CN106115667A - S、n共掺杂石墨烯的低温制备方法及应用 - Google Patents

S、n共掺杂石墨烯的低温制备方法及应用 Download PDF

Info

Publication number
CN106115667A
CN106115667A CN201610444866.0A CN201610444866A CN106115667A CN 106115667 A CN106115667 A CN 106115667A CN 201610444866 A CN201610444866 A CN 201610444866A CN 106115667 A CN106115667 A CN 106115667A
Authority
CN
China
Prior art keywords
graphene
low temperature
codope
codope graphene
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610444866.0A
Other languages
English (en)
Inventor
张传香
赵媛
陶海军
许帅
杨柳
谢飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Nanjing Institute of Technology
Original Assignee
Nanjing University of Aeronautics and Astronautics
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics, Nanjing Institute of Technology filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201610444866.0A priority Critical patent/CN106115667A/zh
Publication of CN106115667A publication Critical patent/CN106115667A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了S、N共掺杂石墨烯的制备方法,包括以下步骤:以天然鳞片石墨为原料,采用改进Hummers法制得氧化石墨;将氧化石墨在水中超声分散得到氧化石墨烯溶液;取一定量的氧化石墨烯溶液,加入氨水调节pH,加入硫化钠在超声下制得混合溶液;将混合溶液在油浴下低温回流;将上述回流后的溶液经滤膜抽滤后真空冷冻干燥,制得S、N共掺杂石墨烯。本发明在低温条件下,可在石墨烯中掺杂活性位点元素S、N且不含杂相的电催化剂,在碱性条件下其对氧的还原性能优于目标催化剂商业Pt/C,且具有优异抗甲醇性能和稳定性。本发明制备的S、N共掺杂石墨烯作为无金属催化剂应用在燃料电池和金属空气电池领域中。

Description

S、N共掺杂石墨烯的低温制备方法及应用
技术领域
本发明公开了一种石墨烯的制备方法及应用,具体涉及一种S、N共掺杂石墨烯的低温制备方法及应用。
背景技术
在经济飞速发展的今天,人类面临越来越严重的环境污染问题与能源问题,开发环保、高效和再循环的新能源成为了科研工作者的研究重点。
燃料电池(fuel cells,FCs)作为一种新能源,能够将储存在燃料和氧化剂中的化学能,通过电化学反应直接转化为电能,具有以下优点:
(1)能量转换效率高;
(2)工作温度低,操作简单,快速启动;
(3)环境友好型电池,其唯一的排放产物是水,可实现少污染甚至零污染。
但是,氧气在燃料电池阴极的电化学还原过程非常缓慢,需要高性能的氧还原催化剂进行催化,目前燃料电池阴极催化剂主要有贵金属催化剂和非贵金属催化剂两类。其中贵金属催化剂包括(1)纯金属Pt黑,(2)Pt基合金,如Pt-Pd、Pt-Fe。纳米级纯金属Pt黑和Pt/C是使用较为广泛的氧还原电催化剂,金属Pt作为阴极氧还原电催化剂,活性较好,表现为Tafd曲线斜率小,具有较高的稳定性,但缺点是起始电流过电位较高,特别是有甲醇存在时。Pt合金催化剂主要是指Pt与其他过渡金属形成的合金。在Pt金属中配加其他过渡金属元素原子,可提高电化学氧还原的交换电流密度,增加氧阴极催化活性并能有效地抑制甲醇氧化,降低阴极过电位。但是由于贵金属铂(Pt)存在成本较高、寿命较低两大问题,使得燃料电池的大范围推广受到了一定程度的限制。 因此近年来,探索具有优良的电催化性能的非贵金属燃料电池催化剂成为燃料电池的研究热点。
无金属碳催化剂具有高活性和耐用性,使其在化学界、材料界被公认为未来最具竞争力、最有可能取代铂基催化剂的下一代氧还原电催化剂。Jasinski在1964年首先发现酞菁钴可以作为氧还原催化剂。这之后,各种含氮-过渡金属配位的大分子如硫族化合物、氮氧化物、碳氮化合物以及过渡金属掺杂的导电聚合物均被视为Pt基催化剂的潜在替代品。这些替代品中,氮掺杂碳材料,如碳纳米管、纳米管有序介孔石墨化阵列以及石墨烯,因其出色的电催化性能、低成本、高耐久性以及环境友好等优点,吸引了越来越多研究者的目光。
石墨烯作为一种新兴的无机非金属材料,具有比表面积大、热稳定性高、强度高、载流子迁移率高、热导率大等优异性能,因而在锂离子电池、太阳能电池、燃料电池及超级电容器方面具有重要的应用价值。由于sp2杂化的石墨烯具有非常丰富的可自由移动的π电子,因此石墨烯具有催化剂需要电子参与的电化学反应的能力,当在石墨烯的sp2骨架中引入杂原子后,碳材料原有的均匀的骨架结构被打破,从而可以使碳材料表现出催化活性,尤其是氮原子,作为研究最多的掺杂剂,它在六元碳晶格中可以引入更多的缺陷位点且掺杂的氮原子具有强电荷吸引能力和周围碳原子极高正电荷密度的协同作用极利于氧分子的吸附。这一平行双原子吸附可以有效减弱O-O键之间的结合,促进氧气通过四电子转移过程还原为OH-,而近年来,除了氮以外,氟、硼、磷、硫也被作为掺杂剂引入石墨烯中。这其中由于硫的一对孤对电子极易产生极化,可以提高碳材料的化学活性,同时硫原子的掺杂更容易引起氮原子的掺杂,再加上电荷密度和自旋密度的重新分配,氮、硫两种元素的共掺杂可以带来更佳的协同效应。传统的气相沉积法制备掺杂石墨烯需要复杂的真空体系,大规模生产成本 高昂,除此之外制备S、N掺杂石墨烯的方法是将石墨烯与含S和含N的前驱物热解,或者将石墨烯基衍生物在含杂原子气体的氛围下进行热处理,这两种方法使得此种催化剂的制备所需反应温度较高,且不利于催化剂的批量生产,从而影响到催化剂的商业化进程,因此,合成杂原子掺杂石墨烯的方法依然非常有挑战性,亟待开发出简单且适合推广的新方法。
发明内容
为解决现有技术的不足,本发明的目的在于提供一种制备工艺简单、反应温度低、且氧还原性能和稳定性能良好的S、N共掺杂石墨烯催化剂的低温制备方法及其应用。
为了实现上述目标,本发明采用如下的技术方案:
S、N共掺杂石墨烯的制备方法,其特征在于,包括以下步骤:
S1、以石墨为原料,采用改进Hummers法制得氧化石墨;
S2、将氧化石墨在水中超声分散得到氧化石墨烯溶液;
S3、取一定量的氧化石墨烯溶液,加入氨水调节pH,加入硫化钠在超声下制得混合溶液;
S4、将混合溶液在油浴下低温回流;
S5、将上述回流后的溶液经滤膜抽滤后干燥,制得S、N共掺杂石墨烯。上述步骤S1中的改进Hummers法为:
将石墨与一定体积比的浓硫酸和浓磷酸混合,在冰水浴条件下加入高锰酸钾,置于即热式搅拌器中反应,在冰水浴条件下加入水和双氧水,酸洗后透析、冷冻干燥,制得氧化石墨。
上述浓硫酸和浓磷酸的体积比为9:1,所述硫酸浓度为98%,磷酸浓度≥85%;所述天然鳞片石墨为1g,浓硫酸为45mL,浓磷酸为5mL,高锰酸钾为7g,即热 式搅拌器温度为50℃,反应时间为12h,水为100mL,双氧水为2mL 35%,透析时间为2周。
上述步骤S2中氧化石墨烯溶液为2mg/mL。
上述步骤S3中氧化石墨烯溶液为100mL,pH为10,硫化钠为1-2g。
上述步骤S4中油浴温度为50-220℃,回流时间为6-24h。
上述步骤S5中滤膜为0.45μm,干燥为真空-50℃冷冻干燥。
上述浓硫酸、浓磷酸、高锰酸钾、双氧水为分析纯级别,所述硫化钠、氨水为分析纯级别。
上述石墨优选为天然鳞片石墨。
上述的S、N共掺杂石墨烯应用在燃料电池和金属空气电池领域中。
本发明的有益效果在于:
(1)、本发明在油浴条件下低温回流,可制备得到S、N共掺杂石墨烯,相比于其它制备方法,制备工艺简单、高效便捷、无需高温热解过程;
(2)、本发明制备S、N共掺杂石墨烯的过程环保无污染;
(3)、本发明制备S、N共掺杂石墨烯所使用的化学试剂为常用试剂,绿色环保、廉价易得、易于大规模应用及推广;
(4)、本发明所制得的S、N共掺杂石墨烯可广泛应用于燃料电池和金属-空气电池中,其在碱性条件下具有较高的氧还原活性、稳定性及优良的抗甲醇性能。
附图说明
图1为本发明的S、N共掺杂石墨烯的低温制备方法的工艺流程示意图。
图2为本发明的S、N共掺杂石墨烯的低温制备方法的实施例1制备的S、N共掺杂石墨烯的激光拉曼图谱。
图3为本发明的S、N共掺杂石墨烯的低温制备方法的实施例1制备的S、N共掺杂石墨烯的透射图片;
图4为本发明的S、N共掺杂石墨烯的低温制备方法的实施例1制备的S、N共掺杂石墨烯的XPS图谱;
图5为本发明的S、N共掺杂石墨烯的低温制备方法的实施例1制备的S、N共掺杂石墨烯的LSV图谱;
图6为本发明的S、N共掺杂石墨烯的低温制备方法的实施例1制备的S、N共掺杂石墨烯与商业20%Pt/C的抗甲醇性能测试图谱;
图7为本发明的S、N共掺杂石墨烯的低温制备方法的实施例1制备的S、N共掺杂石墨烯的稳定性测试图谱。
具体实施方式
下面结合具体实施例对本发明是作进一步详细说明。
本发明制备的S、N共掺杂石墨烯通过以下设备和方法进行形貌结构及电催化性能表征:
选用美国热电公司K-Alpha型X射线光电子能谱仪对催化剂中的元素进行定性与定量分析;
选用捷克Tecnai FEI G2T20的透射电子显微镜(TEM)对微观形貌进行观察;
选用英国Renishaw inVia的激光拉曼对物相结构进行表征分析;
选用美国PINE旋转圆盘电极和上海辰华电化学工作站对氧还原性能和稳定性能进行测试。
S、N共掺杂石墨烯的制备方法,包括以下步骤:
S1、以天然鳞片石墨为原料,采用改进Hummers法制得氧化石墨;
S2、将氧化石墨在水中超声分散得到2mg/mL氧化石墨烯溶液;
S3、取100mL氧化石墨烯溶液,加入氨水调节pH为10,加入1-2g硫化钠在超声下制得混合溶液;
S4、将混合溶液在50-220℃的油浴下低温回流6-24h;
S5、将上述回流后的溶液经0.45μm滤膜抽滤后在真空-50℃下冷冻干燥,制得S、N共掺杂石墨烯。
步骤S1中的改进Hummer法为:将1g天然鳞片石墨与质量比为9:1的浓硫酸和浓磷酸混合,浓硫酸为4mL浓度98%,浓磷酸为5mL浓度≥85%,在冰水浴条件下加入7g高锰酸钾,置于50℃的即热式搅拌器中反应12h,在冰水浴条件下加入100mL水和2mL 35%双氧水,酸洗后透析2周、冷冻干燥,制得氧化石墨。
上述硫酸、磷酸、高锰酸钾、双氧水为分析纯级别。
上述硫化钠、氨水为分析纯级别。
实施例:
硫化钠(g) 油浴温度(℃) 回流时间(h)
实施例1 1 150 16
实施例2 0.4 150 16
实施例3 1.4 150 16
实施例4 2 150 16
实施例5 1 50 16
实施例6 1 100 16
实施例7 1 180 16
实施例8 1 220 16
实施例9 1 50 6
实施例10 1 50 12
实施例11 1 50 24
实施例12 1 100 6
实施例13 1 100 12
实施例14 1 100 24
实施例15 1 150 6
实施例16 1 150 12
实施例17 1 150 24
实施例18 1 180 6
实施例19 1 180 12
实施例20 1 180 24
实施例21 1 220 6
实施例22 1 220 12
实施例23 1 220 24
图2为实施例1制备的S、N共掺杂石墨烯的拉曼图谱,从图中可见S、N共掺杂石墨烯的D峰明显高于G峰,ID/IG为1.045,这归结于杂原子的引入进一步增加了材料的缺陷。
图3为实施例1制备的S、N共掺杂石墨烯的透射图和高分辨图,可见S、N共掺杂石墨烯的片层薄,表面有大量的褶皱,从图3(c、d)可见石墨烯的晶格厚度,这与单层石墨烯的理论厚度是一致的。
图4为实施例1制备的S、N共掺杂石墨烯的XPS图谱,从图中可以看出S、N元素已成功掺杂入石墨烯晶格中,N元素以吡啶型氮、吡咯型氮两种形式进入碳骨架中,而S元素以共轭的-C=S-和-C-Sn-C-以及-SOn-的形式进行掺杂。
图5为实施例1制备的S、N共掺杂石墨烯与商业20%Pt/C的LSV图谱, 从图中可以看出S、N共掺杂石墨烯的开路电位和半波电位逊于商业Pt/C,但是在极限电流部分明显优于商业催化剂。
图6为实施例1制备的S、N共掺杂石墨烯与20%Pt/C的抗甲醇性能的对比图谱,从图中可以看出,在加入3M甲醇后,20%Pt/C催化剂的电流急剧衰减,而S、N共掺杂石墨烯具有优异的抗甲醇性能。
图7为实施例1制备的S、N共掺杂石墨烯的时间电流曲线,从图中可以看出S、N共掺杂石墨烯在循环20000s时电流衰减为94.16%。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

1.S、N共掺杂石墨烯的制备方法,其特征在于,包括以下步骤:
S1、以石墨为原料,采用改进Hummers法制得氧化石墨;
S2、将氧化石墨在水中超声分散得到氧化石墨烯溶液;
S3、取一定量的氧化石墨烯溶液,加入氨水调节pH,加入硫化钠在超声下制得混合溶液;
S4、将混合溶液在油浴下低温回流;
S5、将上述回流后的溶液经滤膜抽滤后干燥,制得S、N共掺杂石墨烯。
2.根据权利要求1所述的S、N共掺杂石墨烯的低温制备方法,其特征在于,所述步骤S1中的改进Hummers法为:
将石墨与一定体积比的浓硫酸和浓磷酸混合,在冰水浴条件下加入高锰酸钾,置于即热式搅拌器中反应,在冰水浴条件下加入水和双氧水,酸洗后透析、冷冻干燥,制得氧化石墨。
3.根据权利要求2所述的S、N共掺杂石墨烯的低温制备方法,其特征在于,所述浓硫酸和浓磷酸的体积比为9:1,所述硫酸浓度为98%,磷酸浓度≥85%;所述天然鳞片石墨为1g,浓硫酸为45mL,浓磷酸为5mL,高锰酸钾为7g,即热式搅拌器温度为50℃,反应时间为12h,水为100mL,双氧水为2mL 35%,透析时间为2周。
4.根据权利要求1所述的S、N共掺杂石墨烯的低温制备方法,其特征在于,所述步骤S2中氧化石墨烯溶液为2mg/mL。
5.根据权利要求1所述的S、N共掺杂石墨烯的低温制备方法,其特征在于,所述步骤S3中氧化石墨烯溶液为100mL,pH为10,硫化钠为1-2g。
6.根据权利要求1所述的S、N共掺杂石墨烯的低温制备方法,其特征在于,所述步骤S4中油浴温度为50-220℃,回流时间为6-24h。
7.根据权利要求1所述S、N共掺杂石墨烯的低温制备方法,其特征在于,所述步骤S5中滤膜为0.45μm,干燥为真空-50℃冷冻干燥。
8.根据权利要求2所述S、N共掺杂石墨烯的低温制备方法,其特征在于,所述浓硫酸、浓磷酸、高锰酸钾、双氧水为分析纯级别,所述硫化钠、氨水为分析纯级别。
9.根据权利要求1所述S、N共掺杂石墨烯的低温制备方法,其特征在于,所述石墨为天然鳞片石墨。
10.权利要求1-9任一项所述的S、N共掺杂石墨烯应用在燃料电池和金属空气电池领域中。
CN201610444866.0A 2016-06-20 2016-06-20 S、n共掺杂石墨烯的低温制备方法及应用 Pending CN106115667A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610444866.0A CN106115667A (zh) 2016-06-20 2016-06-20 S、n共掺杂石墨烯的低温制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610444866.0A CN106115667A (zh) 2016-06-20 2016-06-20 S、n共掺杂石墨烯的低温制备方法及应用

Publications (1)

Publication Number Publication Date
CN106115667A true CN106115667A (zh) 2016-11-16

Family

ID=57470836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610444866.0A Pending CN106115667A (zh) 2016-06-20 2016-06-20 S、n共掺杂石墨烯的低温制备方法及应用

Country Status (1)

Country Link
CN (1) CN106115667A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732202A (zh) * 2017-10-16 2018-02-23 河源广工大协同创新研究院 一种锂硫电池正极材料的制备方法
CN108232116A (zh) * 2017-12-15 2018-06-29 江苏大学 一种氮、磷共掺杂石墨烯凝胶电化学储钠电极的制备方法
CN109179380A (zh) * 2018-08-24 2019-01-11 东华大学 一种电催化性能石墨烯及其制备和应用
CN112599744A (zh) * 2020-12-15 2021-04-02 桐乡市鸿信科技合伙企业(有限合伙) 一种氮硫共掺杂多孔碳修饰Co3O4的锂离子电池负极材料及制法
CN114300696A (zh) * 2021-12-22 2022-04-08 北京石墨烯技术研究院有限公司 掺杂石墨烯材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212230A (ja) * 1984-04-06 1985-10-24 Hitachi Ltd 電極触媒の製造法
WO2012051597A3 (en) * 2010-10-15 2012-08-02 The Regents Of The University Of California Organometallic chemistry of extended periodic ii-electron systems
CN103172057A (zh) * 2013-03-07 2013-06-26 华南理工大学 一种氮硫共掺杂石墨烯的制备方法
CN103435034A (zh) * 2013-08-14 2013-12-11 中国科学院上海硅酸盐研究所 制备石墨烯基非金属氧还原催化剂的方法
CN104192830A (zh) * 2014-05-20 2014-12-10 江苏欧力特能源科技有限公司 一种水热法制备氮硫共掺杂石墨烯的方法
CN105271203A (zh) * 2015-11-18 2016-01-27 深圳大学 多孔共掺杂石墨烯及其制备方法
CN105567230A (zh) * 2016-02-22 2016-05-11 桂林理工大学 一种氮硫共掺石墨烯量子点及其制备方法
CN105609772A (zh) * 2016-02-04 2016-05-25 西安理工大学 微波法制备n,s共掺杂石墨烯锂硫电池正极材料的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212230A (ja) * 1984-04-06 1985-10-24 Hitachi Ltd 電極触媒の製造法
WO2012051597A3 (en) * 2010-10-15 2012-08-02 The Regents Of The University Of California Organometallic chemistry of extended periodic ii-electron systems
CN103172057A (zh) * 2013-03-07 2013-06-26 华南理工大学 一种氮硫共掺杂石墨烯的制备方法
CN103435034A (zh) * 2013-08-14 2013-12-11 中国科学院上海硅酸盐研究所 制备石墨烯基非金属氧还原催化剂的方法
CN104192830A (zh) * 2014-05-20 2014-12-10 江苏欧力特能源科技有限公司 一种水热法制备氮硫共掺杂石墨烯的方法
CN105271203A (zh) * 2015-11-18 2016-01-27 深圳大学 多孔共掺杂石墨烯及其制备方法
CN105609772A (zh) * 2016-02-04 2016-05-25 西安理工大学 微波法制备n,s共掺杂石墨烯锂硫电池正极材料的方法
CN105567230A (zh) * 2016-02-22 2016-05-11 桂林理工大学 一种氮硫共掺石墨烯量子点及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732202A (zh) * 2017-10-16 2018-02-23 河源广工大协同创新研究院 一种锂硫电池正极材料的制备方法
CN107732202B (zh) * 2017-10-16 2020-11-03 河源广工大协同创新研究院 一种锂硫电池正极材料的制备方法
CN108232116A (zh) * 2017-12-15 2018-06-29 江苏大学 一种氮、磷共掺杂石墨烯凝胶电化学储钠电极的制备方法
CN109179380A (zh) * 2018-08-24 2019-01-11 东华大学 一种电催化性能石墨烯及其制备和应用
CN112599744A (zh) * 2020-12-15 2021-04-02 桐乡市鸿信科技合伙企业(有限合伙) 一种氮硫共掺杂多孔碳修饰Co3O4的锂离子电池负极材料及制法
CN114300696A (zh) * 2021-12-22 2022-04-08 北京石墨烯技术研究院有限公司 掺杂石墨烯材料及其制备方法和应用
CN114300696B (zh) * 2021-12-22 2024-03-19 北京石墨烯技术研究院有限公司 掺杂石墨烯材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Jiang et al. Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@ C from metal-organic framework
Zeng et al. Highly-active, metal-free, carbon-based ORR cathode for efficient organics removal and electricity generation in a PFC system
CN106115667A (zh) S、n共掺杂石墨烯的低温制备方法及应用
Chen et al. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery
CN107346826A (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
CN104269565B (zh) 一种多壁碳纳米管负载Ni0.85Se复合材料的制备方法及其应用
CN108821257B (zh) 一种基于荷叶的二元介孔-微孔多级结构生物碳及其制备方法和应用
Guo et al. One-step synthesis of cobalt, nitrogen-codoped carbon as nonprecious bifunctional electrocatalyst for oxygen reduction and evolution reactions
Yang et al. Air cathode catalysts of microbial fuel cell by nitrogen-doped carbon aerogels
Tang et al. Biomass-derived hierarchical honeycomb-like porous carbon tube catalyst for the metal-free oxygen reduction reaction
CN104667953A (zh) 一种氮掺杂石墨炔、制备方法及其用途
CN108336374B (zh) 一种高性能三元Fe-Co-Ni共掺杂含氮碳材料及其制备方法和应用
CN104624190A (zh) 一种钴基过渡金属氧还原催化剂及其制备方法和应用
CN104998675A (zh) 一种氮硼掺杂碳基催化剂的制备方法
CN105680060A (zh) 一种氮、硫或氯掺杂三维多孔石墨烯催化剂的制备及应用
CN104525185A (zh) 一种碳基复合物燃料电池阴极氧还原催化剂及其制备方法
CN105552392A (zh) 二硒化钴/石墨碳复合材料氧气还原催化剂及其制备方法
CN103495430A (zh) 一种磷掺杂石墨烯氧还原电催化剂及其制备方法和应用
CN107321372B (zh) CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
He et al. Phosphorus Doped Multi‐Walled Carbon Nanotubes: An Excellent Electrocatalyst for the VO2+/VO2+ Redox Reaction
CN108461763A (zh) 一种二硫化钴/硫氮共掺杂石墨烯催化材料及制备与应用
CN111282588A (zh) 一种电解水析氢催化剂及其制备方法与应用
Yang et al. Chlorella-derived porous heteroatom-doped carbons as robust catalysts for oxygen reduction reaction in direct glucose alkaline fuel cell
Wu et al. A graphene-based electrocatalyst co-doped with nitrogen and cobalt for oxygen reduction reaction
CN109873172B (zh) 一种甲醇燃料电池催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116