CN106124593B - 一种用于测量葡萄糖浓度的复合材料修饰电极及应用 - Google Patents

一种用于测量葡萄糖浓度的复合材料修饰电极及应用 Download PDF

Info

Publication number
CN106124593B
CN106124593B CN201610665067.6A CN201610665067A CN106124593B CN 106124593 B CN106124593 B CN 106124593B CN 201610665067 A CN201610665067 A CN 201610665067A CN 106124593 B CN106124593 B CN 106124593B
Authority
CN
China
Prior art keywords
electrode
concentration
glucose
modified electrode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610665067.6A
Other languages
English (en)
Other versions
CN106124593A (zh
Inventor
韦真博
张伟林
王俊
王永维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610665067.6A priority Critical patent/CN106124593B/zh
Publication of CN106124593A publication Critical patent/CN106124593A/zh
Application granted granted Critical
Publication of CN106124593B publication Critical patent/CN106124593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry

Abstract

本发明公开了一种用于测量葡萄糖浓度的复合材料修饰电极及应用,本发明首先通过循环伏安法制备了聚氨基酸修饰电极,然后采用循环伏安法在聚氨基酸薄膜修饰电极表面沉积金属纳米颗粒制备了聚氨基酸/金属纳米复合材料修饰电极。以获得的修饰电极为工作电极,银/氯化银电极为参比电极,铂柱电极为辅助电极,三电极体系下应用安培法实现了葡萄糖在一定浓度范围内的线性电化学响应。该修饰电极具有响应灵敏、稳定性好等特点。

Description

一种用于测量葡萄糖浓度的复合材料修饰电极及应用
技术领域
本发明属于食品分析检测技术领域,具体涉及一种用于葡萄糖浓度测定的复合材料修饰电极及应用。
背景技术
葡萄糖是自然界分布最广且最为重要的一种单糖,在生物学领域具有重要地位,是活细胞的能量来源和新陈代谢中间产物,人体活动所需的大部分能量是由摄入食物中的糖类提供的,这些糖类最终分解为葡萄糖才能提供能量。
测定葡萄糖的方法有很多种,其中基于葡萄糖氧化酶的生物传感器在测定时存在着固定酶容易失活、受温度影响大、测定范围较窄等缺点,因此建立无酶电化学传感器测定葡萄糖的方法具有重要的意义。电化学分析方法因检测便捷、灵敏度高、选择性好和成本低等优点而得到了广泛的应用,研究主要集中在金属或金属氧化物修饰电极,但这些电极有时表现不够稳定,所以制备一种新的修饰电极显得十分迫切。
发明内容
本发明的目的在于针对现有技术的不足,提供一种用于测量葡萄糖浓度的复合材料修饰电极及应用。本发明能够快速稳定对葡萄糖进行测定,且操作简便、灵敏度高,具有广阔的应用价值。
本发明的目的是通过以下技术方案来实现的:一种用于测量葡萄糖浓度的复合材料修饰电极,该复合材料修饰电极通过以下方法制备得到:
(1)在麂皮上依次使用第一抛光液和第二抛光液将玻碳电极打磨至镜面,第一抛光液由粒径为300nm的α-Al2O3抛光粉与去离子水按质量体积比(mg/ml)1:1-3混合均匀制得,第二抛光液由粒径为50nm的α-Al2O3抛光粉与去离子水按质量体积比(mg/ml)1:1-3混合均匀制得,之后依次应用无水乙醇和去离子水超声洗涤电极1~2min;然后再将清洗过的玻碳电极置于浓度为0.4~0.8mol/L的稀硫酸溶液中应用循环伏安法活化,直至响应稳定;最后用去离子水将玻碳电极冲洗干净,并晾干备用。
(2)将氨基酸加入浓度为0.1~0.2mol/L、pH值为5.5~7.5的磷酸盐缓冲液中,配制浓度为1~3mmol/L的氨基酸溶液;将步骤1预处理后的玻碳电极置于氨基酸溶液中,氨基酸选自天冬氨酸、精氨酸、苏氨酸和甘氨酸;采用循环伏安法进行电化学沉积,制得聚氨基酸修饰电极,循环伏安法沉积电位为-1.2~2V,扫描速度为60~140mV/s,循环圈数为12~18圈。
(3)将金属盐加入浓度为0.4~0.6mol/L的稀硫酸中,配制浓度为6~8mmol/L的金属盐溶液,金属盐选自硫酸铜、氯铂酸和硝酸镍;将聚氨基酸修饰电极置于金属盐溶液中,采用循环伏安法进行电化学沉积,制得聚氨基酸/金属纳米复合材料修饰电极,循环伏安法沉积电位为-0.25~0.4V,扫描速度为30~80mV/s,循环圈数为22~26圈。
一种上述的复合材料修饰电极在测定葡萄糖溶液浓度中的应用;所述应用具体为:将聚氨基酸/金属纳米复合材料修饰电极修饰电极作为工作电极、银电极或氯化银电极作为参比电极、铂柱电极作为辅助电极构成三电极系统,置于含有葡萄糖的待测氢氧化钠水溶液中,氢氧化钠水溶液浓度为0.05~0.25mol/L;然后应用安培法测定葡萄糖溶液的氧化峰峰电流,安培法测量电位为0.46~0.56V;若葡萄糖溶液的浓度在6×10-6~7.5×10- 5mol/L范围内,该氧化峰峰电流值代入公式i=0.0031c+0.0696,得到葡萄糖溶液的浓度;若葡萄糖溶液的浓度在7.5×10-6~2.6×10-4mol/L范围内,该氧化峰峰电流值代入公式i=0.0079c-0.2802,得到葡萄糖溶液的浓度。其中浓度c的单位是μmol/L,氧化电流i的单位是μA。
本发明的有益效果是,本发明用于测量葡萄糖浓度的聚氨基酸/金属纳米复合材料修饰电极比单一金属纳米材料修饰电极效果更好。金属纳米自身对葡萄糖具有较好的催化活性,聚氨基酸的加入进一步提高了电极稳定性、催化性和生物相容性等性能。因此,该修饰电极实现了对葡萄糖便捷、高效、稳定的测定。
附图说明
图1为PASP/GCE制备过程中的循环伏安图;
图2为PASP/Pt/GCE制备过程中的循环伏安图;
图3为Pt/GCE的扫描电镜图;
图4为PASP/Pt/GCE的扫描电镜图;
图5为不同电极在含葡萄糖的氢氧化钠溶液中循环伏安法扫描结果对比图;
图6为不同电极在不含葡萄糖的氢氧化钠溶液中循环伏安法扫描结果对比图;
图7为PASP/Pt/GCE电极在0.05~0.25mol/L NaOH浓度范围时对葡萄糖检测的循环伏安对比图;
图8为PASP/Pt/GCE电极在10~160mV/s扫描速度范围时对葡萄糖检测的循环扫描伏安对比图;
图9为PASP/Pt/GCE电极在葡萄糖浓度为6×10-6~2.6×10-4mol/L范围时电流随时间的响应图;
图10为PASP/Pt/GCE电极上葡萄糖响应电流值与浓度梯度标准曲线。
具体实施方式
聚氨基酸膜制备简单、稳定性好、选择性高,并带有大量的氨基和羧基,可提供许多可利用的势场,非常有利于修饰电极对被测物的电催化;金属纳米材料具有较大的比表面积和催化活性,对葡萄糖具有良好的催化氧化活性。为充分发挥上述两种材料的优势,发明人制备了一种新的用于葡萄糖测定的聚氨基酸/金属纳米复合材料修饰电极,发现其催化性能要优于金属纳米材料单独对电极修饰时的性能。
下面的实施实例可以使本专业普通技术人员更全面地理解本发明,但是本发明并不局限于此。
实施例1
制备用于葡萄糖测定的聚天冬氨酸/铂纳米复合材料修饰电极(PASP/Pt/GCE),包括以下步骤:
(1)玻碳电极预处理:在麂皮上依次使用粒径300nm和50nmα-Al2O3的糊状抛光液将玻碳电极打磨至镜面,之后依次应用无水乙醇和去离子水中超声洗涤电极1min,然后再将清洗过的玻碳电极置于0.5mol/L稀硫酸溶液中,在-0.5~1.2V电位区间以100mV/s的扫速进行循环伏安活化,直至响应稳定,最后用去离子水将玻碳电极冲洗干净,并晾干备用。
(2)在对玻碳电极修饰之前,电极需在1mmol/L K3[Fe(CN)6]溶液中(含有0.1mol/LKCl)进行循环伏安扫描以验证电极可逆性,其中循环电位区间设为-0.2~0.8V,扫速设为60mV/s。如果[Fe(CN)6]3-/4-在GCE上的氧化还原反应峰电位差△Ep约为64mV,说明电极表面已达到清洁和活化的要求。去离子水冲洗电极晾干备用。
(3)预处理后的玻碳电极置于2mmol/L天冬氨酸(用浓度为0.1mol/L且pH值为6的磷酸盐缓冲液)溶液中,采用循环伏安法进行电沉积。在-1.2~2V电位区间内,以100mV/s的扫描速度扫描15圈,制得聚天冬氨酸修饰电极(PASP/GCE),如图1所示。
(4)PASP/GCE置于8mmol/L氯铂酸(用0.5mol/L稀硫酸配制)溶液中,采用循环伏安法进行电沉积。在-0.25~0.4V电位区间内,以50mV/s的扫描速度扫描24圈,制得聚天冬氨酸/铂纳米复合材料修饰电极(PASP/Pt/GCE),如图2所示。去离子水冲洗吸附在电极表面未反应的物质,晾干备用。
图3和图4分别为Pt/GCE和PASP/Pt/GCE电极的扫描电镜图。观察到在图3中,铂纳米颗粒已成功地沉积在GCE表面,但纳米铂颗粒比较稀疏,且为单层,沉积量较少;而在图4中,由于预先在GCE表面沉积了聚天冬氨酸薄膜,所以当沉积铂时,更多地铂纳米颗粒被修饰在了电极表面。
图5和图6分别为不同电极在含葡萄糖和不含葡萄糖的氢氧化钠溶液中循环伏安法扫描对比图。不论在图5还是在图6中,PASP/Pt/GCE循环伏安响应电流均要大于Pt/GCE、PASP/GCE和GCE的响应电流,这体现了复合材料相较单一材料的优势;对于同一电极在含葡萄糖和不含葡萄糖的氢氧化钠溶液的对比中,图5均要大于图6,这说明修饰电极确实对葡萄糖产生了催化响应。
如图7所示,循环伏安法优化PASP/Pt/GCE检测葡萄糖时的氢氧化钠浓度。氢氧化钠浓度范围为0.05~0.25mol/L。考虑到电极稳定性和消耗等因素,选自0.1mol/L作为检测的最佳浓度值。
如图8所示,循环伏安法优化PASP/Pt/GCE检测葡萄糖时的扫描速度。实验在10~160mV/s扫速下进行,观察到随着扫速增加,响应电流增大,但是增加幅度逐渐减缓,另外考虑到峰形稳定,故选自120mV/s作为最佳扫速。
在上述实验条件下,采用安培法在0.5V恒电位下对浓度梯度为6×10-6~2.6×10-4mol/L的葡萄糖溶液进行定量测定,并绘制氧化电流与浓度关系标准曲线。在磁力搅拌下,连续加入1ml浓度分别为0.25、0.5、0.75和1mol/L的葡萄糖溶液,图9为得到的电流随时间响应图。在一定范围内,葡萄糖溶液浓度越大,对应的响应电流值就越大,通过一系列峰电流值与浓度的一一对应关系绘制出反映响应电流值与浓度关系的标准曲线,图10为得到的葡萄糖响应电流值与浓度关系标准曲线,两者呈现良好的线性关系,在6×10-6~7.5×10-5范围内,线性方程为i=0.0031c+0.0696,线性相关系数R=0.9994;在7.5×10-6~2.6×10-4范围内,线性方程为i=0.0079c-0.2802。其中浓度c的单位是μmol/L,氧化电流i的单位是μA,线性相关系数R=0.9994,检测限为2×10-6mol/L(S/N=3)。
根据上述获得的线性方程,即可实现对未知浓度的葡萄糖溶液样品进行浓度测定。三电极体系为基础,以本发明制备的修饰电极作为工作电极,银/氯化银电极为参比电极,铂柱电极为辅助电极。实验在CHI660E电化学工作站上进行,其附属的计算机软件进行实验参数设置和数据获取,将在0.5V恒电位安培法下获得的葡萄糖溶液电流响应值i带入线性方程,即可得到该葡萄糖溶液的浓度。
实施例2
制备用于葡萄糖测定的聚天冬氨酸/铂纳米复合材料修饰电极(PASP/Pt/GCE),包括以下步骤:
(1)玻碳电极预处理:在麂皮上依次使用粒径300nm和50nmα-Al2O3的糊状抛光液将玻碳电极打磨至镜面,之后依次应用无水乙醇和去离子水中超声洗涤电极90s,然后再将清洗过的玻碳电极置于0.4mol/L稀硫酸溶液中,在-0.6~1.4V电位区间以120mV/s的扫速进行循环伏安活化,直至响应稳定,最后用去离子水将玻碳电极冲洗干净,并晾干备用。
(2)预处理后的玻碳电极置于1.5mmol/L天冬氨酸(用浓度为0.15mol/L且pH值为6.5的磷酸盐缓冲液)溶液中,采用循环伏安法进行电沉积。在-1.2~2V电位区间内,以120mV/s的扫描速度扫描18圈,制得聚天冬氨酸修饰电极(PASP/GCE)。
(3)PASP/GCE置于6mmol/L氯铂酸(用0.4mol/L稀硫酸配制)溶液中,采用循环伏安法进行电沉积。在-0.25~0.4V电位区间内,以60mV/s的扫描速度扫描26圈,制得聚天冬氨酸/铂纳米复合材料修饰电极(PASP/Pt/GCE)。去离子水冲洗吸附在电极表面未反应的物质,晾干备用。
用该实施例制备的复合材料修饰电极用实施例1所示的方法测量已知浓度的葡萄糖溶液的氧化峰峰电流,若葡萄糖溶液的浓度在6×10-6~7.5×10-5mol/L范围内,该氧化峰峰电流值代入公式i=0.0031c+0.0696,得到葡萄糖溶液的浓度;若葡萄糖溶液的浓度在7.5×10-6~2.6×10-4mol/L范围内,该氧化峰峰电流值代入公式i=0.0079c-0.2802,得到葡萄糖溶液的浓度。得到的葡萄糖溶液的浓度与其实际浓度一致;且操作简便、响应灵敏。
实施例3
制备用于葡萄糖测定的聚天冬氨酸/铂纳米复合材料修饰电极(PASP/Pt/GCE),包括以下步骤
(1)玻碳电极预处理:在麂皮上依次使用粒径300nm和50nmα-Al2O3的糊状抛光液将玻碳电极打磨至镜面,之后依次应用无水乙醇和去离子水中超声洗涤电极2min,然后再将清洗过的玻碳电极置于0.6mol/L稀硫酸溶液中,在-0.8~1.5V电位区间以140mV/s的扫速进行循环伏安活化,直至响应稳定,最后用去离子水将玻碳电极冲洗干净,并晾干备用。
(2)预处理后的玻碳电极置于3mmol/L天冬氨酸(用浓度为0.2mol/L且pH值为7的磷酸盐缓冲液)溶液中,采用循环伏安法进行电沉积。在-1.2~2V电位区间内,以80mV/s的扫描速度扫描12圈,制得聚天冬氨酸修饰电极(PASP/GCE)。
(3)PASP/GCE置于7mmol/L氯铂酸(用0.6mol/L稀硫酸配制)溶液中,采用循环伏安法进行电沉积。在-0.25~0.4V电位区间内,以40mV/s的扫描速度扫描22圈,制得聚天冬氨酸/铂纳米复合材料修饰电极(PASP/Pt/GCE)。去离子水冲洗吸附在电极表面未反应的物质,晾干备用。
用该实施例制备的复合材料修饰电极用实施例1所示的方法测量已知浓度的葡萄糖溶液的氧化峰峰电流,若葡萄糖溶液的浓度在6×10-6~7.5×10-5mol/L范围内,该氧化峰峰电流值代入公式i=0.0031c+0.0696,得到葡萄糖溶液的浓度;若葡萄糖溶液的浓度在7.5×10-6~2.6×10-4mol/L范围内,该氧化峰峰电流值代入公式i=0.0079c-0.2802,得到葡萄糖溶液的浓度。得到的葡萄糖溶液的浓度与其实际浓度一致;且操作简便、响应灵敏。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (3)

1.一种用于测量葡萄糖浓度的复合材料修饰电极,其特征在于,该复合材料修饰电极通过以下方法制备得到:
(1)在麂皮上依次使用第一抛光液和第二抛光液将玻碳电极打磨至镜面,第一抛光液由粒径为300nm的α-Al2O3抛光粉与去离子水按质量体积比1:1-3混合均匀制得,第二抛光液由粒径为50nm的α-Al2O3抛光粉与去离子水按质量体积比1:1-3混合均匀制得,之后依次应用无水乙醇和去离子水超声洗涤电极1~2 min;然后再将清洗过的玻碳电极置于浓度为0.4~0.8 mol/L的稀硫酸溶液中应用循环伏安法活化,直至响应稳定;最后用去离子水将玻碳电极冲洗干净,并晾干备用,所述的质量体积比的单位为mg/ml;
(2)将氨基酸加入浓度为0.1~0.2mol/L、pH值为5.5~7.5的磷酸盐缓冲液中,配制浓度为1~3mmol/L的氨基酸溶液;将步骤(1)预处理后的玻碳电极置于氨基酸溶液中,氨基酸选自天冬氨酸、精氨酸、苏氨酸和甘氨酸;采用循环伏安法进行电化学沉积,制得聚氨基酸修饰电极,循环伏安法沉积电位为-1.2~2 V,扫描速度为60~140mV/s,循环圈数为12~18圈;
(3)将金属盐加入浓度为0.4~0.6mol/L的稀硫酸中,配制浓度为6~8mmol/L的金属盐溶液,金属盐选自硫酸铜、氯铂酸和硝酸镍;将聚氨基酸修饰电极置于金属盐溶液中,采用循环伏安法进行电化学沉积,制得聚氨基酸/金属纳米复合材料修饰电极,循环伏安法沉积电位为-0.25~0.4 V,扫描速度为30~80mV/s,循环圈数为22~26圈。
2.一种权利要求1所述的复合材料修饰电极在测定葡萄糖溶液浓度中的应用。
3.根据权利要求2所述的应用,其特征在于,将聚氨基酸/金属纳米复合材料修饰电极作为工作电极、银电极或氯化银电极作为参比电极、铂柱电极作为辅助电极构成三电极系统,置于含有葡萄糖的待测氢氧化钠水溶液中,氢氧化钠水溶液浓度为0.05~0.25 mol/L;然后应用安培法测定葡萄糖溶液的氧化峰峰电流,安培法测量电位为0.46~0.56V;若葡萄糖溶液的浓度在6×10-6~7.5×10-5mol/L范围内,该氧化峰峰电流值代入公式i=0.0031c+0.0696,得到葡萄糖溶液的浓度;若葡萄糖溶液的浓度在7.5×10-6~2.6×10-4mol/L范围内,该氧化峰峰电流值代入公式i=0.0079c-0.2802,得到葡萄糖溶液的浓度;其中浓度c的单位是μmol/L,氧化电流i的单位是μA。
CN201610665067.6A 2016-08-12 2016-08-12 一种用于测量葡萄糖浓度的复合材料修饰电极及应用 Active CN106124593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610665067.6A CN106124593B (zh) 2016-08-12 2016-08-12 一种用于测量葡萄糖浓度的复合材料修饰电极及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610665067.6A CN106124593B (zh) 2016-08-12 2016-08-12 一种用于测量葡萄糖浓度的复合材料修饰电极及应用

Publications (2)

Publication Number Publication Date
CN106124593A CN106124593A (zh) 2016-11-16
CN106124593B true CN106124593B (zh) 2019-02-05

Family

ID=57258303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610665067.6A Active CN106124593B (zh) 2016-08-12 2016-08-12 一种用于测量葡萄糖浓度的复合材料修饰电极及应用

Country Status (1)

Country Link
CN (1) CN106124593B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014876B (zh) * 2017-03-21 2019-07-26 浙江大学 一种基于金属纳米复合材料修饰电极阵列的黄酒地域鉴别方法
CN106932450B (zh) * 2017-03-21 2019-02-05 浙江大学 一种基于聚合物/金属纳米复合材料修饰电极阵列的黄酒品牌鉴别方法
CN106918631B (zh) * 2017-03-21 2019-04-09 浙江大学 一种基于聚合物/金属纳米复合材料修饰电极阵列的黄酒酒龄鉴别方法
CN108051493A (zh) * 2017-11-27 2018-05-18 山东师范大学 一种用于自驱动的聚氨基酸微纳米马达的制备方法
CN113125533B (zh) * 2019-12-31 2022-07-05 大连大学 一种用于葡萄糖检测的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303325A (zh) * 2008-06-25 2008-11-12 华东师范大学 用电沉积制备铂纳米多孔电极的方法
CN104049012A (zh) * 2014-06-23 2014-09-17 西北工业大学 一种环糊精与纳米金修饰玻碳电极的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI522613B (zh) * 2014-01-10 2016-02-21 國立中央大學 酵素型感測器之感測電極及其製備方法
TWI526534B (zh) * 2014-12-01 2016-03-21 國立台灣科技大學 葡萄糖氧化酵素/赤血鹽複合電紡聚乙烯醇奈米纖維膜及應用於拋棄式感測試紙的葡萄糖氧化酵素/赤血鹽複合電紡聚乙烯醇奈米纖維膜
CN104914147B (zh) * 2015-05-25 2018-07-10 遵义师范学院 一种基于磁性纳米NiFe2O4的电化学传感器的制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303325A (zh) * 2008-06-25 2008-11-12 华东师范大学 用电沉积制备铂纳米多孔电极的方法
CN104049012A (zh) * 2014-06-23 2014-09-17 西北工业大学 一种环糊精与纳米金修饰玻碳电极的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Investigation of Direct Electrooxidation Behavior of NADH at a Chemically Modified Glassy Carbon Electrode;Yongjun Ma等;《Journal of The Electrochemical Society》;20150224;第162卷(第6期);全文
基于纳米线阵列的钯镍复合材料非酶葡萄糖传感器研究;孙二双;《中国优秀硕士学位论文全文数据库信息科技辑》;20150215(第2期);正文第18页2.2.3,第19页2.2.5
聚氨基酸/金属氰桥配位聚合物复合修饰玻碳电极在电分析化学中的应用研究;金芝梅;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20160615(第6期);正文第22页2.2.2,第26页2.3.4

Also Published As

Publication number Publication date
CN106124593A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN106124593B (zh) 一种用于测量葡萄糖浓度的复合材料修饰电极及应用
Asrami et al. A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode
CN106053568A (zh) 一种用于测量维生素c浓度的复合材料修饰电极及应用
CN110618179A (zh) 一种基于纳米多孔金属膜的葡萄糖电化学微电极传感器
Li et al. Electrogenerated chemiluminescence biosensor for glucose based on poly (luminol–aniline) nanowires composite modified electrode
CN106383158B (zh) 一种基于银-石墨烯纳米复合物的过氧化氢无酶传感器及其制备方法
CN103954669B (zh) 一种酶电极、酶生物传感器及其制备方法和应用
CN106053575A (zh) 一种用于测量酪氨酸浓度的复合材料修饰电极及应用
CN105954336B (zh) 一种无酶超氧阴离子电化学传感器及其制备方法和应用
Han et al. A photoelectrochemical immunosensor for detection of α-fetoprotein based on Au-ZnO flower-rod heterostructures
CN111307904B (zh) 竹节状铜镍纳米线阵列葡萄糖传感器电极制备方法及应用
CN101655473B (zh) 纳米金免疫电极的制备方法
CN106525938A (zh) 一种用于没食子酸浓度测定的复合材料修饰电极及应用
CN102735732A (zh) 纳米氧化亚铜无酶过氧化氢传感器电极的制备及应用
CN106383159A (zh) 一种检测甲胎蛋白的电化学免疫传感器及其制备方法
CN105606684B (zh) 一种基于蛋白质的石墨烯-单壁碳纳米管-纳米金复合物的制备方法及其应用
CN109085225A (zh) 一种一步沉积法修饰磁电极的蛋白质电化学印迹传感器的制备方法
Liu et al. Simultaneous determination of vitamins B 2, B 6 and C using silver-doped poly (L-arginine)-modified glassy carbon electrode
CN114235924B (zh) 一种卷心菜结构的Pt/Au纳米合金修饰针灸针的无酶血糖传感器微电极及其制备
CN105911128B (zh) 一种无酶葡萄糖电化学传感器及其应用
CN106353382A (zh) 用于测量5’‑鸟苷酸二钠浓度的复合材料修饰电极及应用
CN109324098A (zh) 一种复合玻碳电极及其制备方法和应用
CN106872537B (zh) 一种三维花状钴纳米片葡萄糖电化学传感器及其制备方法
CN109738502A (zh) 一种Fe2O3薄膜电极的制备方法及其在光电化学葡萄糖传感器的应用
CN108918623A (zh) 一种基于锌基金属有机骨架材料和纳米金复合材料的电化学酶传感器的制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant