阳能电池装置以及方法
JP2008177212A (ja) * 2007-01-16 2008-07-31 Nec Corp 半導体受光素子
CN101494246A (zh) * 2008-01-25 2009-07-29 昂科公司 具有iii-v族化合物半导体电池的高聚光度地面太阳能电池组件
US20120285519A1 (en) * 2011-05-10 2012-11-15 Emcore Solar Power, Inc. Grid design for iii-v compound semiconductor cell
CN103022181A (zh) * 2011-09-22 2013-04-03 波音公司 太阳能电池结构中的多层背面场层
WO2013088621A1 (ja) * 2011-12-14 2013-06-20 パナソニック株式会社 太陽電池及びその製造方法
WO2014096200A1 (de) * 2012-12-21 2014-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Justagetolerante photovoltaische zelle
CN104054188A (zh) * 2012-01-20 2014-09-17 阿聚尔斯佩西太阳能有限责任公司 多结太阳能电池的半成品以及制造多结太能电池的方法

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206002A (en) * 1976-10-19 1980-06-03 University Of Pittsburgh Graded band gap multi-junction solar energy cell
US4127862A (en) 1977-09-06 1978-11-28 Bell Telephone Laboratories, Incorporated Integrated optical detectors
US4179702A (en) * 1978-03-09 1979-12-18 Research Triangle Institute Cascade solar cells
JPS55125680A (en) * 1979-03-20 1980-09-27 Yoshihiro Hamakawa Photovoltaic element
US4688068A (en) * 1983-07-08 1987-08-18 The United States Of America As Represented By The Department Of Energy Quantum well multijunction photovoltaic cell
US4598164A (en) * 1983-10-06 1986-07-01 Exxon Research And Engineering Co. Solar cell made from amorphous superlattice material
US4667059A (en) * 1985-10-22 1987-05-19 The United States Of America As Represented By The United States Department Of Energy Current and lattice matched tandem solar cell
US4631352A (en) * 1985-12-17 1986-12-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High band gap II-VI and III-V tunneling junctions for silicon multijunction solar cells
JPS62234379A (ja) * 1986-04-04 1987-10-14 Kanegafuchi Chem Ind Co Ltd 半導体装置
JP2719230B2 (ja) * 1990-11-22 1998-02-25 キヤノン株式会社 光起電力素子
US5223043A (en) * 1991-02-11 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Current-matched high-efficiency, multijunction monolithic solar cells
US5298086A (en) * 1992-05-15 1994-03-29 United Solar Systems Corporation Method for the manufacture of improved efficiency tandem photovoltaic device and device manufactured thereby
US5407491A (en) * 1993-04-08 1995-04-18 University Of Houston Tandem solar cell with improved tunnel junction
US6239354B1 (en) 1998-10-09 2001-05-29 Midwest Research Institute Electrical isolation of component cells in monolithically interconnected modules
JP3657143B2 (ja) * 1999-04-27 2005-06-08 シャープ株式会社 太陽電池及びその製造方法
US6316715B1 (en) * 2000-03-15 2001-11-13 The Boeing Company Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
US6864414B2 (en) * 2001-10-24 2005-03-08 Emcore Corporation Apparatus and method for integral bypass diode in solar cells
JP2003218374A (ja) * 2002-01-23 2003-07-31 Sharp Corp Iii−v族太陽電池
US20060162768A1 (en) * 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US7488890B2 (en) * 2003-04-21 2009-02-10 Sharp Kabushiki Kaisha Compound solar battery and manufacturing method thereof
DE102005000767A1 (de) * 2005-01-04 2006-07-20 Rwe Space Solar Power Gmbh Monolithische Mehrfach-Solarzelle
JP4868746B2 (ja) * 2005-02-16 2012-02-01 シャープ株式会社 薄膜化合物太陽電池およびその製造方法
JP2008543029A (ja) * 2005-05-03 2008-11-27 ユニバーシティー、オブ、デラウェア ウルトラ超高効率太陽電池
US20100147381A1 (en) * 2005-07-13 2010-06-17 Haney Michael W Ultra and very high efficiency solar cells
US8795854B2 (en) * 2005-08-01 2014-08-05 Amit Goyal Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates
US8742251B2 (en) * 2006-12-20 2014-06-03 Jds Uniphase Corporation Multi-segment photovoltaic power converter with a center portion
WO2008124154A2 (en) * 2007-04-09 2008-10-16 Amberwave Systems Corporation Photovoltaics on silicon
US8895342B2 (en) * 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
US20090215215A1 (en) * 2008-02-21 2009-08-27 Sunlight Photonics Inc. Method and apparatus for manufacturing multi-layered electro-optic devices
JP5203397B2 (ja) * 2008-02-21 2013-06-05 シャープ株式会社 太陽電池の製造方法
US8075723B1 (en) * 2008-03-03 2011-12-13 Stion Corporation Laser separation method for manufacture of unit cells for thin film photovoltaic materials
US20090325340A1 (en) * 2008-06-30 2009-12-31 Mohd Aslami Plasma vapor deposition system and method for making multi-junction silicon thin film solar cell modules and panels
CA2744774C (en) * 2008-07-17 2017-05-23 Uriel Solar, Inc. High power efficiency, large substrate, polycrystalline cdte thin film semiconductor photovoltaic cell structures grown by molecular beam epitaxy at high deposition rate for use in solar electricity generation
US9080425B2 (en) * 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US8138410B2 (en) * 2008-10-01 2012-03-20 International Business Machines Corporation Optical tandem photovoltaic cell panels
US8916769B2 (en) * 2008-10-01 2014-12-23 International Business Machines Corporation Tandem nanofilm interconnected semiconductor wafer solar cells
US8912428B2 (en) * 2008-10-22 2014-12-16 Epir Technologies, Inc. High efficiency multijunction II-VI photovoltaic solar cells
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
JP5570736B2 (ja) * 2009-02-06 2014-08-13 シャープ株式会社 化合物半導体太陽電池の製造方法
US8299351B2 (en) * 2009-02-24 2012-10-30 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Epitaxial growth of III-V compounds on (111) silicon for solar cells
US9722131B2 (en) * 2009-03-16 2017-08-01 The Boeing Company Highly doped layer for tunnel junctions in solar cells
US10505062B2 (en) * 2009-07-09 2019-12-10 Faquir Chand Jain High efficiency tandem solar cells and a method for fabricating same
TWI409959B (zh) * 2009-12-07 2013-09-21 Epistar Corp 太陽能電池元件及其裝置
JP5215284B2 (ja) * 2009-12-25 2013-06-19 シャープ株式会社 多接合型化合物半導体太陽電池
DE102010001420A1 (de) 2010-02-01 2011-08-04 Robert Bosch GmbH, 70469 III-V-Halbleiter-Solarzelle
US8852994B2 (en) * 2010-05-24 2014-10-07 Masimo Semiconductor, Inc. Method of fabricating bifacial tandem solar cells
US11417788B2 (en) * 2010-11-19 2022-08-16 The Boeing Company Type-II high bandgap tunnel junctions of InP lattice constant for multijunction solar cells
DE102011000521A1 (de) * 2011-02-04 2012-08-23 Azur Space Solar Power Gmbh Mehrfachsolarzelle sowie Verfahren zur Herstellung einer solchen
KR20140040121A (ko) * 2011-03-29 2014-04-02 캘리포니아 인스티튜트 오브 테크놀로지 그래핀-기반 다중-접합 가요성 태양 전지
WO2012147141A1 (ja) * 2011-04-27 2012-11-01 パナソニック株式会社 太陽電池を用いて電力を発生させる方法
WO2013059708A2 (en) * 2011-10-21 2013-04-25 University Of Utah Research Foundation Homogeneous multiple band gap devices
US8912617B2 (en) * 2011-10-27 2014-12-16 Solar Junction Corporation Method for making semiconductor light detection devices
WO2013074530A2 (en) * 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
US9263611B2 (en) * 2011-11-17 2016-02-16 Solar Junction Corporation Method for etching multi-layer epitaxial material
CN102651416A (zh) * 2012-05-18 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 三结叠层GaAs激光光伏电池及其制备方法
AU2013277994A1 (en) * 2012-06-22 2015-01-22 Epiworks, Inc. Manufacturing semiconductor-based multi-junction photovoltaic devices
US9997659B2 (en) * 2012-09-14 2018-06-12 The Boeing Company Group-IV solar cell structure using group-IV or III-V heterostructures
US9985160B2 (en) * 2012-09-14 2018-05-29 The Boeing Company Group-IV solar cell structure using group-IV or III-V heterostructures
US9099595B2 (en) * 2012-09-14 2015-08-04 The Boeing Company Group-IV solar cell structure using group-IV or III-V heterostructures
US9530911B2 (en) * 2013-03-14 2016-12-27 The Boeing Company Solar cell structures for improved current generation and collection
ITMI20131297A1 (it) * 2013-08-01 2015-02-02 Cesi Ct Elettrotecnico Sperim Entale Italian Cella fotovoltaica con banda proibita variabile
US10340699B2 (en) * 2013-09-11 2019-07-02 Japan Aerospace Exploration Agency Solar cell adjustment system, related method, and minimum current detection and control system
CN103594539B (zh) * 2013-10-22 2016-02-10 扬州乾照光电有限公司 一种柔性多结GaAs太阳电池及其制备方法
CN103545389B (zh) * 2013-10-24 2016-03-30 瑞德兴阳新能源技术有限公司 一种多结聚光砷化镓太阳能电池及其制备方法
US20170018675A1 (en) * 2014-04-11 2017-01-19 Semprius, Inc. Multi-junction photovoltaic micro-cell architectures for energy harvesting and/or laser power conversion
US20150295114A1 (en) * 2014-04-11 2015-10-15 Sempruis, Inc. Multi-junction power converter with photon recycling

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800630A (en) * 1993-04-08 1998-09-01 University Of Houston Tandem solar cell with indium phosphide tunnel junction
US6150603A (en) * 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
US20040079408A1 (en) * 2002-10-23 2004-04-29 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US20040166681A1 (en) * 2002-12-05 2004-08-26 Iles Peter A. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
CN101010811A (zh) * 2004-05-12 2007-08-01 Rwe太空太阳能有限责任公司 具有集成的保护二极管的太阳能电池
US20060048811A1 (en) * 2004-09-09 2006-03-09 Krut Dimitri D Multijunction laser power converter
CN101057342A (zh) * 2004-09-11 2007-10-17 阿祖尔太空太阳能有限责任公司 用于互连太阳能电池串的太阳能电池装置以及方法
JP2008177212A (ja) * 2007-01-16 2008-07-31 Nec Corp 半導体受光素子
CN101494246A (zh) * 2008-01-25 2009-07-29 昂科公司 具有iii-v族化合物半导体电池的高聚光度地面太阳能电池组件
US20120285519A1 (en) * 2011-05-10 2012-11-15 Emcore Solar Power, Inc. Grid design for iii-v compound semiconductor cell
CN103022181A (zh) * 2011-09-22 2013-04-03 波音公司 太阳能电池结构中的多层背面场层
WO2013088621A1 (ja) * 2011-12-14 2013-06-20 パナソニック株式会社 太陽電池及びその製造方法
CN104054188A (zh) * 2012-01-20 2014-09-17 阿聚尔斯佩西太阳能有限责任公司 多结太阳能电池的半成品以及制造多结太能电池的方法
WO2014096200A1 (de) * 2012-12-21 2014-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Justagetolerante photovoltaische zelle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATTHEW WILKINS 等: "Five-volt vertically-stacked, single-cell GaAs", 《PROCEEDINGS OF SPIE》 *
戴宝通、郑晃忠: "《太阳能电池技术手册》", 31 May 2012, 人民邮电出版社 *

Also Published As

Publication number Publication date
TW201707226A (zh) 2017-02-16
US10872887B2 (en) 2020-12-22
JP6312161B2 (ja) 2018-04-18
US20160343704A1 (en) 2016-11-24
TWI649891B (zh) 2019-02-01
CN113745210A (zh) 2021-12-03
EP3096361A1 (de) 2016-11-23
EP3096361B1 (de) 2022-03-09
DE102015006379B4 (de) 2022-03-17
JP2016219012A (ja) 2016-12-22
DE102015006379A1 (de) 2016-11-24

Similar Documents

Publication Publication Date Title
CN106169468A (zh) 可扩展的电压源
CN106252342A (zh) 光电耦合器
CN103210497B (zh) 包含具有分级掺杂的稀释氮化物子电池的多结太阳能电池
CN107039555A (zh) 可调电压源
CN102484147B (zh) 具有纳米线的多结光生伏打电池
CN109860325A (zh) 一种砷化物多结太阳能电池及其制作方法
Zununovich et al. The difference between the contact structure with nanosize inclusions from the semiconductor photodiodes
US20210288202A1 (en) Photovoltaic device
TWI601299B (zh) Optical receiver module
Yu Jeco et al. Luminescent coupling effect in wafer-bonded III-V on silicon multijunction solar cells
TWI614911B (zh) 光電耦合器
Dai et al. High efficiency single-junction InGaP photovoltaic devices under low intensity light illumination
TWI638466B (zh) Receiver module
CN101167192B (zh) 量子库太阳能电池及其制备方法
Yu et al. Electro-optical modeling of InP nanowire solar cells: Core-shell vs. axial structure
Markvart Photogenerated carrier collection in solar cells in terms of dark carrier distribution: three dimensions
Madrid et al. Investigation of the efficiency boost due to spectral concentration in a quantum-dot based luminescent concentrator
Sleiman et al. P/N/P Double-Junction GaAs/Ge Solar Cell Devices for PV and CPV
Höhn et al. Photonic Band Gap Engineering of Solar Cells
Dmitruk et al. Investigation of the electrical characteristics of reteroepitaxial structures as function of microrelief and manufacturing technology features

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161130