CN106163778A - 固态拉伸hdpe - Google Patents

固态拉伸hdpe Download PDF

Info

Publication number
CN106163778A
CN106163778A CN201580018815.5A CN201580018815A CN106163778A CN 106163778 A CN106163778 A CN 106163778A CN 201580018815 A CN201580018815 A CN 201580018815A CN 106163778 A CN106163778 A CN 106163778A
Authority
CN
China
Prior art keywords
goods
astm
hdpe resin
measured
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580018815.5A
Other languages
English (en)
Other versions
CN106163778B (zh
Inventor
孙陆逸
M·麦克利奥德
J·阿什博
李凤奎
L·丹尼尔斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fina Technology Inc
Original Assignee
Fina Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fina Technology Inc filed Critical Fina Technology Inc
Publication of CN106163778A publication Critical patent/CN106163778A/zh
Application granted granted Critical
Publication of CN106163778B publication Critical patent/CN106163778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C2049/023Combined blow-moulding and manufacture of the preform or the parison using inherent heat of the preform, i.e. 1 step blow moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0094Condition, form or state of moulded material or of the material to be shaped having particular viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0088Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/10Applications used for bottles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种ISBM制品,该ISBM制品由HDPE树脂制成,该HDPE树脂的通过ASTM D‑1238在190℃/2.16kg的条件下测定的MI2为0.1~5.0dg/min,通过ASTM D792测定的密度为0.940~0.970g/cc,峰值分子量大于40000g/mol,零剪切粘度为15000~250000Pa·sec。

Description

固态拉伸HDPE
技术领域
本发明的实施方式一般涉及适合用于注射拉伸吹塑的聚合物。具体地,本发明的实施方式涉及适合用于注射拉伸吹塑的乙烯聚合物。
背景技术
一些聚合物加工技术在制造最终产物的过程中采用固态拉伸。非限制性的例子包括热成形、拉带、拉单纤丝、纵向取向(MDO)膜、双轴取向膜(例如通过双膜泡加工和拉幅机拉伸)、固态挤出和注射拉伸吹塑。通常,这些工艺将起始物料在低于其熔融温度的温度下变形,将其成形为最终所需的形状。
注射拉伸吹塑(ISBM)是固态拉伸的一个子集。ISBM可消除在常规的挤出吹塑(EBM)中再利用的修边和再研磨。ISBM通常制造出更精确的瓶螺纹,因为这些瓶螺纹是通过注塑步骤而形成的。该固态拉伸步骤可制造具有杰出的顶部负荷特性及其它改善的物理特性的硬质瓶,这可实现减厚/轻量。此外,利用通过ISBM制造的制品可提高表面平滑度,从而提高可印刷性和印刷质量。另外,平滑的表面为例如瓶子之类的模塑制品提供适当的标签粘附性。因为ISBM瓶在固态下被拉伸,所以可降低或消除对于熔体强度的要求。无法良好地适用于常规EBM的树脂可良好地适用于ISBM。
市售的ISBM流水线能在一小时内制造数千个瓶子。为了实现这样的速度,一般用于ISBM的树脂具有优良的可加工性。其它的树脂特征可包括预拉伸性以及在拉伸和吹塑步骤中的极少的不良品。
发明内容
在本发明的一个实施方式中,公开了一种ISBM制品,该ISBM制品由HDPE树脂制成,该HDPE树脂的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2为0.1~5.0dg/min,通过ASTM D792测定的密度为0.940~0.970g/cc,峰值分子量大于40000g/mol,零剪切粘度为15000~250000Pa·sec。
在本发明的另一个实施方式中,公开了一种ISBM制品,该ISBM制品由HDPE树脂制成,该HDPE树脂的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2为0.5~8.0dg/min,多分散性为2.0~7.0,零剪切粘度为1000~50000Pa·sec。所述制品的通过ASTM D523测定的45°光泽度大于或等于50,通过ASTM 1003测定的雾度小于或等于25%。
在本发明的又一个实施方式中,公开了一种注射拉伸吹塑制品的成形方法。所述方法包括提供一种HDPE树脂,该HDPE树脂的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2为0.1~5.0dg/min,通过ASTM D792测定的密度为0.940~0.970g/cc,通过GPC测定的峰值分子量小于50000g/mol,零剪切粘度为1000~250000Pa·sec。所述方法还包括将所述HDPE树脂注塑成预成形体,并将该预成形体拉伸吹塑成制品。所述方法的不良率低于2%。
附图的简单说明
附图所示为实施例所述的聚乙烯ISBM瓶的顶部负荷强度与密度的关系。
发明详述
现在给出详细说明。下文的描述包括特定实施方式,变体和实施例,但是本发明不限于这些实施方式、变体或实施例,包含这些实施方式、变体和实施例能够使本领域普通技术人员在将本发明的信息与可获得的资料和技术结合时可以实施和利用本发明。
本文使用的各种术语如下文所示。对于权利要求中使用但是下文中没有定义的术语,应取相关领域技术人员通过印刷出版物和已颁布的专利了解到的最宽泛的定义。另外,除非另有说明,本文所述的所有化合物都可以是取代或未取代的,且化合物的例举包括其衍生物。
在本发明的某些实施方式中,公开了适用于ISBM的聚合物。在一个或多个实施方式中,例如当需要低不良率和高顶部负荷强度时,可以使用具有某些特征的高密度聚乙烯(HDPE)。用于这些实施方式的所述HDPE的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2可以为0.1~5.0dg/min,或者为0.2~2.0dg/min或0.4~0.7dg/min。用于这些实施方式的所述HDPE的通过ASTM D792测定的密度可以为0.940~0.970g/cc、0.950~0.962g/cc或0.958~0.959g/cc。通过GPC测定的峰值分子量(Mp)可以大于40000g/mol或大于50000g/mol。通过GPC测定的重均分子量(Mw)可以为100000~200000或130000~170000。在某些实施方式中,多分散性(Mw/Mn)可以为5~15或8~14。零剪切粘度可以为15000~250000Pa·sec、30000~250000Pa·sec或35000~70000Pa·sec。弛豫时间(秒)可以为0.0010~0.010或0.015~0.060。由这种树脂通过ISBM制造目标产品的不良率可以低于、即≤2%。这种树脂的例子包括但不限于Total 7208、9458和BDM1 08-12。
在某些其它实施方式中,例如当需要通过ISBM制造出具有优异的光学特性的目标产品时,所述HDPE的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2可以为0.5~8.0dg/min、1.0~5.0dg/min或1.5~3.0dg/min。所述HDPE的多分散性(Mw/Mn)可以为2.0~7.0、2.5~6.5或3.0~6.0。
流变宽度是树脂的驰豫时间分布的函数,驰豫时间分布进而又是树脂的分子结构的函数。该宽度参数由实验测定,假设Cox-Merz规则,通过用改良的Carreau-Yasuda(CY)模型拟合使用线性-粘弹动态振动频率扫描试验产生的流动曲线。
η=ηB[1+(λγ)α](n-1/α)
其中:
η=粘度(Pa s);
γ=剪切速率(1/s);
α=流变宽度参数[CY模型参数,其描述在牛顿和幂律特性之间的过渡区的宽度];
λ=按秒计的驰豫时间[CY模型参数,描述过渡区的时间位置];
ηB=零剪切粘度(Pa s)[CY模型参数,定义牛顿平坦区(plateau)];
n=幂律常数[CY模型参数,定义高剪切速率区的最终斜率]。
为便于模型拟合,幂律常数(n)保持定值(n=0)。在0.1~316.2秒-1频率范围,采用平行板几何条件和在线性粘弹性区域内的应变进行试验。在三个温度(170℃、200℃及230℃)下进行频率扫描,用已知的时间-温度叠加法将数据转换形成190℃下的总曲线。HDPE树脂的零剪切粘度可以为1000~50000Pa·sec、2000~25000Pa·sec或2500~12500Pa·sec。
由这种树脂制成的制品的通过ASTM D523测定的45°光泽度可以大于或等于50或者大于60,通过ASTM 1003测定的雾度可以小于或等于25%或者小于15%。这种树脂的例子包括但不限于Total 6410、6420和6450。
产物应用
在一个实施方式中,聚合物可用于注射拉伸吹塑(ISBM)。ISBM可用于制备薄壁高透明性的瓶子。这些工艺为本领域技术人员公知。例如,ISBM工艺可包括将聚合物注塑成预成形体,然后将该预成形体拉伸吹塑成瓶子。
实施例
比较多种聚乙烯树脂在ISBM工艺中的性能。HDPE树脂均为道达尔石化(TotalPetrochemical)的产品,均用市售的反应器制备。树脂的详情示于表1。
表1
表1中的分子量通过GPC测定,密度通过D792测定。MI2、MI5和HLMI通过ASTM D-1238在190℃/2.16kg的条件下测定。HLMI定义为高负荷熔体指数。
表1中列出的树脂的可加工性按下述标准排序。
排名=1.仅<20%的预成形体成功地成形为瓶子。
排名=2.≥20%且<90%的预成形体成功地成形为瓶子。
排名=3.≥90%且<98%的预成形体成功地成形为瓶子。
排名=4.≥98%的预成形体成功地成形为瓶子。
基于该排序系统,HDPE评级如下:
1=2285,5502
2=6410,6420,6450
4=7208,9458,BDM1 08-12
不同的HDPE样品在拉伸性能方面具有明显差异。与Total 6410、6420、6450、2285和5502相比,Total 7208、9458和BDM1 08-12具有优异的拉伸性能。
将瓶子的顶部负荷强度以牛为单位的负荷制表。
6410:162±14牛
6420:159±14牛
6450:194牛(仅测试了一个瓶子)
7208:178±4牛
9458:189±7牛
BDM1 08-12:176±6牛
顶部负荷强度提供有关ISBM终端制品在压裂试验条件下使用时的压裂特性的信息。顶部负荷强度试验如下所述进行:将ISBM制品(垂直地)置于下板上,将其朝着上板缓慢抬升,以测定该ISBM制品的相应的负荷容量。
虽然Total 6410和6420的密度更大,但由Total 7208、9458制成的瓶子和BDM 08-12瓶具有比Total 6410和6420更高的顶部负荷强度。此外,双峰树脂Total 9458瓶在相同密度下表现出比单峰级的树脂更高的顶部负荷强度。因此,双峰级的PE提高可加工性和瓶顶部负荷强度。附图比较了各受试样品的顶部负荷强度-密度关系。
由Total 6410、6420制成的瓶子和6450瓶具有受试HDPE树脂的优异的光学特性。尤其是Total 6420具有比Total 7208、9458或BDM1 08-12更加杰出的雾度和光泽度。
表2.ISBM瓶的雾度和光泽度值
虽然上述内容涉及本发明的实施方式,但是,可以在不偏离本发明的基本范围情况下,对其他和进一步的实施方式进行设计,并且本发明的范围由所附权利要求书确定。

Claims (21)

1.一种注射拉伸吹塑(ISBM)制品,其包含:
一种HDPE树脂,该HDPE树脂的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2为0.1~5.0dg/min,通过ASTM D792测定的密度为0.940~0.970g/cc,峰值分子量大于40000g/mol,零剪切粘度为15000~250000Pa·sec。
2.如权利要求1所述的制品,其中,所述HDPE树脂的通过ASTMD-1238在190℃/2.16kg的条件下测定的MI2为0.25~1.0dg/min。
3.如权利要求1所述的制品,其中,所述HDPE树脂的通过ASTM D792测定的密度为0.953~0.959g/cc。
4.如权利要求1所述的制品,其中,所述HDPE树脂的峰值分子量大于50000g/mol。
5.如权利要求1所述的制品,其中,所述HDPE树脂的零剪切粘度为35000~70000Pa·sec。
6.如权利要求1所述的制品,其中,所述HDPE树脂是双峰的。
7.如权利要求1所述的制品,其中,所述HDPE树脂的MI2为0.4~0.7。
8.如权利要求1所述的制品,其中,所述HDPE树脂的Mw为130000~170000。
9.如权利要求1所述的制品,其中,所述HDPE树脂的密度为0.958~0.959。
10.如权利要求1所述的制品,其中,所述HDPE树脂的弛豫时间为0.015~0.060。
11.一种ISBM制品,其包含:
一种HDPE树脂,该HDPE树脂的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2为0.5~8.0dg/min,多分散性(Mw/Mn)为2.0~7.0,零剪切粘度为1000~50000Pa·sec;且所述制品的通过ASTM D523测定的45°光泽度大于或等于50,通过ASTM 1003测定的雾度小于或等于25%。
12.如权利要求11所述的制品,其中,所述HDPE树脂的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2为1.5~3.0dg/min。
13.如权利要求11所述的制品,其中,所述HDPE树脂的多分散性(Mw/Mn)为3.0~6.0。
14.如权利要求11所述的制品,其中,所述HDPE树脂的零剪切粘度为2500~12500Pa·sec。
15.如权利要求11所述的制品,其通过ASTM D523测定的45°光泽度大于60。
16.如权利要求11所述的制品,其通过ASTM 1003测定的雾度小于15%。
17.一种注射拉伸吹塑制品的成形方法,其包括:
提供一种HDPE树脂,该HDPE树脂的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2为0.1~5.0dg/min,通过ASTM D792测定的密度为0.940~0.970g/cc,峰值分子量大于40000g/mol,零剪切粘度为15000~250000Pa·sec;
将该丙烯基无规共聚物注塑成预成形体;和
将所述预成形体拉伸吹塑成制品。
18.如权利要求17所述的方法,其中,所述方法的不良率为10%或更低。
19.如权利要求18所述的方法,其中,所述方法的不良率低于2%。
20.一种注射拉伸吹塑制品的成形方法,其包括:
提供一种HDPE树脂,该HDPE树脂的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2为0.5~8.0dg/min,多分散性(Mw/Mn)为2.0~7.0,零剪切粘度为1000~50000Pa·sec;且所述制品的通过ASTM D523测定的45光泽度大于或等于50,通过ASTM 1003测定的雾度小于或等于25%;
将该丙烯基无规共聚物注塑成预成形体;和
将所述预成形体拉伸吹塑成制品。
21.一种注射拉伸吹塑(ISBM)制品,其包含:
一种HDPE树脂,该HDPE树脂的通过ASTM D-1238在190℃/2.16kg的条件下测定的MI2为0.4~0.7dg/min,通过ASTM D792测定的密度为0.958~0.959g/cc,峰值分子量大于40000g/mol,弛豫时间为0.015~0.060。
CN201580018815.5A 2014-04-10 2015-04-09 固态拉伸hdpe Active CN106163778B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/250,002 2014-04-10
US14/250,002 US9505161B2 (en) 2014-04-10 2014-04-10 Solid-state stretched HDPE
PCT/US2015/025191 WO2015157563A1 (en) 2014-04-10 2015-04-09 Solid-state stretched hdpe

Publications (2)

Publication Number Publication Date
CN106163778A true CN106163778A (zh) 2016-11-23
CN106163778B CN106163778B (zh) 2022-11-25

Family

ID=54264343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580018815.5A Active CN106163778B (zh) 2014-04-10 2015-04-09 固态拉伸hdpe

Country Status (14)

Country Link
US (1) US9505161B2 (zh)
EP (1) EP3129212B1 (zh)
JP (1) JP6601972B2 (zh)
KR (1) KR102335728B1 (zh)
CN (1) CN106163778B (zh)
BR (1) BR112016022832B1 (zh)
CA (1) CA2944693C (zh)
CL (1) CL2016002572A1 (zh)
EA (1) EA033932B1 (zh)
EC (1) ECSP16086242A (zh)
MX (1) MX2016013164A (zh)
PE (1) PE20170273A1 (zh)
TW (1) TWI671319B (zh)
WO (1) WO2015157563A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9982967B2 (en) * 2015-02-18 2018-05-29 E I Du Pont De Nemours And Company Composite ballistic resistant laminate
EP3291960B1 (en) * 2015-05-07 2021-09-29 Fina Technology, Inc. Method for sheet extrusion thermoforming of polyethylene
US11951654B2 (en) 2017-12-13 2024-04-09 Amcor Rigid Packaging Usa, Llc Passive barrier layer placement within carbonated beverage container wall to improve shelf-life
US11685798B2 (en) * 2018-07-31 2023-06-27 Dow Global Technologies Llc Polyethylene formulations for large part blow molding applications
CN114222767A (zh) * 2019-08-12 2022-03-22 Sabic环球技术有限责任公司 多峰聚乙烯
BR112023016174A2 (pt) * 2021-04-28 2023-12-12 Fina Technology Garrafas de isbm de baixa fricção

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686618A (zh) * 2009-11-10 2012-09-19 道达尔石油化学产品研究弗吕公司 用于注射拉伸吹塑应用的双峰聚乙烯
US20140004285A1 (en) * 2011-01-11 2014-01-02 Total Research & Technology Feluy Injection Stretch Blow Moulded Articles
CN105637027A (zh) * 2013-08-12 2016-06-01 道达尔研究技术弗吕公司 用于注射拉伸吹塑应用的聚乙烯

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100277378B1 (ko) 1995-11-24 2001-01-15 고또오 슈운기찌 프로필렌조성물및그제조방법과폴리프로필렌조성물및성형품
JP2000086722A (ja) * 1998-09-16 2000-03-28 Asahi Chem Ind Co Ltd 射出延伸ブロー成形用高密度ポリエチレン樹脂
JP2000086833A (ja) * 1998-09-17 2000-03-28 Asahi Chem Ind Co Ltd 射出延伸ブロー成形用高密度ポリエチレン樹脂組成物
US6362270B1 (en) 1999-08-12 2002-03-26 The Dow Chemical Company Thermoplastic compositions for durable goods applications
GB9928176D0 (en) * 1999-11-29 2000-01-26 Borealis Polymers Oy Polymer
US6914113B2 (en) * 2002-07-25 2005-07-05 Fina Technology, Inc. Film clarity and rheological breadth in polyethylene resins
US20090035546A1 (en) * 2007-07-30 2009-02-05 Fina Technology, Inc. Polyethylene films
US8642701B2 (en) 2008-06-30 2014-02-04 Fina Technology, Inc. Polypropylene and polylactic acid blends of injection stretch blow molding applications
ES2534436T3 (es) * 2008-09-30 2015-04-22 The Procter & Gamble Company Proceso de moldeo por soplado con estirado y recipiente
US8026305B2 (en) * 2008-10-01 2011-09-27 Fina Technology Inc Articles formed from nucleated polyethylene
US20100159173A1 (en) * 2008-12-18 2010-06-24 Fina Technology, Inc. Polyethylene Polymerization Processes
US7951881B2 (en) * 2009-02-27 2011-05-31 Chevron Phillips Chemical Company Lp Polyethylene film having improved barrier properties and methods of making same
US20110174413A1 (en) 2010-01-20 2011-07-21 Fina Technology, Inc. Modification of Polyethylene Pipe to Improve Sag Resistance
US9896573B2 (en) * 2010-04-12 2018-02-20 Omya International Ag Composition for blow molding
US8828529B2 (en) * 2010-09-24 2014-09-09 Chevron Phillips Chemical Company Lp Catalyst systems and polymer resins having improved barrier properties
US8318883B1 (en) * 2011-06-08 2012-11-27 Chevron Phillips Chemical Company Lp Polymer compositions for blow molding applications
US9284391B2 (en) * 2011-09-02 2016-03-15 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
US8580893B2 (en) * 2011-12-22 2013-11-12 Fina Technology, Inc. Methods for improving multimodal polyethylene and films produced therefrom
US8829094B2 (en) * 2011-12-22 2014-09-09 Fina Technology, Inc. Use of nucleation in ICP resins
US9273170B2 (en) * 2014-03-12 2016-03-01 Chevron Phillips Chemical Company Lp Polymers with improved toughness and ESCR for large-part blow molding applications
US9169337B2 (en) * 2014-03-12 2015-10-27 Chevron Phillips Chemical Company Lp Polymers with improved ESCR for blow molding applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686618A (zh) * 2009-11-10 2012-09-19 道达尔石油化学产品研究弗吕公司 用于注射拉伸吹塑应用的双峰聚乙烯
US20120282422A1 (en) * 2009-11-10 2012-11-08 Total Petrochemicals Research Feluy Bimodal polyethylene for injection stretch blow moulding applications
US20140004285A1 (en) * 2011-01-11 2014-01-02 Total Research & Technology Feluy Injection Stretch Blow Moulded Articles
CN105637027A (zh) * 2013-08-12 2016-06-01 道达尔研究技术弗吕公司 用于注射拉伸吹塑应用的聚乙烯

Also Published As

Publication number Publication date
US9505161B2 (en) 2016-11-29
KR20160143663A (ko) 2016-12-14
BR112016022832A2 (pt) 2017-08-15
CA2944693C (en) 2020-03-31
EA033932B1 (ru) 2019-12-11
CN106163778B (zh) 2022-11-25
EP3129212A1 (en) 2017-02-15
ECSP16086242A (es) 2017-05-31
CL2016002572A1 (es) 2017-03-24
EA201691947A1 (ru) 2017-02-28
JP2017520477A (ja) 2017-07-27
EP3129212A4 (en) 2017-11-22
US20150290862A1 (en) 2015-10-15
JP6601972B2 (ja) 2019-11-06
EP3129212B1 (en) 2020-02-26
CA2944693A1 (en) 2015-10-15
BR112016022832B1 (pt) 2021-08-17
TW201605908A (zh) 2016-02-16
MX2016013164A (es) 2017-02-14
WO2015157563A1 (en) 2015-10-15
PE20170273A1 (es) 2017-04-12
TWI671319B (zh) 2019-09-11
KR102335728B1 (ko) 2021-12-08

Similar Documents

Publication Publication Date Title
CN106163778A (zh) 固态拉伸hdpe
RU2674695C2 (ru) Полиэтилен высокой плотности
CN101541508B (zh) 制品
DK2464675T3 (en) USE OF bimodal POLYETHYLENE FOR INJECTION MOLDING BLOWER DRIVE APPLICATIONS
CN106414523A (zh) 新型高透明度低雾度组合物
CA2985179A1 (en) Polyethylene for superior sheet extrusion thermoforming performance
JP2014198422A (ja) 射出延伸ブローボトル及び射出延伸ブローボトルの製造方法
WO2007060007A1 (en) Screw cap comprising hdpe
EP2539129B1 (en) Injection stretch blow moulded articles
Fujiyama et al. Rheological properties of metallocene isotactic polypropylenes
Grommes et al. Investigation of the influencing factors on the process-dependent elasticity modulus in extrusion blow molded plastic containers for material modelling in the finite element simulation
Lyu et al. Bottom design of carbonated soft drink poly (ethylene terephthalate) bottle to prevent solvent cracking
BR112014029739B1 (pt) composição polimérica para moldagem por sopro
CN104045758B (zh) 新型中密度聚乙烯组合物
JP6749640B2 (ja) 樹脂成形体の製造方法
Hassan et al. Effect of gamma radiation on physico-mechanical properties of vulcanized natural rubber/carbon fiber composites
EP3840928B1 (en) Process for making containers formed of polyolefin resin
Daoudi et al. Impact of recycled polypropylene on the specific properties of stretched polypropylene tapes for woven bag
TW201922362A (zh) 聚乳酸瓶之選別回收方法
Mezghani et al. Analysis of dart impact resistance of low-density polyethylene and linear low-density polyethylene blown films via an improved instrumented impact test method
Lee et al. A Study on Tensile Behavior of Transparent Polycarbonate (PC) Plate in the High Temperature
Costa et al. Empirical models for end-use properties prediction of LDPE: application in the flexible plastic packaging industry
Nixon et al. Measuring the significance of pearlescence in real-time bottle forming
Demmer Comparison and analysis of biobased/biodegradable and petrochemical cutlery flexibility
CN106633325A (zh) 一种聚乙烯组合物以及耐久性薄膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant