CN106133178A - 具有更高焊接性的铁镍合金 - Google Patents

具有更高焊接性的铁镍合金 Download PDF

Info

Publication number
CN106133178A
CN106133178A CN201480076957.2A CN201480076957A CN106133178A CN 106133178 A CN106133178 A CN 106133178A CN 201480076957 A CN201480076957 A CN 201480076957A CN 106133178 A CN106133178 A CN 106133178A
Authority
CN
China
Prior art keywords
alloy
trace
content
weight
percentage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480076957.2A
Other languages
English (en)
Inventor
皮尔-路易斯·雷伊迪特
范妮·悠瓦斯
罗兰·潘妮尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AI PULUN
Original Assignee
AI PULUN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AI PULUN filed Critical AI PULUN
Publication of CN106133178A publication Critical patent/CN106133178A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Extraction Processes (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种铁基合金,按重量包括:35%≤Ni≤37%;痕量≤Mn≤0.6%;痕量≤C≤0.07%;痕量≤Si≤0.35%;痕量≤Cr≤0.5%;痕量≤Co≤0.5%;痕量≤P≤0.01%;痕量≤Mo<0.5%;痕量≤S≤0.0035%;痕量≤O≤0.0025%;0.011%≤[(3.138×Al+6×Mg+13.418×Ca)‑(3.509×O+1.770×S)]≤0.038%;0.0003%<Ca≤0.0015%;0.0005%<Mg≤0.0035%;0.0020%<Al≤0.0085%;其余由铁以及制造时引入的残留元素组成。

Description

具有更高焊接性的铁镍合金
技术领域
本发明涉及一种具有低热膨胀系数的铁镍合金,该铁镍合金用于制造焊接组件,该焊接组件用于需要在温度变化作用下具有高尺寸稳定性的应用中。
背景技术
更具体而言,上述本发明合金用于低温应用,尤其用于制造盛装液化气体的组件,该组件尤其为液化气体输送管、液化气体运输罐或液化气体贮存罐。
目前,上述焊接组件以因瓦型铁镍合金作为基础金属材料进行制造。事实上,因瓦合金以低的热膨胀系数为人所知,因此极其适用于上述应用。
然而,目前使用的铁镍合金并不能令人完全满意。实际上,发明人已注意到,由此类合金制成的焊接组件具有焊接缺陷。具体而言,发明人观察到,使用这些合金可导致不规则的焊缝,并在其表面上形成氧化物凸点。
发明内容
本发明的一个目的在于找出上述缺点的改进方案,并提出一种可用于制造高尺寸稳定性及更高焊接性的铁镍合金。
为实现此目的,本发明涉及一种铁基合金,按重量包括:
35%≤Ni≤37%
痕量≤Mn≤0.6%
痕量≤C≤0.07%
痕量≤Si≤0.35%
痕量≤Cr≤0.5%
痕量≤Co≤0.5%
痕量≤P≤0.01%
痕量≤Mo<0.5%
痕量≤S≤0.0035%
痕量≤O≤0.0025%
0.011%≤[(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)]≤0.038%
0.0003%<Ca≤0.0015%
0.0005%<Mg≤0.0035%
0.0020%<Al≤0.0085%
其余为铁以及制造时引入的残留元素。
根据具体实施方式,本发明合金包括以下特征中的一个或多个特征,这些特征既可分别作为独立特征,也可按所有技术上允许的方式组合:
硅含量大于或等于0.1%重量百分比;
锰含量大于或等于0.15%重量百分比,碳含量大于或等于0.02%重量百分比,且硅含量大于或等于0.1%重量百分比;
碳含量小于或等于0.05%重量百分比;
钙含量小于或等于0.0010%重量百分比;
镁含量小于或等于0.0020%重量百分比;
铝含量处于0.0030%和0.0070%之间。
本发明还涉及一种上述合金的带材制造方法,该方法依次包括如下步骤:
制造上述合金;
形成该合金的半成品;
对该半成品进行热轧,以获得热轧带;
对该热轧带进行一次或数次冷轧,以获得冷轧带。
本发明还涉及一种上述合金所制带材。
本发明还涉及一种焊丝制造方法,依次包括如下步骤:
制造上述合金;
形成该合金的半成品;
对该半成品进行热轧,以获得初始焊丝;
对该初始焊丝进行冷拉,以获得上述焊丝。
本发明还涉及一种上述合金所制焊丝。
本发明还涉及一种铁基合金的用途,该铁基合金按重量包括:
35%≤Ni≤37%
痕量≤Mn≤0.6%
痕量≤C≤0.07%
痕量≤Si≤0.35%
痕量≤Cr≤0.5%
痕量≤Co≤0.5%
痕量≤P≤0.01%
痕量≤Mo<0.5%
痕量≤S≤0.0035%
痕量≤O≤0.0025%
0.011%≤[(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)]≤0.038%
0.0003%<Ca≤0.0015%
0.0005%<Mg≤0.0035%
0.0020%<Al≤0.0085%
其余为铁以及制造时引入的残留元素,
以制得液化气体容纳罐或液化气体容纳管。
附图说明
通过参考附图阅读以下作为实施例给出的具体描述,可以更好地理解本发明,附图中:
图1为带丝状腐蚀制件的光学显微镜图像;
图2为发明人所实施实验的结果图。
具体实施方式
在以下整个描述中,各含量以其重量百分比给出。此外,铝、镁、钙、硫和氧的含量对应于这些元素在合金中的总含量。
本发明合金为一种铁基合金,按重量包括:
35%≤Ni≤37%
痕量≤Mn≤0.6%
痕量≤C≤0.07%
痕量≤Si≤0.35%
痕量≤Mo<0.5%
痕量≤Co≤0.5%
痕量≤Cr≤0.5%
痕量≤P≤0.01%
痕量≤S≤0.0035%
痕量≤O≤0.0025%
0.011%≤[(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)]≤0.038%
0.0003%<Ca≤0.0015%
0.0005%<Mg≤0.0035%
0.0020%<Al≤0.0085%
其余为铁,以及制造时引入的残留元素。
本发明合金为一种因瓦型合金。
制造时引入的残留元素是指,合金制造原材料中的元素,或者来自制造设备的元素,例如来自炉内耐火材料的元素。这些残留元素对合金不具有任何冶金效果。
所述残留元素具体包括来自铅(Pb)族的元素,这些元素被减少至最低限,以限制合金对凝固裂纹的敏感性并避免其焊接性的下降。
在制造时引入的各杂质中,磷(P)、钼(Mo)、硫(S)、氧(O)在合金中的总含量需分别限制于指定含量以下。
在本发明合金中,需对碳含量进行限制,以避免MC型碳化物的析出,其中,M为钛(Ti)、铌(Nb)、钒(V)、锆(Zr)等可与碳结合形成碳化物的残留元素。事实上,某些碳化物可降低合金对热裂纹的耐性。限制碳含量的另一个目的在于限制发泡焊接期间孔隙的形成。
此外,本发明合金具有较低的平均热膨胀系数,具体为在-180℃~0℃范围内小于或等于2×10-6K-1,优选为在-180℃~0℃范围内小于或等于1.5×10-6K-1,以及在20℃~100℃范围内小于或等于2.5×10-6K-1
此外,在低于氮的液化温度(-196℃)下,其针对马氏体相变具有稳定性。具体而言,其γ相形成元素,即镍(Ni)、锰(Mn)和碳(C)的含量调整为,使得其在4.2K(氦的液化温度)下具有不发生任何塑性变形的稳定性,或者使得当其在中断于-196℃的平面拉伸下发生25%变形时,其马氏体的体积比例保持于小于或等于5%。
为了避免降低该合金对马氏体相变的稳定性及其在-180℃~0℃范围内的平均膨胀系数,其内的钴(Co)、锰(Mn)和硅(Si)含量也受到限制。
本发明合金具有低弹性模量,尤其小于150000MPa。
其不发生任何“韧-脆”恢复转变。更具体而言,其在-196℃的恢复力大于150焦耳/cm2,尤其大于200焦耳/cm2
这些特性使得其极其适用于需要在温度变化作用下具有尺寸稳定性的应用中。
在本发明合金中,为了提高其热转变能力,尽量减小硫(S)和氧(O)的含量。具体而言,需尽量减小该合金固溶相内的硫(S)和氧(O)的含量。
上述对固溶相内硫氧含量的限制尤其通过添加硅的方式实现,其中,硅用作脱氧剂以及通过合金制造期间液态金属和熔渣之间的化学反应间接用作脱硫剂。实际上,已知在液相精炼操作中,合金钢在液态金属状态下的硫含量%S满足如下关系,
% S &OverBar; = ( % S ) . a 0 - C &prime; S
其中
(%S)为熔渣硫含量,
C'S为熔渣硫容量,
为液态金属氧活性。
锰参与上述固相脱硫。
此外,发明人注意到,当钙、铝和镁的含量太高时,将有损于所述合金的焊接性。因此,应该对这些元素的含量进行限制。更具体而言,本发明的发明人发现,当:
(a1)钙含量小于或等于0.0015%,
(b1)镁含量小于或等于0.0035%,
(c1)铝含量小于或等于0.0085%,
而且当合金中铝、镁、钙、氧和硫的含量符合以下关系时:
[(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)]≤0.038%(d1),本发明合金所制制件上形成的焊珠是均匀的。
反之,当不满足以上关系式(a1)、(b1)、(c1)和(d1)时,所形成的焊珠是不均匀的。
发明人认为,本发明合金所形成的焊珠的均匀性源自于如下事实:在上述各指定含量下,一方面,焊接工具可获得稳定电弧,另一方面,焊珠表面不存在任何氧化物聚集体。相反,当合金所含上述各元素的含量超出上述指定限值时,焊接工具的电弧不稳定,而且焊珠基体固着于氧化物凸点处,从而形成宽度不一的焊珠,进而形成不均匀的焊珠。发明人认为,该固着作用的主要原因在于,当钙、铝和镁不符合上述关系式时,熔化区域的表面能量分布不均。焊珠基体的固着是指,焊珠基体无法迁移,保持不动,从而无法达到平衡状态。如果不发生上述固着作用,则焊珠基体可发生有利于实现其平衡状态的聚集。
优选地,
—钙含量小于或等于0.0010%重量百分比;和/或
—镁含量小于或等于0.0020%重量百分比;和/或
—铝含量小于或等于0.0070%重量百分比。
然而,本发明的发明人注意到,根据本发明,当:
(a2)钙(Ca)含量严格大于0.0003%重量百分比,
(b2)镁(Mg)含量严格大于0.0005%重量百分比,
(c2)铝(Al)含量严格大于0.0020%重量百分比,
且当合金中的铝、镁、钙、硫和氧的总含量符合以下关系式时:
[(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)]≥0.011%(d2),所得合金具有良好的热裂纹耐性。
具体而言,本发明合金按照欧洲标准FD CEN ISO/TR 17641-3在塑性变形为3.2%的条件下实施可调拘束裂纹试验(Varestraint Test)时的裂缝总长度小于或等于10mm(±0.5mm)。
与此相反,本发明人观察到,当未满足上述关系式(a2)、(b2)、(c2)和(d2)时,该合金不能获得令人满意的热裂纹耐性。具体而言,该合金在上述可调拘束裂纹试验中的裂缝总长度大于10mm(±0.5mm)。
优选地,铝含量大于或等于0.0030%。
发明人认为,在本发明合金中,上述热裂纹耐性的改进源自于该合金中存在着有限量的钙、镁和铝,其含量允许这些元素在将残留硫和氧捕获为液相中的硫化物和/或氧化物。
应该注意到的是,本发明的发明人所提出的表达式[(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)]将钙、镁和铝的含量与氧和硫的含量进行比较。其表明,可使焊接性降低的钙、镁和铝的量与钙、镁和铝的总含量所占比例相对应,而该比例又对应于这些元素在所述合金固溶相中的存在量,即其未析出为氧化物或硫化物的形式的量。
发明人查明,上述关系式中钙、镁和铝的加权系数分别表明了这些元素与硫和氧的亲和力,即分别表明了这些元素捕获硫和氧,以形成硫化物或氧化物的能力。
在此表达式中,Al、Mg、Ca、O和S分别对应这些元素在合金中以重量百分比表示的总含量。
应当注意的是,钙、镁和铝通常被认为是本发明所属领域合金中的单纯杂质。然而,如上所述,本发明的发明人发现,当这些元素在合金中以较小的量(即上述指定范围)存在时,其可实现上述各有益效果。
考虑到上述情况,本发明合金可实现因瓦型合金制焊接组件的制造,这些焊接组件不存在常用合金中所观察到的焊接缺陷。
优选地,本发明合金包括:
0.15%≤Mn≤0.6%
0.02%≤C≤0.07%
0.1%≤Si≤0.35%.
该合金极其适用于低温应用,即主要为液氢、液氮、液态甲烷或液态丙烷等液化气体的运输和贮存。
具体而言,其锰(Mn)和碳(C)的含量分别大于或等于0.15%和0.02%,从而提高该合金在-196℃下针对马氏体相变的稳定性。
此外,发明人发现,该合金中大于0.10%的硅含量可通过合适的最终热处理形成硅氧化物皮层,从而提高合金的耐丝状腐蚀性。
所述丝状腐蚀的形成原因为合金与大气长时间的接触。其形成原因尤其为氧、空气中的污染物以及水蒸汽的作用。在英语中,丝状腐蚀(Filamentary Corrosion)也以“丝形腐蚀”(Filiform corrosion)一词表示。图1所示为丝状腐蚀一例。
本发明合金可通过本领域技术人员已知的任何合适方法制造。举例而言,其可于电弧炉内制成,然后再通过常用方法于钢包内精炼,该常用方法可尤其包括置于减压环境下这一步骤。或者,本发明合金也可利用低残留元素含量的起始材料在真空炉内制造。
在此之后,可例如将以上所制合金制成冷轧带。举例而言,以下方法用于此类冷轧带的制造。
将该合金铸造为半成品,例如,铸锭、重熔电极、合金板坯(尤其为厚度小于180mm的板坯)或方坯。
当将所述合金铸造为重熔电极时,为了获得更高纯度或更均匀的半成品,优选将重熔电极在真空或导电熔渣下重熔。
此后,将以上制得的半成品在950℃~1300℃的温度下热轧,以制得热轧带。该热轧带的厚度尤其为2mm~6mm。
根据一种实施方式,在上述热轧之前,先在950℃~1300℃的温度下实施30分钟~24小时的化学均匀化热处理。
之后,将上述热轧带冷却至室温,以形成冷却带,并将该冷却带卷绕成带卷。
随后,通过冷轧所述冷却带以获得冷轧带,该冷轧带的最终厚度优选为0.5mm~2mm。所述冷轧通过一次或连续多次完成。
在所述最终厚度上,对所述冷轧带实施再结晶热处理,该再结晶热处理在静态炉内实施,处理温度为700℃以上,处理时间为10分钟~数小时。或者,该再结晶热处理也可在连续退火炉的保温炉区内实施,处理温度为800℃以上,处理时间为数秒钟~约1分钟,保护气氛为N2/H2(30%/70%),气氛结霜温度为-50℃至-15℃。
此外,还可在冷轧过程中处于初始厚度(对应于热轧带的厚度)和最终厚度之间的中间厚度上实施相同条件的再结晶热处理。当冷轧带的最终厚度为0.7mm时,所述中间厚度例如选为等于1.5mm。
所述合金制造方法和该合金所制冷轧带的制造方法仅作为示例给出。
本领域技术人员已知的任何其他本发明合金制造方法及该合金所制成品的制造方法也可用于上述目的。
测试
发明人在实验室中,对镍、锰、碳、硅、钴、铬、钼、硫、氧、磷的含量处于上述指定范围内且钙、镁和铝的含量于数ppm~约0.001%之间变化的合金进行了铸造。所得铸锭经热轧成型为数毫米厚的板材。之后,再对这些板材进行加工,以获得无热氧化表面。
每一测试板材的合金组成均描述于下表。
此外,发明人还通过TIG(Tungsten Inert Gas,钨极惰性气体)法在以上所制板材上制成熔合线,以展示钙、镁和铝对焊珠均匀性的影响。这些试验的结果记于下表中的“TIG熔合线”一列。
此外,还使用光学显微镜对焊珠宽度进行了测量,并将焊珠均匀性定义如下:
均匀性=100×(Lmax–Lmin)/Lmax(1),
其中,Lmin对应于最小实测焊珠宽度,Lmax对应于最大实测焊珠宽度。
当按式(1)算出的焊珠均匀性小于或等于2.5%时,则认为该焊珠均匀性为良好(下表中指数1)。
当按式(1)算出的焊珠均匀性为2.5%~5%时,则认为该焊珠均匀性可接受(下表中指数2)。
当按式(1)算出的焊珠均匀性严格大于5%时,则认为该焊珠均匀性较差(下表中指数3)。
此外,为了评价以上所得板材对热裂纹的耐性,发明人还按照欧洲标准FD CENISO/TR 17641-3在塑性变形为3.2%的条件下对这些板材实施了可调拘束裂纹试验,并根据试验中所测裂纹总长度,将这些板材分为以下两类:
—试验结束时裂纹总长度小于或等于10mm±0.5mm的板材视为热裂纹耐性良好,而
—试验结束时裂纹总长度严格大于10mm±0.5mm的板材视为热裂纹耐性不足。
这些试验的结果列于下表中的“3.2%变形可调拘束裂纹试验”一列。此列中,热裂纹耐性良好的板材为裂纹总长度记为“1~10”的板材,而热裂纹耐性不足的板材为裂纹总长度记为“10~15”的板材。
下表中,“行为规律”一列展示了相关合金的[(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)]表达式值,其中,铝、镁、钙、氧和硫分别表示合金中铝、镁、钙、氧和硫以重量百分比表示的总含量。
上表中,非根据本发明的实施例以粗体标出。
在标为A~E的一组实施例中,钙含量于0.0005%和0.0050%之间变化,而硅、镁、铝、硫和氧的含量基本保持不变,以对钙对焊珠均匀性和合金的热裂纹性能的影响进行评价。
在标为F~J的一组实施例中,镁含量于0.0010%和0.0056%之间变化,而硅、钙、铝、硫和氧的含量基本保持不变,以对镁对焊珠均匀性和合金的热裂纹性能的影响进行评价。
在标为K~O的一组实施例中,铝含量于0.0025%和0.0110%之间变化,而硅、钙、镁、硫和氧的含量基本保持不变,以对铝对焊珠均匀性和合金的热裂纹性能的影响进行评价。
在标为P~W的一组实施例中,对硫含量高于上述各组实施例的合金进行评价,以分别确定可防止热裂纹的钙、铝和镁元素的含量下限。
在标为D、E、I、J、O、P和W的实施例中,(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)关系式的值大于所述合金组成的上限值0.038%。可观察到,在这些实施例中,焊珠均匀性评价为较差(指数3),而其变形可调拘束裂纹试验所测合金耐裂性为良好(裂纹长度为1~10mm)。
在实施例R、U和V中,(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)关系式的值小于所述指定的下界限0.011。可观察到,在这些实施例中,所得焊珠具有良好的均匀性(指数1),但合金的耐裂性较差。
在所有其他实施例中,(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)关系式的值介于所述指定的下限0.011%和上限0.038%之间。可观察到,该合金不但耐裂性评价为良好(裂纹总长度为0~10mm),而且所得焊珠也较为均匀。
由此可见,通过将钙、铝和镁的含量极其具体地控制于低含量范围,并通过遵守这些元素以及硫和氧之间的关系式(d1)和(d2),可获得热膨胀系数低且具有优异冶金焊接性的铁镍合金。因此,本发明合金在用做高尺寸稳定性焊接组件制造中的基础金属方面具有优势。
为了验证硅含量对丝状腐蚀敏感性的影响,发明人还对镍、锰、碳、钴、铬、钼、硫、氧、磷、钙、镁和铝的含量处于所述指定范围但硅含量可变的合金(a)、(b)和(c)所制片材进行了实验。
其中,合金(a)的硅含量严格小于0.01%重量百分比,合金(b)的硅含量等于0.1%重量百分比,合金(c)的硅含量等于0.25%重量百分比。
上述片材先经在结霜温度处于-50℃至-15℃的氢气气氛下实施的工业用再结晶热处理,然后在温度为55℃,相对湿度为95%的风化室内放置4000个小时。
之后,利用放大倍数为200倍的光学显微镜所拍摄的图像实施自动分析,以对表面丝状腐蚀比例进行测量。
图2为发明人所实施实验的结果图。这些结果表明,在硅含量大于或等于0.1%的实施例(b)和(c)的情况下,上述条件下的表面丝状腐蚀比例小于5%。相反,在硅含量严格小于0.1%的实施例(a)的情况下,上述条件下的表面丝状腐蚀比例大于5%。
由此可见,硅含量大于或等于0.1%的合金的耐丝状腐蚀性优于硅含量严格小于0.1%的合金的耐丝状腐蚀性。
本发明合金还可用于制造焊丝。此种焊丝在用作焊材时的耐裂性和焊珠均匀性方面,具有所有上述优点。此外,所形成的焊珠将具有低的热膨胀系数。
举例而言,此种焊丝由以下方法制得。首先例如通过本文中上述制造方法制得合金。然后,将此合金铸造为半成品,尤其铸造为方坯。之后,对这些半成品进行热轧以获得初始焊丝,也称机造焊丝。此类机造焊丝的直径通常为4mm~6mm。其后,对所述初始焊丝进行冷拉以减小其直径,从而制得上述焊丝。该焊丝的直径优选为0.5mm~1.5mm。

Claims (10)

1.一种铁基合金,其特征在于,按重量包括:
35%≤Ni≤37%
痕量≤Mn≤0.6%
痕量≤C≤0.07%
痕量≤Si≤0.35%
痕量≤Cr≤0.5%
痕量≤Co≤0.5%
痕量≤P≤0.01%
痕量≤Mo<0.5%
痕量≤S≤0.0035%
痕量≤O≤0.0025%
0.011%≤[(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)]≤0.038%
0.0003%<Ca≤0.0015%
0.0005%<Mg≤0.0035%
0.0020%<Al≤0.0085%
其余为铁以及制造时引入的残留元素。
2.根据权利要求1所述的合金,其特征在于:
Mn≥0.15%重量百分比
C≥0.02%重量百分比
Si≥0.1%重量百分比。
3.根据权利要求1或2所述的合金,其特征在于,钙含量小于或等于0.0010%重量百分比。
4.根据前述任一项权利要求所述的合金,其特征在于,镁含量小于或等于0.0020%重量百分比。
5.根据前述任一项权利要求所述的合金,其特征在于,铝含量为0.0030%~0.0070%重量百分比。
6.一种根据权利要求1~5中任一项所述的合金的带材的制造方法,其特征在于,依次包括如下步骤:
制造根据权利要求1~5中任一项所述的合金;
形成该合金的半成品;
对该半成品进行热轧,以获得热轧带;
对该热轧带进行一次或多次冷轧,以获得冷轧带。
7.一种由根据权利要求1~5中任一项所述的合金制成的带材。
8.一种焊丝制造方法,其特征在于,依次包括如下步骤:
制造根据权利要求1~5中任一项所述的合金;
形成该合金的半成品;
对该半成品进行热轧,以获得初始焊丝;
对该初始焊丝进行冷拉,以获得所述焊丝。
9.一种由根据权利要求1~5中任一项所述的合金制成的焊丝。
10.根据权利要求1~5中任一项所述的合金,结合权利要求2,用于制造液化气体容纳罐或液化气体容纳管的用途。
CN201480076957.2A 2014-03-14 2014-03-14 具有更高焊接性的铁镍合金 Pending CN106133178A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2014/059819 WO2015136333A1 (fr) 2014-03-14 2014-03-14 Alliage fer-nickel présentant une soudabilité améliorée

Publications (1)

Publication Number Publication Date
CN106133178A true CN106133178A (zh) 2016-11-16

Family

ID=50439437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480076957.2A Pending CN106133178A (zh) 2014-03-14 2014-03-14 具有更高焊接性的铁镍合金

Country Status (11)

Country Link
US (1) US10633728B2 (zh)
EP (1) EP3116677B1 (zh)
JP (1) JP6313468B2 (zh)
KR (1) KR102310152B1 (zh)
CN (1) CN106133178A (zh)
BR (1) BR112016020449B8 (zh)
CA (1) CA2941205C (zh)
ES (1) ES2759055T3 (zh)
MX (1) MX2016011463A (zh)
RU (1) RU2655501C2 (zh)
WO (1) WO2015136333A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652182A (zh) * 2022-11-04 2023-01-31 江苏隆达超合金航材有限公司 一种控制Invar36合金中气体及夹杂物的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107119234B (zh) * 2017-05-11 2019-01-18 东北大学 一种因瓦合金带材的细晶强化方法
CN110280923B (zh) * 2019-06-13 2021-05-11 江苏大学 800H合金焊接用Fe-Ni基合金焊丝及其制备方法、800H合金的焊接方法
EP4144881A4 (en) * 2020-04-28 2023-11-15 NIPPON STEEL Stainless Steel Corporation ALLOY MATERIAL AND MANUFACTURING METHOD THEREFOR
WO2022185092A1 (fr) * 2021-03-01 2022-09-09 Aperam Alliage fe-ni, destiné notamment au transport et au stockage d'hydrogène liquide
KR20240091663A (ko) * 2022-12-14 2024-06-21 주식회사 포스코 저온 충격인성이 향상된 저열팽창강 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161341A (ja) * 1997-08-12 1999-03-05 Nkk Corp 溶接性に優れたFe−Ni系アンバー合金
JPH1192873A (ja) * 1997-09-16 1999-04-06 Nkk Corp 耐溶接高温割れ性に優れたインバー合金
JP2001131706A (ja) * 1999-10-28 2001-05-15 Nkk Corp 溶接性に優れたインバー合金
CN102218448A (zh) * 2011-06-04 2011-10-19 首钢总公司 一种优化碳钢焊丝用盘条拉拔性能的生产方法
CN103084753A (zh) * 2013-01-23 2013-05-08 宝山钢铁股份有限公司 一种镍铁精密合金焊丝

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1912968A (en) * 1929-10-25 1933-06-06 John Herbert Aitchison Electrode or rod for welding
US3723106A (en) * 1969-05-23 1973-03-27 Driver Co Wilbur B Magnetic alloy
FR2727131B1 (fr) * 1994-11-23 1996-12-13 Imphy Sa Alliage fer-nickel a faible coefficient de dilatation
FR2745298B1 (fr) 1996-02-27 1998-04-24 Imphy Sa Alliage fer-nickel et bande laminee a froid a texture cubique
JP3384318B2 (ja) 1998-03-17 2003-03-10 住友金属工業株式会社 酸化物分散低熱膨張合金
KR100774396B1 (ko) * 2001-11-30 2007-11-08 엥피 알루와 다층 물질로 만들어진 밑면 및 측벽을 포함하는 조리용 용기, 및 다층 물질 물품
FR2849061B1 (fr) 2002-12-20 2005-06-03 Imphy Ugine Precision Alliage fer-nickel a tres faible coefficient de dilatation thermique pour la fabrication de masques d'ombres
JP2007331022A (ja) 2006-06-19 2007-12-27 Iwatani Industrial Gases Corp ステンレス鋼溶接ワイヤの製造方法
EP1975269A1 (fr) * 2007-03-30 2008-10-01 Imphy Alloys Alliage austenitique fer-nickel-chrome-cuivre
CN100519050C (zh) 2007-07-20 2009-07-29 常州华通焊丝有限公司 车辆用奥氏体不锈钢气保焊焊丝
JP4261601B2 (ja) 2007-10-05 2009-04-30 日本冶金工業株式会社 Fe−Ni合金板の製造方法
WO2011096592A1 (ja) * 2010-02-04 2011-08-11 小田産業株式会社 高強度・高延性で優れた耐食性・耐熱性を有する高窒素ステンレス鋼管及びそれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161341A (ja) * 1997-08-12 1999-03-05 Nkk Corp 溶接性に優れたFe−Ni系アンバー合金
JPH1192873A (ja) * 1997-09-16 1999-04-06 Nkk Corp 耐溶接高温割れ性に優れたインバー合金
JP2001131706A (ja) * 1999-10-28 2001-05-15 Nkk Corp 溶接性に優れたインバー合金
CN102218448A (zh) * 2011-06-04 2011-10-19 首钢总公司 一种优化碳钢焊丝用盘条拉拔性能的生产方法
CN103084753A (zh) * 2013-01-23 2013-05-08 宝山钢铁股份有限公司 一种镍铁精密合金焊丝

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652182A (zh) * 2022-11-04 2023-01-31 江苏隆达超合金航材有限公司 一种控制Invar36合金中气体及夹杂物的方法
CN115652182B (zh) * 2022-11-04 2024-02-02 江苏隆达超合金航材有限公司 一种控制Invar36合金中气体及夹杂物的方法

Also Published As

Publication number Publication date
EP3116677B1 (fr) 2019-09-11
MX2016011463A (es) 2016-12-07
JP6313468B2 (ja) 2018-04-18
BR112016020449B8 (pt) 2019-10-22
WO2015136333A1 (fr) 2015-09-17
EP3116677A1 (fr) 2017-01-18
CA2941205A1 (fr) 2015-09-17
JP2017512899A (ja) 2017-05-25
CA2941205C (fr) 2021-06-22
RU2016136756A3 (zh) 2018-03-15
KR20160133440A (ko) 2016-11-22
ES2759055T3 (es) 2020-05-07
US10633728B2 (en) 2020-04-28
RU2016136756A (ru) 2018-03-15
RU2655501C2 (ru) 2018-05-28
KR102310152B1 (ko) 2021-10-12
US20170096727A1 (en) 2017-04-06
BR112016020449B1 (pt) 2019-09-24

Similar Documents

Publication Publication Date Title
CN106133178A (zh) 具有更高焊接性的铁镍合金
TWI558822B (zh) Fat iron series stainless steel plate, steel pipe and manufacturing method thereof
CN104471089B (zh) 具有良好可加工性的镍-铬-铁-铝-合金的用途
CA2420796C (en) An austenitic stainless steel tube excellent in steam oxidation resistance and a manufacturing method thereof
CN103648708B (zh) 奥氏体钢焊接接头
CA2415573C (en) High strength steel weld having improved resistance to cold cracking and a welding method
US20230114417A1 (en) Steel for glass lining and production method therefor
CN109890993B (zh) 马氏体系不锈钢板
CN106756536B (zh) 一种耐氢腐蚀正火型移动罐车用低合金钢及其制备方法
UA57775C2 (uk) Сталь і спосіб одержання листа із сталі
EP3138934B1 (en) Martensitic stainless si-deoxidized cold rolled and annealed steel sheet and metal gasket
EP2481824A1 (en) Pure titanium sheet excellent in balance between stamping formability and strenght
JP2009275249A (ja) 耐高圧水素環境脆化特性に優れた高強度低合金鋼およびその製造方法
TWI579391B (zh) Production of iron-based stainless steel for welding with Ni-containing welding consumables and its manufacturing method
CN102089099A (zh) 连续铸造铸坯及其制造方法
CN104968818A (zh) 耐热性优良的铁素体系不锈钢板
JPS5810444B2 (ja) 耐水素誘起割れ性のすぐれた鋼板の製造法
WO2017155072A1 (ja) チタン材およびその製造方法
JP5251255B2 (ja) 局部変形能が小さい硬質極薄鋼板およびその製造方法
EP1811054B1 (en) Pipe for petroleum and gas product pipelines and method for the production thereof
JPS6018729B2 (ja) 中低炭素高張力線材の製造方法
CN105603304B (zh) 一种具有良好抗hic、sscc特性的q370r压力容器用厚钢板及制造方法
CN109454351B (zh) 一种特种车辆高氮钢车体焊接工艺
JP2023552313A (ja) 水素環境で低温靭性が向上した高強度オーステナイト系ステンレス鋼
EP3124639B1 (en) Steel sheet for high-strength line pipe having excellent low temperature toughness, and steel tube for high-strength line pipe

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116

RJ01 Rejection of invention patent application after publication