CN106158934B - 半导体器件和晶体管 - Google Patents

半导体器件和晶体管 Download PDF

Info

Publication number
CN106158934B
CN106158934B CN201510843927.6A CN201510843927A CN106158934B CN 106158934 B CN106158934 B CN 106158934B CN 201510843927 A CN201510843927 A CN 201510843927A CN 106158934 B CN106158934 B CN 106158934B
Authority
CN
China
Prior art keywords
capacitor
metal layer
semiconductor devices
substrate
ferroelectricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510843927.6A
Other languages
English (en)
Other versions
CN106158934A (zh
Inventor
颜智洋
刘致为
赖德全
丁媛文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN106158934A publication Critical patent/CN106158934A/zh
Application granted granted Critical
Publication of CN106158934B publication Critical patent/CN106158934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0711Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • H01L29/4958Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo with a multiple layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • H01L27/0733Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors in combination with capacitors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供具有可变正电容器的负电容栅极堆叠结构,以实现具有提高的电压增益的无磁滞负电容场效应晶体管(NCFET)。栅极堆叠结构通过利用铁电性负电容器与具有半导体材料(诸如多晶硅)的可变正电容器的组合来提供有效的铁电性负电容器,从而有效的铁电性负电容器随着所施加的栅极电压而变化。我们的模拟结果显示出,具有可变正电容器的NCFET不仅可以实现非磁滞ID‑VG曲线而且可以实现更好的亚阈值斜率。

Description

半导体器件和晶体管
技术领域
本发明总体涉及半导体领域,更具体地,涉及无磁滞负电容场效应晶体管(NCFET)。
背景技术
亚阈值摆幅是晶体管的电流-电压特性的一个特征。在亚阈值区域中,漏极电流的表现与正向偏压二极管的指数型增长的电流类似。在该MOSFET工作区域中,在漏极、源极和基极(bulk)电压均固定的条件下,漏极电流-栅极电压的对数曲线将显现出近似的对数线性特性。
发明内容
根据本发明的一个方面,提供了一种半导体器件,包括:衬底;以及栅极结构,位于所述衬底上方。所述栅极结构包括:栅极氧化物;第一金属层,位于所述栅极氧化物上方;铁电性材料,位于所述第一金属层上方;第二金属层,位于所述铁电性材料上方;半导体材料,位于所述第二金属层上方;和第三金属层,位于所述半导体材料上方,其中,所述第二金属层、所述半导体材料和所述第三金属层形成可变正电容器。
优选地,所述第一金属层、所述铁电性材料和所述第二金属层形成铁电性负电容器。
优选地,所述铁电性负电容器和所述可变正电容器形成有效的铁电性负电容器,所述有效的铁电性负电容器的绝对值小于所述栅极氧化物的电容,并且所述有效的铁电性负电容器的绝对值大于所述栅极氧化物的电容与所述衬底的耗尽层电容的组合。
优选地,所述可变正电容器随着施加于所述第三金属层的栅极电压而变化。
优选地,所述半导体材料包括具有掺杂浓度为大约1e17/cm^3至大约1e19/cm^3并且厚度为大约10纳米至大约100纳米的多晶硅。
优选地,所述半导体材料包括具有掺杂浓度为大约1e16/cm^3至大约1e19/cm^3并且厚度为大约10纳米至大约100纳米的铟镓锌氧化物。
优选地,该半导体器件还包括:源极,位于所述衬底上方;以及漏极,位于所述衬底上方并且与所述源极分隔,其中,施加于所述栅极结构的栅极电压控制所述源极与所述漏极之间的沟道。
根据本发明的另一方面,提供了一种半导体器件,包括:衬底;以及栅极结构,位于所述衬底上,所述栅极结构包括:铁电性负电容器;和可变正电容器,通过半导体材料形成。
优选地,所述铁电性负电容器包括第一金属层、铁电性材料和第二金属层。
优选地,所述可变正电容器由第二金属层、所述半导体材料和第三金属层形成。
优选地,所述铁电性负电容器和所述可变正电容器形成有效的铁电性负电容器,所述有效的铁电性负电容器的绝对值小于所述栅极氧化物的电容,并且所述有效的铁电性负电容器的绝对值大于所述栅极氧化物的电容与所述衬底的耗尽层电容的组合。
优选地,所述可变正电容器随着施加于所述栅极结构的栅极电压而变化。
优选地,所述半导体材料包括具有掺杂浓度为大约1e17/cm^3至大约1e19/cm^3并且厚度为大约10纳米至大约100纳米的多晶硅。
优选地,所述半导体器件选自由平面器件、多栅极器件、FinFET和围栅FET构成的组中。
优选地,该半导体器件还包括:源极,位于所述衬底上方;以及漏极,位于所述衬底上方并且与所述源极分隔,其中,施加于所述栅极结构的栅极电压控制所述源极与所述漏极之间的沟道。
根据本发明的又一方面,提供了一种晶体管,包括:源极;漏极;以及栅极,控制所述源极与所述漏极之间的导电性,所述栅极包括:铁电性负电容器,通过铁电性材料形成;和可变正电容器,通过半导体材料形成。
优选地,所述铁电性负电容器包括第一金属层、所述铁电性材料和第二金属层。
优选地,所述可变正电容器随着施加于所述栅极结构的栅极电压而变化。
优选地,所述半导体材料包括具有掺杂浓度为大约1e17/cm^3至大约1e19/cm^3并且厚度为大约10纳米至大约100纳米的多晶硅。
优选地,所述铁电性负电容器和所述可变正电容器形成有效的铁电性负电容器,所述有效的铁电性负电容器的绝对值小于所述栅极氧化物的电容,并且所述有效的铁电性负电容器的绝对值大于所述栅极氧化物的电容与所述衬底的耗尽层电容的组合。
附图说明
当结合附图进行阅读时,根据下面详细的描述可以更好地理解本发明的各个方面。应该强调的是,根据工业中的标准实践,各种部件没有被按比例绘制。实际上,为了清楚的讨论,各种部件的尺寸可以被任意增加或减少。
图1是根据一些实施例的制造半导体器件的方法的流程图。
图2A至图2H是根据一些实施例的示例性半导体器件在制造无磁滞负电容场效应晶体管期间的一个阶段中的截面图。
图3是根据一些实施例的制造半导体器件的方法的流程图。
图4是根据一些实施例的具有无磁滞负电容场效应晶体管的示例性半导体器件400的截面图。
图5是根据一些实施例的制造半导体器件的方法的流程图。
图6是根据一些实施例的具有无磁滞负电容场效应晶体管的示例性半导体器件600的截面图。
图7A是根据一些实施例的示例性半导体器件700的截面图。
图7B是根据一些实施例的示例性半导体器件700的栅极结构的简化的电容器模型。
图8A是根据一些实施例的具有无磁滞负电容场效应晶体管的示例性半导体器件800的截面图。
图8B是根据一些实施例的示例性半导体器件800的栅极结构的简化的电容器模型。
图9A至图9C示出了根据一些实施例的示例性半导体器件的模拟结果。
具体实施方式
以下公开内容提供了许多不同实施例或实例,用于实现所提供主题的不同特征。以下将描述组件和布置的特定实例以简化本发明。当然,这些仅是实例并且不意欲限制本发明。例如,在以下描述中,在第二部件上方或上形成第一部件可以包括第一部件和第二部件直接接触的实施例,也可以包括形成在第一部件和第二部件之间的附加部件使得第一部件和第二部件不直接接触的实施例。另外,本发明可以在多个实例中重复参考标号和/或字符。这种重复是为了简化和清楚的目的,并且其本身不指示所讨论的各个实施例和/或配置之间的关系。
此外,为了便于描述,本文中可以使用诸如“在…下方”、“在…下面”、“下部”、“在…上面”、“上部”等空间关系术语以描述如图所示的一个元件或部件与另一元件或部件的关系。除图中所示的方位之外,空间关系术语意欲包括使用或操作过程中的器件的不同的方位。装置可以以其它方式定位(旋转90度或在其他方位),并且在本文中使用的空间关系描述符可同样地作相应地解释。
本发明提供具有可变正电容器的负电容栅极堆叠结构,以实现具有提高的电压增益的的无磁滞负电容场效应晶体管(NCFET)。栅极堆叠结构通过使用铁电性负电容器与具有半导体材料(诸如多晶硅和IGZO(铟镓锌氧化物))的可变正电容器的组合来提供有效的铁电性负电容器,从而使得有效的铁电性负电容器随着所施加的栅极电压而变化。模拟结果示出,具有可变正电容器的NCFET不仅可以实现非磁滞ID-VG曲线而且可以实现更好的亚阈值斜率。在一些实施例中,可以根据从由平面器件、多栅极器件、FinFET和围栅FET构成的组中选择的器件来实现负电容栅极堆叠件。
图1是根据一些实施例的制造半导体器件的方法的流程图。如图1所示,并且参考图2A至图2H,方法100开始于提供衬底202(操作102)。然后,通过使用化学汽相沉积(CVD)提供由高K材料制成且位于衬底202上方的栅极氧化物204(操作104)。在栅极氧化物204上方提供诸如金属206的第一金属(操作106)。通过使用溅射沉积在第一金属206上方提供诸如PbZr0.5Ti0.5O3或Hf0.5Zr0.5O2的铁电性材料208(操作108)。在铁电性材料208上方提供第二金属层210(操作110)。通过使用化学汽相沉积(CVD)在第二金属层210上方提供诸如多晶硅的半导体材料212(操作112)。在半导体材料212上方提供第三金属层214(操作114)。
图2A是根据一些实施例的示例性半导体器件在制造无磁滞负电容的场效应晶体管期间的一个阶段中的截面图。如图2A所示,提供衬底202(如,图1的操作102)。例如,衬底202的材料可以包括Si、SiGe、Ge或III-V族材料(InP、GaAs、AlAs、InAs、InAlAs、InGaAs、InSb、GaSb、InGaSb)。衬底202的一部分可被掺杂为掺杂浓度大约为5e17/cm^3的p型锗,以作为半导体沟道。
图2B是根据一些实施例的示例性半导体器件在制造无磁滞负电容的场效应晶体管期间的一个阶段中的截面图。如图2B所示,使用化学汽相沉积(CVD)来提供由高K材料制成的栅极氧化物204(如,图1的操作104)。例如,高K材料可以是具有GeO2、HfO2、ZrO2、HfZrO2、Ga2O3、Gd2O3、TaSiO2、Al2O3或TiO2的单层或多层结构。
图2C是根据一些实施例的示例性半导体器件在制造无磁滞负电容的场效应晶体管期间的一个阶段中的截面图。如图2C所示,在栅极氧化物204上方提供第一金属层206(如,图1的操作106)。例如,第一金属206可以包括TiN。
图2D是根据一些实施例的示例性半导体器件在制造无磁滞负电容场效应晶体管期间的一个阶段中的截面图。如图2D所示,通过使用溅射沉积在第一金属层206上方提供铁电性材料208(如,图1的操作108)。例如,铁电性材料208可以包括厚度为大约300纳米至大约600纳米的PbZr0.5Ti0.5O3或厚度为大约5纳米至大约50纳米的Hf0.5Zr0.5O2
图2E是根据一些实施例的示例性半导体器件在制造无磁滞负电容场效应晶体管期间的一个阶段中的截面图。如图2E所示,在铁电性材料208上方提供第二金属层210(如,图1的操作110)。例如,第二金属层210可以包括TiN。
图2F是根据一些实施例的示例性半导体器件在制造无磁滞负电容场效应晶体管期间的一个阶段中的截面图。如图2F所示,提供半导体材料212(如,图1的操作112)。例如,半导体材料212可以包括掺杂浓度为大约1e17/cm^3至大约1e19/cm^3并且厚度为大约10纳米至大约100纳米的多晶硅。在一些实施例中,例如,半导体材料212可以包括掺杂浓度为大约1e16/cm^3至大约1e19/cm^3并且厚度为大约10纳米至大约100纳米的铟镓锌氧化物(IGZO)。
图2G是根据一些实施例的示例性半导体器件在制造无磁滞负电容场效应晶体管期间的一个阶段中的截面图。如图2G所示,在半导体材料212上方提供第三金属层214(如,图1的操作114)。例如,第三金属214可以包括TiN。
图2H是根据一些实施例的示例性半导体器件在制造无磁滞负电容的场效应晶体管期间的一个阶段中的截面图。如图2H所示,衬底202的部分216、218可以被掺杂为掺杂浓度大约为1e20/cm^3至1e21/cm^3的n型锗。
图3是根据一些实施例的制造半导体器件的方法的流程图。图4是根据一些实施例的具有无磁滞负电容场效应晶体管的示例性半导体器件400的截面图。如图3和图4所示,方法300开始于提供衬底402(操作302)。例如,衬底402的材料可以包括Si、SiGe、Ge或III-V族材料(InP、GaAs、AlAs、InAs、InAlAs、InGaAs、InSb、GaSb、InGaSb)。衬底402的一部分可以被掺杂为掺杂浓度大约为5e17/cm^3的p型锗。
然后,通过使用化学汽相沉积(CVD)在衬底402上方提供由高K材料制成的栅极氧化物(例如,栅极氧化物404)(操作304)。高K材料可以是具有GeO2、HfO2、ZrO2、HfZrO2、Ga2O3、Gd2O3、TaSiO2、Al2O3或TiO2的单层或多层结构。
然后,在栅极氧化物404上方提供铁电性负电容器430。铁电性负电容器430由第一金属406、铁电性材料408和第二金属层410形成。例如,第一金属层406和第二金属层410可以包括TiN。通过使用溅射沉积在第一金属206上方提供诸如PbZr0.5Ti0.5O3或Hf0.5Zr0.5O2的铁电性材料408。
在形成铁电性负电容器430之后,通过半导体材料412与铁电性负电容器430串联来形成可变正(possive)电容器450。可变正电容器450由第二金属410、半导体材料412和第三金属层414形成。例如,半导体材料412可以包括掺杂浓度为大约1e17/cm^3至大约1e19/cm^3并且厚度为大约10纳米至大约100纳米的多晶硅。在一些实施例中,例如,半导体材料412可以包括掺杂浓度为大约1e16/cm^3至大约1e19/cm^3并且厚度为大约10纳米至大约100纳米的铟镓锌氧化物(IGZO)。例如,第三金属层414可以包括TiN。此外,衬底402的部分416、418可以被掺杂为掺杂浓度大约为1e20/cm^3至1e21/cm^3的n型锗。
图5是根据一些实施例的制造半导体器件的方法的流程图。图6是根据一些实施例的具有无磁滞负电容场效应晶体管的示例性半导体器件600的截面图。如图5和图6所示,方法500开始于在衬底602中提供源极616和漏极618。例如,衬底602的材料可以包括Si、SiGe、Ge或III-V族材料(InP、GaAs、AlAs、InAs、InAlAs、InGaAs、InSb、GaSb、InGaSb)。衬底602的一部分可以被掺杂为掺杂浓度大约为5e17/cm^3的p型锗。源极616和漏极618可以被掺杂为掺杂浓度大约为1e20/cm^3至大约1e21/cm^3的n型锗。
然后,在衬底602上方提供栅极660,以控制源极616与漏极618之间的导电性。栅极660包括通过铁电性材料608形成的负电容器630和通过半导体材料612形成的可变正电容器650。负电容器630还包括第二金属层610,并且与图4中的半导体器件400相比,半导体器件600的负电容器630不具有对应的第一金属406。可变正电容器650还包括第二金属层610、半导体材料612和第三金属层614。例如,半导体材料612可以包括掺杂浓度为大约1e17/cm^3至大约1e19/cm^3并且厚度为大约10纳米至大约100纳米的多晶硅。在一些实施例中,例如,半导体材料612可以包括掺杂浓度为大约1e16/cm^3至大约1e19/cm^3并且厚度为大约10纳米至大约100纳米的铟镓锌氧化物(IGZO)。例如,第二金属层610和第三金属层614可以包括TiN。此外,栅极660包括由高K材料制成的栅极氧化物604。高K材料可以是具有GeO2、HfO2、ZrO2、HfZrO2、Ga2O3、Gd2O3、TaSiO2、Al2O3或TiO2的单层或多层结构。
图7A是根据一些实施例的示例性半导体器件700的截面图。图7B是根据一些实施例的示例性半导体器件700的栅极结构的简化的电容模型。如图7A所示,衬底702的一部分被掺杂为掺杂浓度大约为5e17/cm^3的p型锗,以作为半导体沟道。通过使用化学汽相沉积(CVD)在衬底702上方提供由高K材料(诸如GeO2)制成的栅极氧化物704。例如,通过使用TiN在栅极氧化物704上方提供第一金属层706。然后,通过使用溅射沉积在第一金属层706上方提供铁电性材料708(诸如PbZr0.5Ti0.5O3或Hf0.5Zr0.5O2)。例如,通过使用TiN在铁电性材料708上方提供第二金属层710。第一金属层706、铁电性材料708和第二金属层710形成铁电性负电容器730。衬底702的部分716、718可以被掺杂为掺杂浓度大约为1e20/cm^3至1e21/cm^3的n型锗。
接下来,图7B中的简化的电器容模型用来说明半导体器件700的构思。可以将半导体器件700视为添加有电压放大器的MOSFET。因为负电容电压放大效应Av(Av=ΔVMOS/ΔVG),所以通过因子Av来减小亚阈值摆幅。在亚阈值区域中,可以如下推导出Av和SS(亚阈值斜率):
ΔVMOS=ΔVG*CFE/(CFE+CMOS);
Av=ΔVMOS/ΔVG=|CFE|/(|CFE|-CMOS);以及
SS=60*(1+CDEP/COX)/Av=60*(1+CDEP/COX-CDEP/|CFE|)/Av
为了获得小于60mV/dec的SS,|CFE|应该小于COX。并且,为了得到较大的Av,|CFE|和CMOS应该相对接近。附加地,为了保持非磁滞工作状态,在整个VG范围内,|CFE|应该大于CMOS。因此,铁电性电容器应该满足:CMOS<|CFE|<COX,以达到非磁滞工作状态和小于60mV/dec的良好的SS。
图8A是根据一些实施例的具有无磁滞负电容场效应晶体管的示例性半导体器件800的截面图。图8B是根据一些实施例的示例性半导体器件800的栅极结构的简化的电容器模型。如图8A所示,衬底802的一部分被掺杂为掺杂浓度大约为5e17/cm^3的p型锗,以作为半导体沟道。通过使用化学汽相沉积(CVD)在衬底802上方提供由高K材料(诸如GeO2)制成的栅极氧化物804。例如,通过使用TiN在栅极氧化物804上方提供第一金属层806。然后,同时参考图4,有效(effective)的铁电性材料840包括铁电性材料408、第二金属层410和半导体材料(诸如多晶硅)412。例如,通过使用TiN在有效的铁电性材料840上方提供第三金属层814。
第一金属层806、铁电性材料840和第三金属层814形成包括可变正电容器CSEM和铁电性负电容器CFE的有效的铁电性负电容器CFE'。衬底802的部分816、818可以被掺杂为掺杂浓度大约为1e20/cm^3至1e21/cm^3的n型锗。与对于图7B的分析类似,根据图8A和图8B,我们也能得出如下结论:铁电性电容器应该满足:CMOS<|CFE'|<COX,以达到非磁滞工作状态和小于60mV/dec的良好的SS。
图9A至图9C示出了根据一些实施例的示例性半导体器件的模拟结果。如图9A所示,x轴表示图7B和图8B中的VMOS,而y轴指示电容值C。图7A中的铁电性材料708和图8A中的铁电性材料408的有效氧化物厚度(EOT)为3纳米。与图7B相比,图8B具有包括半导体材料(诸如掺杂浓度为大约5e18/cm^3的n型多晶硅)的附加的可变正电容器CSEM。模拟结果示出,具有可变正电容器CSEM的半导体器件800在更大的VMOS范围内实现了CMOS<|CFE'|。
如图9B所示,x轴指图7B和图8B中的VG与阈值电压Vt之间的差值,而y轴指示漏极电流ID。器件的漏极与源极之间的电压差值为0.5V并且栅极的长度为100纳米。与(1)曲线922、(2)曲线924和(3)曲线926相比,具有有效的铁电性负电容器CFE'的半导体器件800的曲线928显示出不具有磁滞的提高的亚阈值斜率,其中,曲线922对应于通用的Ge FET,曲线924对应于具有包括有效氧化物厚度(EOT)为1纳米的铁电性材料的FET,以及曲线926对应于具有包括有效氧化物厚度(EOT)为1.5纳米的铁电性材料(其具有大量的磁滞)的FET。
如图9C所示,x轴指图7B和图8B中的VG与阈值电压Vt之间的电压差值,而y轴指示亚阈值斜率SS。器件的漏极与源极之间的电压差值为0.5V并且栅极的长度为100纳米。与(1)曲线932、(2)曲线934和(3)曲线936相比,具有有效的铁电性负电容器CFE'的半导体器件800的曲线938显示出降低的亚阈值斜率,其中,曲线932对应于通用的Ge FET,曲线934对应于具有包括有效氧化物厚度(EOT)为1纳米的铁电性材料的FET,以及曲线936对应于具有包括有效氧化物厚度(EOT)为1.5纳米的铁电性材料的FET。尽管在电压差值VG-Vt约为0.3V处,曲线938超过60mV/dec,但是由于器件在该点之前已经导通,所以这不影响半导体器件的工作状态。如以上所提及的,半导体器件800不仅实现了小于60mV/dec的亚阈值斜率而且实现了非磁滞工作状态。
下文将描述模拟方法。该方法包括若干步骤。第一步,使用CAD工具来提取在不考虑CFE的情况下的与不同的VMOS值相关的栅极氧化物EOX的电场。其他的工具不能进行具有铁电性材料的模拟。
然后,在不利用CAD工具的情况下,基于若干电学的定义或等式来进行数学计算。在该步骤中考虑CFE,并且基于电位移场D的定义来提供以下等式,其中tFE表示铁电性材料的厚度,而P为极化密度。
附加地,对于铁电性材料PbZr0.5Ti0.5O3来说,基于Landau模型,得到VFE与极化密度P之间的关系如下:
VFE(P)=tFE×(αP+βP3+γP5)
接下来,利用已知的tFE来解如下等式,得到EOX与VFE之间的关系:
由于在第一步中得到了VMOS与EOX之间的关系,所以相应得到了图8B中的VMOS与VFE之间的关系。利用VMOS与VFE之间的关系,可以计算图8中的VG(等于VMOS+VFE)。通过以上等式,绘制出图9B中的具有CFE或CFE'的器件的ID-VG曲线。
根据实施例,提供了一种半导体器件。器件包括:衬底和衬底上方的栅极结构。栅极结构包括:栅极氧化物;第一金属层,位于栅极氧化物上方;铁电性材料,位于第一金属层上方;第二金属层,位于铁电性材料上方;半导体材料,位于第二金属层上方;以及第三金属层,位于半导体材料上方,其中第二金属层、半导体材料和第三金属层形成可变正电容器。
根据实施例,提供了一种半导体器件。器件包括:衬底和衬底上的栅极结构。栅极结构包括:铁电性负电容器;和通过半导体材料形成的可变正电容器。
根据实施例,提供了一种晶体管。器件包括:源极;漏极;以及栅极,控制源极与漏极之间的导电性。栅极包括:通过铁电性材料形成的负电容器;和通过半导体材料形成的可变正电容器。
上面论述了若干实施例的部件,使得本领域普通技术人员可以更好地理解本发明的各个方面。本领域普通技术人员应该理解,可以很容易地使用本发明作为基础来设计或更改其他用于达到与这里所介绍实施例相同的目的和/或实现相同优点的处理和结构。本领域普通技术人员也应该意识到,这种等效构造并不背离本发明的精神和范围,并且在不背离本发明的精神和范围的情况下,可以进行多种变化、替换以及改变。

Claims (20)

1.一种半导体器件,包括:
衬底;以及
栅极结构,位于所述衬底上方,所述栅极结构包括:
栅极氧化物;
第一金属层,位于所述栅极氧化物上方;
铁电性材料,位于所述第一金属层上方;
第二金属层,位于所述铁电性材料上方;
半导体材料,位于所述第二金属层上方;和
第三金属层,位于所述半导体材料上方,
其中,所述第二金属层、所述半导体材料和所述第三金属层形成可变正电容器。
2.根据权利要求1所述的半导体器件,其中,所述第一金属层、所述铁电性材料和所述第二金属层形成铁电性负电容器。
3.根据权利要求2所述的半导体器件,其中,所述铁电性负电容器和所述可变正电容器形成有效的铁电性负电容器,所述有效的铁电性负电容器的绝对值小于所述栅极氧化物的电容,并且所述有效的铁电性负电容器的绝对值大于所述栅极氧化物的电容与所述衬底的耗尽层电容的组合。
4.根据权利要求1所述的半导体器件,其中,所述可变正电容器随着施加于所述第三金属层的栅极电压而变化。
5.根据权利要求1所述的半导体器件,其中,所述半导体材料包括具有掺杂浓度为1e17/cm^3至1e19/cm^3并且厚度为10纳米至100纳米的多晶硅。
6.根据权利要求1所述的半导体器件,其中,所述半导体材料包括具有掺杂浓度为1e16/cm^3至1e19/cm^3并且厚度为10纳米至100纳米的铟镓锌氧化物。
7.根据权利要求1所述的半导体器件,还包括:
源极,位于所述衬底上方;以及
漏极,位于所述衬底上方并且与所述源极分隔,
其中,施加于所述栅极结构的栅极电压控制所述源极与所述漏极之间的沟道。
8.一种半导体器件,包括:
衬底;以及
栅极结构,位于所述衬底上,所述栅极结构包括:
铁电性负电容器;和
可变正电容器,通过半导体材料形成,所述铁电性负电容器和所述可变正电容器形成无磁滞的有效的铁电性负电容器。
9.根据权利要求8所述的半导体器件,其中,所述铁电性负电容器包括第一金属层、铁电性材料和第二金属层。
10.根据权利要求8所述的半导体器件,其中,所述可变正电容器由第二金属层、所述半导体材料和第三金属层形成。
11.根据权利要求8所述的半导体器件,其中,所述有效的铁电性负电容器的绝对值小于所述栅极氧化物的电容,并且所述有效的铁电性负电容器的绝对值大于所述栅极氧化物的电容与所述衬底的耗尽层电容的组合。
12.根据权利要求8所述的半导体器件,其中,所述可变正电容器随着施加于所述栅极结构的栅极电压而变化。
13.根据权利要求8所述的半导体器件,其中,所述半导体材料包括具有掺杂浓度为1e17/cm^3至1e19/cm^3并且厚度为10纳米至100纳米的多晶硅。
14.根据权利要求8所述的半导体器件,其中,所述半导体器件选自由平面器件、多栅极器件、FinFET和围栅FET构成的组中。
15.根据权利要求8所述的半导体器件,还包括:
源极,位于所述衬底上方;以及
漏极,位于所述衬底上方并且与所述源极分隔,
其中,施加于所述栅极结构的栅极电压控制所述源极与所述漏极之间的沟道。
16.一种晶体管,包括:
源极;
漏极;以及
栅极,控制所述源极与所述漏极之间的导电性,所述栅极包括:
铁电性负电容器,通过铁电性材料形成;和
可变正电容器,通过半导体材料形成,所述铁电性负电容器和所述可变正电容器形成无磁滞的有效的铁电性负电容器。
17.根据权利要求16所述的晶体管,其中,所述铁电性负电容器包括第一金属层、所述铁电性材料和第二金属层。
18.根据权利要求16所述的晶体管,其中,所述可变正电容器随着施加于所述栅极结构的栅极电压而变化。
19.根据权利要求16所述的晶体管,其中,所述半导体材料包括具有掺杂浓度为1e17/cm^3至1e19/cm^3并且厚度为10纳米至100纳米的多晶硅。
20.根据权利要求16所述的晶体管,其中,所述有效的铁电性负电容器的绝对值小于所述栅极氧化物的电容,并且所述有效的铁电性负电容器的绝对值大于所述栅极氧化物的电容与衬底的耗尽层电容的组合。
CN201510843927.6A 2015-05-15 2015-11-27 半导体器件和晶体管 Active CN106158934B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/713,000 US9679893B2 (en) 2015-05-15 2015-05-15 Semiconductor device and transistor
US14/713,000 2015-05-15

Publications (2)

Publication Number Publication Date
CN106158934A CN106158934A (zh) 2016-11-23
CN106158934B true CN106158934B (zh) 2019-08-09

Family

ID=57276826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510843927.6A Active CN106158934B (zh) 2015-05-15 2015-11-27 半导体器件和晶体管

Country Status (2)

Country Link
US (1) US9679893B2 (zh)
CN (1) CN106158934B (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702737B (zh) 2016-02-05 2019-01-18 中国科学院微电子研究所 连接有负电容的多栅FinFET及其制造方法及电子设备
US10937783B2 (en) * 2016-11-29 2021-03-02 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US10686072B2 (en) 2016-12-14 2020-06-16 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing methods thereof
TWI712171B (zh) * 2017-06-07 2020-12-01 聯華電子股份有限公司 半導體元件
KR20180134124A (ko) * 2017-06-08 2018-12-18 에스케이하이닉스 주식회사 강유전성 메모리 소자
US10056394B1 (en) * 2017-06-22 2018-08-21 Institut National De La Recherche Scientifique Ferroelectric tunnel junction and method of fabrication thereof
CN107611033B (zh) * 2017-08-25 2020-03-20 深圳大学 基于铁电栅介质的负电容二硫化钼晶体管及其制备方法
US11107919B2 (en) 2017-08-31 2021-08-31 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor device including ferroelectric layer having columnar-shaped crystals
JP7016177B2 (ja) * 2017-09-29 2022-02-04 国立研究開発法人産業技術総合研究所 半導体装置
US10622960B2 (en) * 2017-10-17 2020-04-14 Mitsubishi Electric Research Laboratories, Inc. Filters with virtual inductor implemented using negative capacitor
CN108231901A (zh) * 2018-01-04 2018-06-29 中国科学院上海微系统与信息技术研究所 基于负电容的场效应晶体管、生物传感器及其制备方法
US10522614B2 (en) 2018-02-23 2019-12-31 Globalfoundries Singapore Pte. Ltd. Method to fabricate capacitance-matching FET and related device
KR20190115508A (ko) 2018-03-15 2019-10-14 에스케이하이닉스 주식회사 강유전성 메모리 장치
CN108416179B (zh) * 2018-05-16 2021-09-07 杭州电子科技大学 一种负电容场效应晶体管中抑制随机掺杂效应的建模方法
US11101362B2 (en) * 2018-07-30 2021-08-24 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and forming method thereof
US11114564B2 (en) * 2018-08-21 2021-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Ferroelectric MFM inductor and related circuits
US11502103B2 (en) * 2018-08-28 2022-11-15 Intel Corporation Memory cell with a ferroelectric capacitor integrated with a transtor gate
US10892728B2 (en) * 2018-12-20 2021-01-12 Mitsubishi Electric Research Laboratories, Inc. Virtual inductors using ferroelectric capacitance and the fabrication method thereof
US11018239B2 (en) * 2019-04-13 2021-05-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
KR20200133842A (ko) 2019-05-13 2020-12-01 삼성전자주식회사 강유전체를 포함하는 강유전성 반도체 소자 및 그 제조 방법
US10861968B1 (en) 2019-05-30 2020-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with negative capacitance structure and method for forming the same
KR20210014017A (ko) 2019-07-29 2021-02-08 삼성전자주식회사 반도체 소자 및 그 제조 방법
KR20210035553A (ko) 2019-09-24 2021-04-01 삼성전자주식회사 도메인 스위칭 소자 및 그 제조방법
US20230029023A1 (en) * 2019-12-27 2023-01-26 National Institute Of Advanced Industrial Science And Technology Ferroelectric thin film, electronic element using same, and method for manufacturing ferroelectric thin film
US11980037B2 (en) 2020-06-19 2024-05-07 Intel Corporation Memory cells with ferroelectric capacitors separate from transistor gate stacks
US11335806B2 (en) 2020-08-11 2022-05-17 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device structure and method for forming the same
US11424362B2 (en) 2020-12-11 2022-08-23 International Business Machines Corporation NCFETS with complimentary capacitance matching using stacked n-type and p-type nanosheets
US11527647B2 (en) 2020-12-31 2022-12-13 International Business Machines Corporation Field effect transistor (FET) devices
KR20220099030A (ko) 2021-01-05 2022-07-12 삼성전자주식회사 캐패시터 및 캐패시터를 포함하는 반도체 소자를 제조하기 위한 방법들
US11581334B2 (en) * 2021-02-05 2023-02-14 Taiwan Semiconductor Manufacturing Company, Ltd. Cocktail layer over gate dielectric layer of FET FeRAM
CN113193047B (zh) * 2021-03-31 2022-08-09 南京邮电大学 一种不同厚度铁电层的负电容场效应晶体管及制备方法
CN115377053A (zh) * 2021-05-17 2022-11-22 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
US20230292526A1 (en) * 2022-03-11 2023-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. Memory Device Structure and Manufacturing Method Thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048738A (en) * 1997-03-07 2000-04-11 Sharp Laboratories Of America, Inc. Method of making ferroelectric memory cell for VLSI RAM array
JP2000353790A (ja) * 1999-04-13 2000-12-19 Sharp Corp 強誘電体アプリケーションのためのPb5Ge3O11薄膜の化学蒸着法
WO2003096390A1 (en) * 2002-04-15 2003-11-20 Stanford University High-k dielectric for thermodynamically-stable substrate-type materials

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523964A (en) * 1994-04-07 1996-06-04 Symetrix Corporation Ferroelectric non-volatile memory unit
JP2786104B2 (ja) * 1994-02-28 1998-08-13 日本電気株式会社 半導体装置
KR100355379B1 (ko) * 1995-06-07 2002-12-16 삼성전자 주식회사 강유전성메모리소자및그구동방법
US6072711A (en) * 1997-12-12 2000-06-06 Lg Semicon Co., Ltd. Ferroelectric memory device without a separate cell plate line and method of making the same
US6141238A (en) * 1999-08-30 2000-10-31 Micron Technology, Inc. Dynamic random access memory (DRAM) cells with repressed ferroelectric memory methods of reading same, and apparatuses including same
EP1126525A3 (en) * 2000-02-15 2005-10-19 Matsushita Electric Industrial Co., Ltd. Semiconductor memory device, method for driving the same and method for fabricating the same
US6515889B1 (en) * 2000-08-31 2003-02-04 Micron Technology, Inc. Junction-isolated depletion mode ferroelectric memory
JP2002110932A (ja) * 2000-09-28 2002-04-12 Toshiba Corp 半導体装置及びその製造方法
US6503763B2 (en) * 2001-03-27 2003-01-07 Sharp Laboratories Of America, Inc. Method of making MFMOS capacitors with high dielectric constant materials
JP4751002B2 (ja) * 2001-07-11 2011-08-17 富士通株式会社 カスコード型分布増幅器
JP4373647B2 (ja) * 2002-06-19 2009-11-25 独立行政法人産業技術総合研究所 強誘電体不揮発性記憶装置及びその駆動方法
US6970370B2 (en) * 2002-06-21 2005-11-29 Micron Technology, Inc. Ferroelectric write once read only memory for archival storage
JP4888418B2 (ja) * 2008-02-29 2012-02-29 ソニー株式会社 可変容量素子とその制御方法、電子デバイス及び通信モバイル機器
US8362604B2 (en) * 2008-12-04 2013-01-29 Ecole Polytechnique Federale De Lausanne (Epfl) Ferroelectric tunnel FET switch and memory
US8785995B2 (en) * 2011-05-16 2014-07-22 International Business Machines Corporation Ferroelectric semiconductor transistor devices having gate modulated conductive layer
US9269785B2 (en) * 2014-01-27 2016-02-23 Globalfoundries Inc. Semiconductor device with ferroelectric hafnium oxide and method for forming semiconductor device
US9391162B2 (en) * 2014-04-04 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel MOSFET with ferroelectric gate stack
US10128327B2 (en) * 2014-04-30 2018-11-13 Stmicroelectronics, Inc. DRAM interconnect structure having ferroelectric capacitors exhibiting negative capacitance
US9755041B2 (en) * 2014-04-30 2017-09-05 Purdue Research Foundation NEMS devices with series ferroelectric negative capacitor
US20160005749A1 (en) * 2014-07-01 2016-01-07 Qualcomm Incorporated Series ferroelectric negative capacitor for multiple time programmable (mtp) devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048738A (en) * 1997-03-07 2000-04-11 Sharp Laboratories Of America, Inc. Method of making ferroelectric memory cell for VLSI RAM array
JP2000353790A (ja) * 1999-04-13 2000-12-19 Sharp Corp 強誘電体アプリケーションのためのPb5Ge3O11薄膜の化学蒸着法
WO2003096390A1 (en) * 2002-04-15 2003-11-20 Stanford University High-k dielectric for thermodynamically-stable substrate-type materials

Also Published As

Publication number Publication date
CN106158934A (zh) 2016-11-23
US20160336312A1 (en) 2016-11-17
US9679893B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
CN106158934B (zh) 半导体器件和晶体管
Kim et al. Demonstration of L-shaped tunnel field-effect transistors
Vandooren et al. Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction tunnel-FETs
Lee et al. Ferroelectric negative capacitance hetero-tunnel field-effect-transistors with internal voltage amplification
JP5498662B2 (ja) 半導体装置および半導体装置の製造方法
US9905421B2 (en) Improving channel strain and controlling lateral epitaxial growth of the source and drain in FinFET devices
CN109525232A (zh) 半导体器件
Rooyackers et al. Ge-source vertical tunnel FETs using a novel replacement-source integration scheme
Singh et al. A novel electrostatically doped ferroelectric Schottky barrier tunnel FET: process resilient design
TWI556434B (zh) 具有可變能隙通道之穿隧場效電晶體
Choudhary et al. A steep slope MBE-grown thin p-Ge channel FETs on bulk Ge-on-Si using HZO internal voltage amplification
Kuhn Cmos and beyond cmos: Scaling challenges
Panwar et al. Performance evaluation of high-κ dielectric ferro-spacer engineered Si/SiGe hetero-junction line TFETs: a TCAD approach
James et al. Enhancement and modeling of drain current in negative capacitance double gate TFET
TWI647823B (zh) 一種互補電晶體元件結構及其製作方法
Lin et al. Exploring the ALD Al2O3/In0. 53Ga0. 47As and Al2O3/Ge interface properties: a common gate stack approach for advanced III-V/Ge CMOS
Dhiman et al. Analysis on Variations of Metal Gate Work Function on Junctionless Double Gate MOSFET with High-k Spacers
Xue et al. Channel Thickness Dependence of InGaAs Quantum-Well Field-Effect Transistors With High-$\kappa $ Gate Dielectrics
Wang et al. Atomic-layer-deposition HfO2-based InP n-channel metal-oxide-semiconductor field effect transistor using different thicknesses of Al2O3 as interfacial passivation layer
Chung et al. Characteristics of poly-Si junctionless FinFETs with HfZrO using forming gas annealing
Vandooren et al. Electrical results of vertical Si n-tunnel FETs
Lin Two-Dimensional Negative Capacitance-FETs with Ferroelectric HfZrO2
Patil et al. A novel dual-k spacer double gate junctionless transistor for digital integrated circuits
Chung et al. Self-limited low-temperature trimming and fully silicided S/D for vertically stacked cantilever gate-all-around poly-Si junctionless nanosheet transistors
Matsukawa et al. Threshold-voltage reduction of FinFETs by Ta/Mo interdiffusion dual metal-gate technology for low-operating-power application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant