CN106104817B - 多结太阳能电池 - Google Patents

多结太阳能电池 Download PDF

Info

Publication number
CN106104817B
CN106104817B CN201580013861.6A CN201580013861A CN106104817B CN 106104817 B CN106104817 B CN 106104817B CN 201580013861 A CN201580013861 A CN 201580013861A CN 106104817 B CN106104817 B CN 106104817B
Authority
CN
China
Prior art keywords
sub
battery
lattice constant
mrow
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580013861.6A
Other languages
English (en)
Other versions
CN106104817A (zh
Inventor
W·古特
M·莫伊泽尔
F·迪姆罗特
L·埃贝尔
R·克伦本茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azur Space Solar Power GmbH
Original Assignee
Azur Space Solar Power GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azur Space Solar Power GmbH filed Critical Azur Space Solar Power GmbH
Publication of CN106104817A publication Critical patent/CN106104817A/zh
Application granted granted Critical
Publication of CN106104817B publication Critical patent/CN106104817B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

多结太阳能电池,其具有由InGaAs化合物制成的第一子电池和第二子电池,其中,第一子电池具有第一晶格常数,第二子电池设置有第二晶格常数,其中,第一晶格常数比第二晶格常数至少大并且此外设有变质缓冲区,其中,所述缓冲区构造在第一子电池与第二子电池之间,并且该变质缓冲区具有至少三个层的序列且在该序列中的晶格常数朝第一子电池的方向去地逐层提高,其中,缓冲区的层的晶格常数大于所述第二晶格常数,其中,变质缓冲区的一层具有第三晶格常数,并且在变质缓冲区与第一子电池之间构造有用于补偿变质缓冲区的残余张力的数目为N的补偿层,并且相应的补偿层的晶格常数比第一晶格常数小一个数值 并且这些补偿层具有大于1%的铟含量,并且数目为N的补偿层的厚度被选择得适用公式(I)。

Description

多结太阳能电池
技术领域
本发明涉及一种多结太阳能电池。
背景技术
由文献《Current-matched triple-junction solar cell reaching 41.1%conversion efficiency under concentrated sunlight》(作者古特(Guter)等,应用物理学快报(Applied Physics Letters),94,223504(2009))已知了一种多结太阳能电池(英文:multi-junction solar cell)。被公开的结构涉及具有高效率的、变质的Ga0.35In0.65P/Ga0.83In0.17As/Ge三结太阳能电池。在此,在Ge(锗)衬底或者说Ge子电池与Ga0.83In0.17As子电池之间使用由GaYIn1-YAs制成的变质缓冲区。所述变质缓冲区在此由七个200nm厚度的GalnAs层构成,这些层具有逐步提高的铟含量,其中,晶格常数也同时增大。在此,在缓冲区的所谓过剩层(英文:overshoot)的最后的层中,使用比处于其上的Ga0.83ln0.17As子电池中更大的20%的铟含量或者说更大的晶格常数。这是建立张力所需要的,该张力导致变质缓冲器的处于其下的层被松弛到所希望的晶格常数上。
此外,由Photovoltaic Specialists Conference(PVSC),2012 38th IEEE,ISBN:978-1-4673-0064-3,2788-2791页中的文献《Evolution of a 2.05eV AlGalnP top sub-cell for 5 and 6J-IMM applications》(作者克恩费尔德(Cornfield)等)已知在具有直至六个子电池的倒置多结太阳能电池(英文:inverted metamorphic,缩写:IMM)中的变质缓冲区的构造。此外由EP2251912 A1已知具有一些不同地张紧的层和多个太阳能电池和一个变质缓冲区的隧道二极管结构。
由EP2650930 A1已知一种多结太阳能电池,该多结太阳能电池包括接合(英文:bonded)到下部变质GalnAs/Ge两结太阳能电池上的上部GalnP/GaAs两结太阳能电池。
为了完整性要说明的是,当前以变质多结太阳能电池的概念来理解以下多结太阳能电池:所述多结太阳能电池具有在太阳能电池堆叠的两个子电池(英文:sub-cell)之间的至少一个变质缓冲区层。此外要说明的是,在III-V多结太阳能电池的外延中使用所谓的变质缓冲区,以便可以在这些缓冲区上沉积具有高品质的半导体层,所述半导体层由具有比衬底的晶格常数更高的晶格常数的材料制成。通过变质缓冲区,在外延的走向中构成具有比原始衬底的晶格常数更大的晶格常数的所谓的虚拟衬底。具有如虚拟衬底的晶格常数那样的晶格常数的半导体层可以接下来以高品质被沉积。借助使用变质缓冲区能够在选择用于多结太阳能电池中的不同子电池的材料的情况下实现较大的应用余地。由此,尤其可以实现材料组合,这些材料组合保证了多结太阳能电池的较高效率。
在使用这些变质缓冲区时的问题是固有残余张力。视所使用的衬底的灵活性的情况而定,残余张力导致半导体盘(英文:wafer,即晶圆)的不希望的弯曲。尤其在常见的具有小于190μm的厚度Ge衬底上制造时,例如产生显著的弯曲效应。
半导体盘的弯曲此外已经在外延期间由于温度效应而导致不均匀的层特性。此外使这类半导体盘的加工变难并使产量减少以及由此使制造成本明显提高。此外,在具有大于20cm2的典型面积的宇航用太阳能电池中,弯曲导致不希望的产品特性。
发明内容
在所述背景下,本发明的任务是给出一种装置,其改进了现有技术。
该任务通过一种具有本发明的特征的多结太阳能电池来解决。
根据本发明的主题提供一种多结太阳能电池,该多结太阳能电池具有多结太阳能电池,所述多结太阳能电池具有由InGaAs化合物构成的第一子电池并且具有第二子电池,其中,第一子电池具有第一晶格常数,第二子电池设有第二晶格常数,其中,第一晶格常数比第二晶格常数至少大并且此外设有变质缓冲区,其中,所述缓冲区构造在第一子电池与第二子电池之间,并且该变质缓冲区具有至少三个层的序列且在该序列中晶格常数朝第一子电池的方向逐层提高,其中,缓冲区的层的晶格常数大于所述第二晶格常数,其中,变质缓冲区的一层具有第三晶格常数且第三晶格常数大于第一晶格常数,并且在变质缓冲区与第一子电池之间构造有用于补偿变质缓冲区的残余张力的数量为N的补偿层,并且各个补偿层的晶格常数比第一晶格常数小一个数值并且这些补偿层具有大于1%的铟含量,并且数量为N的补偿层的厚度这样来选择,使得适用:
要注意的是,拉伸应力导致凸形弯曲并且相应地压缩应力导致半导体衬底或半导体盘的凹形弯曲,并且所述多结太阳能电池优选地由III-V半导体材料组成。在此,对于拉伸应力的概念应理解为拉应力,并且对于压缩应力的概念应理解为压应力。此外要注意的是,数量N包括除零以外的自然数的集合,或换句话说,构造有至少一个补偿层。
一个补偿层或多个补偿层的构造的优点是由此可以明显减少半导体盘的弯曲、尤其是由于变质缓冲区所引起的弯曲。试验已经证实,通过引入补偿层在制造多结太阳能电池时提高产量并可以减少制造成本。此外有利的是,在变质缓冲区的最后一层之后并优选地在跟随的子电池的沉积之前构造补偿层。换句话说,在缓冲区的所谓的“overshoot”层之后构造补偿层是有利的。在此情况下,例如从低材料消耗角度有利的成型方案在于,使补偿层材料锁合地与变质缓冲区的最后的层连接。此外要注意的是,根据上面所列举的公式,补偿的大小作为张力反馈的大小直接取决于补偿层的晶格常数与第一晶格常数相比的不同乘以补偿层厚度。申请人的试验已证实,需要一定程度的补偿应力,以便获得晶圆弯曲的显著减小。值得期待的是,达到至少20%的应力减小。
为了完整性要注意的是,一个子电池的晶格常数与该子电池的最厚一层的晶格常数相同。以典型的方式,该子电池的最厚一层是该子电池的吸收层。在通常具有n到p极性的工业用多结太阳能电池中,所述最厚一层以典型的方式是相应子电池的pn结的正掺杂的基层。
此外,引入应力补偿层具有如下的优点,即,通过变质缓冲区所构成的所谓虚拟衬底的晶格常数在应力补偿层沉积之后很大程度上是“冻结”的。在没有应力补偿层的情况下,在接下来被沉积的那些层的复合体中,尤其在子电池的相对较厚的吸收层的复合体中的非故意的偏离或产品波动可以导致进一步的压缩应力并由此导致变质缓冲区的层的进一步松弛。这会意味着虚拟衬底的晶格常数的不希望的变大。但是,通过引入应力补偿层可以大大减小变质缓冲区的残余张力,从而使得变质缓冲区的非故意进一步松弛的可能性明显降低。因此,应力补偿层的引入也能够在沉积在变质缓冲区上的那些层的复合体中实现沉积过程相对于产品波动的更大的过程窗口或更大的公差。
在一种扩展方案中,数量为N的补偿层的厚度总体上、也就是在总和上大于150nm。试验已证实的是,可以借助高于150nm的总厚度执行变质缓冲区的张力的明显补偿。有利的是,相应数量为N的补偿层的晶格常数比第一晶格常数至少小一个数值试验已证实的是,在的情况下,为了实现尽可能高的补偿需要补偿层的这样高的总厚度,使得制造太阳能电池的经济性显著地受到负面影响。
在一种替代的实施方式中,该数值其中,应力补偿层同时构造为半导体镜或布拉格镜的层。换句话说,在此情况下,应力补偿层具有双重功能。
在另一种实施方式中示出,数量为N的补偿层的厚度这样地选择,使得适用:
由此,尤其伴随晶格常数的差值上的变大可以通过小于1μm的层厚度实现主要由缓冲区所产生的拉伸应力的至少20%的补偿。
在另一种扩展方案中,数量为N的补偿层的厚度这样地选择,使得适用:
试验已证实的是,在该值之上,补偿层中形成裂缝的可能性大大提高。
另一种实施方案特征通过如下方式给定,即,补偿层分别具有拉伸应力并且补偿层的横向晶格常数(英文:in-plane lattice constant,平面内晶格常数)大于垂直晶格常数(英文:out-of-plane lattice constant,平面外晶格常数)。当前,以所述横向晶格常数来指在补偿层主延伸面方向上的晶格常数。换句话说,单个的补偿层分别具有各向异性的晶格常数。在一种替代的实施方式中,补偿层分别具有由GaAs和/或GalnAs和/或AlGalnAs和/或GalnP和/或AlGalnP和/或GaAsP和/或GalnAsP构成的化合物。
在一种扩展方案中,补偿层的铟含量比第一子电池的铟含量小0.2%或0.5%。可以理解,铟含量的多少对晶格常数具有重大影响。此外有利的是,这些补偿层的一部分或所有补偿层掺杂Zn。特别有利的是,锌掺杂大于1014cm-3
在另一种扩展方案中,这些补偿层的一部分或所有补偿层构造为半导体镜的部件。有利的是,借助这些层的双重功能性能够减小多结太阳能电池的总厚度。在一种优选的实施方式中,第二子电池具有锗。此外设有第三子电池,其中,该第三子电池具有由GalnP构成的化合物。此外有利的是在第三子电池与第一子电池之间构造第四子电池,其中,第四子电池包括GaAs或InGaAs或AlGalnAs化合物。
试验已证实的是,所述子电池不仅能够以正置构造,而且能够以倒置构造。在此,对于正置应理解为:在外延制造过程期间最后被沉积的子电池是多结太阳能电池的最上面的子电池。当前,对于最上面的子电池应理解为如下子电池:所述子电池布置成最靠近太阳并具有所有子电池的最大带隙。对于倒置方案应理解为:在外延制造过程期间最先被沉积的子电池是多结太阳能电池的最上面的子电池。换句话说,在正置的情况下,具有较大晶格常数的第一子电池具有比具有较小晶格常数的第二子电池的带隙更大的带隙。在倒置的情况下,具有较大晶格常数的第一子电池具有比具有较小晶格常数的第二子电池的带隙更小的带隙。
在另一种实施方式中,在布置四个子电池的情况下分别构造两个子电池对,其中,在这两个子电池对之间存在通过直接半导体接合的材料锁合连接。在此特别有利的是,进行晶格张力的补偿,因为接合过程仅具有相对于待组合晶圆或半导体盘的弯曲的小公差。在一种实施方式中,特别有利的是,多结太阳能电池是GalnP/GaAs/GalnAs/Ge四结太阳能电池,其由两个通过直接半导体接合组合的两结太阳能电池组成,在这两个两结太阳能电池中,一个是正置变质GalnAs/Ge两结太阳能电池。
在另一种实施方式中构造有第二或第三变质缓冲区,其中,借助这些单个缓冲区分别构造有另外的、也就是第二或第三补偿层并且这些补偿层中的每个构造在变质缓冲区与具有较大晶格常数的相邻子电池之间。此外要注意的是,这些补偿层不是隧道二极管的pn结的一部分。
附图说明
随后参考附图来更详细阐释本发明。在此,以相同附图标记来描述相同种类的部件。所示的实施方式是强烈示意性的,也就是说,间距和横向延伸和竖直延伸不是严格按比例的并且只要没有另外说明也彼此不具有可推知的几何关系。附图示出:
图1a示出多结太阳能电池的根据本发明的第一实施方式的横截面;
图1b根据图1a中示出的太阳能电池结构的层序示出晶格常数的走向;
图1c根据图1a中示出的太阳能电池结构的层序示出横向晶格常数的走向;
图1d根据图1a中示出的太阳能电池结构的层序示出垂直晶格常数的走向;
图2示出作为三结电池的根据本发明的第二实施方式的横截面;
图3示出作为四结太阳能电池的根据本发明的第三实施方式的横截面。
具体实施方式
图1a的示图示出了具有第一子电池SC1的多结太阳能电池MS的根据本发明的第一实施方式的横截面。第一子电池SC1置于唯一的补偿层KOM1上。但是要注意的是,在一种未示出的替代实施方式中,代替唯一的补偿层构造有数目为N的多个单个补偿层。此外,补偿层KOM1置于变质缓冲区MP1上,其中,该缓冲区MP1置于第二子电池SC2上。该缓冲区具有一些未示出的层的序列。
在图1b的示图中绘出晶格常数A的走向,该走向与图1a中示出的太阳能电池结构的层序列相关。接下来仅阐释与图1a的示图的区别。要说明的是,晶格常数A当前总是被理解为所谓的自然晶格常数。第二太阳能电池SC2具有第二晶格常数ASC2。在第二子电池SC2上布置有如下序列:具有晶格常数MPA1的第一层和具有晶格常数MPA2的第二层和具有晶格常数MPA3的第三层和具有第四晶格常数MPA4的第四层。示出的是,在这些层的序列中,晶格常数MPA1、MPA2、MPA3和MPA4逐层提高,其中,该序列的所有晶格常数MPA1,MPA2、MPA3和MPA4大于第二晶格常数ASC2。此外,第四晶格常数MPA4大于第一晶格常数ASC1。由此,第四层也被称作“过剩(overshoot)”层。补偿层KOM1具有比第一晶格常数SCA1更小的晶格常数A1。可以理解,“过剩(overshoot)”层压缩地张紧并且施加应力到半导体盘上。
只有借助引入补偿层KOM1和构造与第一晶格常数ASC1相比更小的晶格常数A1才能够获得均衡、也就是说减小晶格张力。在此,补偿层KOM1的厚度KOMD1越大并且补偿层KOM1的晶格常数A1与第一晶格常数ASC1的不同越大,则所述减小的大小就越大。晶格张力的走向随后根据横向(英文:in-plane,平面内)晶格常数AL的走向和垂直(英文:out-of-plane,平面外)晶格常数AV的走向来显示。
图1c的示图示出针对图1a中示出的太阳能电池结构的层序列的横向晶格常数AL的走向。此外,在图1d的示图中示出针对图1a中示出的太阳能电池结构的层序列的垂直晶格常数AV的走向。接下来,仅列举与前面给出的那些图的阐释的不同之处。示出的是,从横向晶格常数AL的走向中并从垂直晶格常数AV的走向中能够更准确地读出太阳能电池结构的晶格张力的走向。第二子电池SC2具有第二横向晶格常数ASC2L。在第二子电池SC2上构成如下序列:具有横向晶格常数MPA1L的第一层和具有横向晶格常数MPA2L的第二层和具有横向晶格常数MPA3L的第三层和具有第四横向晶格常数MPA4L的第四层,其中,第三层的横向晶格常数MPA3L与第四横向晶格常数MPA4L大小相同。示出的是,在这些层的序列中,横向晶格常数MPA1L、MPA2L和MPA3L逐层提高,其中,该序列的所有横向晶格常数MPA1L、MPA2L、MPA3L或MPA4L比第二横向晶格常数ASC2L更大。随后,补偿层KOM1具有第四横向晶格常数A1L并且第一子电池SC1具有第一横向晶格常数SC1L,其中,第四横向晶格常数A1L和第一横向晶格常数SC1L与第三层和第四层的横向晶格常数MPA3L和横向晶格常数MPA4L一致。
第二子电池SC2具有第二垂直晶格常数ASC2V。在第二子电池SC2上布置有如下序列:具有垂直晶格常数MPA1V的第一层和具有垂直晶格常数MPA2V的第二层和具有垂直晶格常数MPA3V的第三层和具有第四垂直晶格常数MPA4V的第四层。示出的是,在这些层的序列中,垂直晶格常数MPA1V、MPA2V、MPA3V和MPA4V逐层提高,其中,该序列的所有晶格常数MPA1V、MPA2V、MPA3V和MPA4V比第二垂直晶格常数ACS2V更大。此外,第一子电池SC1具有第一垂直晶格常数SC1AV,其中,第一垂直晶格常数SC1AV比第二垂直晶格常数ASC2V更大。此外,第四垂直晶格常数MPA4V比第一垂直晶格常数ASC1V更大。但是,补偿层KOM1具有比第一垂直晶格常数SCA1V更小的垂直晶格常数A1V。在垂直晶格常数AV的走向与晶格常数A的走向的比较中,这意味着,这些垂直晶格常数中的不同只要存在,则这些垂直晶格常数中的不同就比在自然晶格常数A的走向中更大。要注明的是,变质缓冲区的残余张力根据本发明通过一个或多个应力补偿层被至少部分地补偿。为此,应力补偿层具有比第一子电池SC1的晶格常数更小的晶格常数。此外,应力补偿层具有拉伸应力或拉应力。
图2的示图示出以三结太阳能电池形式的根据本发明的第二实施方式上的横截面,其中,光入射L穿过防反射层AR。接下来,仅阐释与前面的那些图的示图的不同。第二子电池SC2优选材料锁合地在下侧上与金属层M2连接。在第二子电池SC2与下部的隧道二极管UT之间还构造有不同的晶核形成层和/或简单(einfach)缓冲区层。上部的隧道二极管OT构造在第三子电池SC3与第一子电池SC1之间。在第三子电池SC3上布置有防反射层AR和接触中介层K1和第一材料层M1。通过下部隧道二极管UT处于变质缓冲区MP1下方的形式,这在此情况下意味着:构造具有n到p极性的太阳能电池堆叠,变质缓冲区MP1和应力补偿层KOM1是正掺杂的。优选的是,三结太阳能电池被实施为正置变质的GalnP/GalnAs/Ge三结太阳能电池。在一种未示出的实施方式中,三结太阳能电池包括半导体镜。优选地,半导体镜构造在第一子电池SC1与第二子电池SC2之间。
图3的示图示出以四结太阳能电池形式的根据本发明的第三实施方式上的横截面。接下来,仅阐释与前面的那些图的示图的区别。优选地,四结太阳能电池包括由AlGalnP/AlGalnAs/GalnAs/Ge构成的化合物序列,其中,由AlGalnP构成的混合物布置为最上面的面向入射光L的子电池。在第一子电池SC1与补偿层KOM1之间构造有半导体镜HSP。此外,在第一子电池SC1与第四子电池SC4之间构造有中间隧道二极管MT。此外,在第一子电池SC1与第三子电池SC3之间构造有第四子电池SC4。

Claims (16)

1.一种多结太阳能电池(MS),其具有:
第一子电池(SC1),所述第一子电池由化合物构成,该化合物由InGaAs构成,其中,所述第一子电池(SC1)具有第一晶格常数(ASC1);以及
第二子电池(SC2),所述第二子电池具有第二晶格常数(ASC2),其中,所述第一晶格常数(ASC1)比所述第二晶格常数(ASC2)至少大以及
变质缓冲区(MP1),其中,所述缓冲区(MP1)构造在所述第一子电池(SC1)与所述第二子电池(SC2)之间,并且所述缓冲区(MP1)具有至少三个层的序列,并且在该序列中,晶格常数朝所述第一子电池(SC1)的方向逐层提高,并且所述缓冲区的层的晶格常数大于所述第二晶格常数(ASC2),其中,所述变质缓冲区的第四层具有第四晶格常数(MP1A4),并且所述第四晶格常数(MP1A4)大于所述第一晶格常数(ASC1),
其特征在于,
在所述变质缓冲区(MP1)与所述第一子电池(SC1)之间构造有用于补偿所述变质缓冲区(MP1)的残余张力的数量为N的补偿层(KOM1,KOM2,...KOMN),并且相应的补偿层(KOM1,KOM2,...KOMN)的晶格常数(A1,A2,...AN)比第一晶格常数(ASC1)小一个数值ΔAN,其中并且所述补偿层(KOM1,KOM2,...KOMN)具有大于1%的铟含量,并且所述数量为N的补偿层(KOM1,KOM2,...KOMN)的厚度(KOMD1,KOMD2,...KOMDN)这样地选择,使得适用:
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>KOMD</mi> <mi>n</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>&amp;Delta;A</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>&gt;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>19</mn> </mrow> </msup> <msup> <mi>m</mi> <mn>2</mn> </msup> </mrow>
其中,KOMDn表示第n补偿层的厚度,所述数量N包括除零以外的自然数的集合。
2.根据权利要求1所述的多结太阳能电池(MS),其特征在于,所述数量为N的补偿层(KOM1,KOM2,...KOMN)的厚度(KOMD1,KOMD2,...KOMDN)总体上大于150nm。
3.根据权利要求1或权利要求2所述的多结太阳能电池(MS),其特征在于,相应的数量为N的补偿层(KOM1,KOM2,...KOMN)的晶格常数(A1,A2,...AN)比所述第一晶格常数(ASC1)至少小一个数值ΔAN,其中
4.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,所述数量为N的补偿层(KOM1,KOM2,...KOMN)的厚度(KOMD1,KOMD2,...KOMDN)这样地选择,使得适用:
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>KOMD</mi> <mi>n</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>&amp;Delta;A</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>&gt;</mo> <mn>2</mn> <mo>*</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>19</mn> </mrow> </msup> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>.</mo> </mrow>
5.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,所述数量为N的补偿层(KOM1,KOM2,...KOMN)的厚度(KOMD1,KOMD2,...KOMDN)这样地选择,使得适用:
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>KOMD</mi> <mi>n</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>&amp;Delta;A</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>5</mn> <mo>*</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>19</mn> </mrow> </msup> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>.</mo> </mrow>
6.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,所述补偿层(KOM1,KOM2,...KOMN)分别具有拉伸应力。
7.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,所述补偿层(KOM1,KOM2,...KOMN)分别具有由GaAs和/或GalnAs和/或AlGalnAs和/或GalnP和/或AlGalnP和/或GaAsP和/或GalnAsP构成的化合物。
8.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,所述补偿层(KOM1,KOM2,...KOMN)的铟含量比所述第一子电池(SC1)的铟含量小至少0.2%或至少0.5%。
9.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,所述补偿层(KOM1,KOM2,...KOMN)中的一部分补偿层或所有补偿层掺杂Zn。
10.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,所述补偿层(KOM1,KOM2,...KOMN)中的一部分补偿层构造为半导体镜的部件。
11.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,所述第二子电池(SC2)包含锗并且设置有第三子电池(SC3)并且所述第三子电池(SC3)具有由GalnP构成的化合物。
12.根据权利要求11所述的多结太阳能电池(MS),其特征在于,在所述第三子电池(SC3)与所述第一子电池(SC1)之间构造有第四子电池(SC4)并且所述第四子电池(SC4)包括GaAs或InGaAs或AlGalnAs的化合物。
13.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,所述第一子电池和第二子电池以正置构造或以倒置构造。
14.根据权利要求12所述的多结太阳能电池(MS),其特征在于,在具有四个子电池(SC1,SC2,SC3,SC4)的太阳能电池堆叠中分别构造有两个子电池对(SC1,SC2,SC3,SC4)并且所述两个子电池对(SC1,SC2,SC3,SC4)通过直接半导体接合彼此组合。
15.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,构造有第二变质缓冲区,并且借助所述第二变质缓冲区构造有第二补偿层。
16.根据权利要求1或2所述的多结太阳能电池(MS),其特征在于,所述补偿层不是隧道二极管的pn结的一部分。
CN201580013861.6A 2014-03-13 2015-02-16 多结太阳能电池 Active CN106104817B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14000912.7A EP2919276B1 (de) 2014-03-13 2014-03-13 Mehrfach-Solarzelle
EP14000912.7 2014-03-13
PCT/EP2015/000333 WO2015135623A1 (de) 2014-03-13 2015-02-16 Mehrfach-solarzelle

Publications (2)

Publication Number Publication Date
CN106104817A CN106104817A (zh) 2016-11-09
CN106104817B true CN106104817B (zh) 2017-09-12

Family

ID=50289348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580013861.6A Active CN106104817B (zh) 2014-03-13 2015-02-16 多结太阳能电池

Country Status (7)

Country Link
US (1) US10833215B2 (zh)
EP (1) EP2919276B1 (zh)
JP (1) JP6423020B2 (zh)
CN (1) CN106104817B (zh)
ES (1) ES2749215T3 (zh)
RU (1) RU2642524C1 (zh)
WO (1) WO2015135623A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431296B1 (ko) 2007-01-11 2014-08-20 레드 밴드 리미티드 저장 장치에 저장된 컨텐츠의 인-플레이스 업데이트 방법 및 시스템
US11563133B1 (en) 2015-08-17 2023-01-24 SolAero Techologies Corp. Method of fabricating multijunction solar cells for space applications
DE102015016822B4 (de) * 2015-12-25 2023-01-05 Azur Space Solar Power Gmbh Stapelförmige Mehrfach-Solarzelle
CN105699170A (zh) * 2016-01-22 2016-06-22 哈尔滨工业大学 一种通过地表沉降预测地下管线力学行为的方法
US10700230B1 (en) 2016-10-14 2020-06-30 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US11380813B2 (en) 2019-02-11 2022-07-05 Solaero Technologies Corp. Metamorphic solar cells
US10749053B2 (en) * 2017-03-03 2020-08-18 Solaero Technologies Corp. Distributed Bragg reflector structures in multijunction solar cells
DE102017005950A1 (de) * 2017-06-21 2018-12-27 Azur Space Solar Power Gmbh Solarzellenstapel
US20190181289A1 (en) 2017-12-11 2019-06-13 Solaero Technologies Corp. Multijunction solar cells
EP4250375A3 (en) 2018-01-17 2023-11-01 SolAero Technologies Corp. Four junction solar cell and solar cell assemblies for space applications
CN108172638A (zh) * 2018-02-11 2018-06-15 扬州乾照光电有限公司 一种三结太阳电池
RU2755630C2 (ru) * 2018-02-28 2021-09-17 Солаэро Текнолоджиз Корп. Солнечный элемент с четырьмя переходами для космических применений
EP3799136B1 (de) * 2019-09-27 2023-02-01 AZUR SPACE Solar Power GmbH Monolithische mehrfachsolarzelle mit genau vier teilzellen
CN110718599B (zh) * 2019-10-21 2021-07-16 扬州乾照光电有限公司 一种具有变质缓冲层的多结太阳能电池及制作方法
US11764326B2 (en) * 2020-08-28 2023-09-19 Alliance For Sustainable Energy, Llc Metamorphic two-junction photovoltaic devices with removable graded buffers
EP3965169B1 (de) * 2020-09-07 2023-02-15 AZUR SPACE Solar Power GmbH Stapelförmige monolithische mehrfachsolarzelle
CN112909099B (zh) * 2021-01-15 2022-04-12 中山德华芯片技术有限公司 一种双面应力补偿的太阳能电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422443A (zh) * 2009-05-11 2012-04-18 弗劳恩霍弗应用技术研究院 由应力补偿化合物半导体层构成的隧道二极管
CN103003954A (zh) * 2010-07-19 2013-03-27 瑟雷姆技术公司 具有外延生长量子点材料的太阳能电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993533A (en) * 1975-04-09 1976-11-23 Carnegie-Mellon University Method for making semiconductors for solar cells
US5221367A (en) * 1988-08-03 1993-06-22 International Business Machines, Corp. Strained defect-free epitaxial mismatched heterostructures and method of fabrication
RU2308122C1 (ru) * 2006-06-05 2007-10-10 Институт физики полупроводников Сибирского отделения Российской академии наук Каскадный солнечный элемент
US20120138130A1 (en) * 2009-05-11 2012-06-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Tunnel diodes comprising stress-compensated compound semiconductor layers
KR101108245B1 (ko) * 2010-03-24 2012-01-31 광주과학기술원 화합물 반도체 태양 전지의 제조 방법
US10170652B2 (en) * 2011-03-22 2019-01-01 The Boeing Company Metamorphic solar cell having improved current generation
CN102569475B (zh) * 2012-02-08 2014-05-14 天津三安光电有限公司 一种四结四元化合物太阳能电池及其制备方法
EP2650930A1 (de) 2012-04-12 2013-10-16 AZURSPACE Solar Power GmbH Solarzellenstapel
US20130327378A1 (en) * 2012-06-07 2013-12-12 Emcore Solar Power, Inc. Radiation resistant inverted metamorphic multijunction solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422443A (zh) * 2009-05-11 2012-04-18 弗劳恩霍弗应用技术研究院 由应力补偿化合物半导体层构成的隧道二极管
CN103003954A (zh) * 2010-07-19 2013-03-27 瑟雷姆技术公司 具有外延生长量子点材料的太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIGHEST EFFICIENCY MULTI-JUNCTION SOLAR CELL FOR TERRESTRIAL AND SPACE APPLICATIONS;Andreas W.bett et al.;《24th European Photovoltaic Solar Energy Conference》;20090925;第1-5页 *

Also Published As

Publication number Publication date
CN106104817A (zh) 2016-11-09
US10833215B2 (en) 2020-11-10
ES2749215T3 (es) 2020-03-19
JP2017511001A (ja) 2017-04-13
RU2642524C1 (ru) 2018-01-25
EP2919276B1 (de) 2019-07-10
EP2919276A1 (de) 2015-09-16
US20160380142A1 (en) 2016-12-29
JP6423020B2 (ja) 2018-11-14
WO2015135623A1 (de) 2015-09-17

Similar Documents

Publication Publication Date Title
CN106104817B (zh) 多结太阳能电池
US10263129B2 (en) Multijunction photovoltaic device having SiGe(Sn) and (In)GaAsNBi cells
US8143513B2 (en) Solar cell with superlattice structure and fabricating method thereof
CN106887481B (zh) 多结太阳能电池
US9153724B2 (en) Reverse heterojunctions for solar cells
US9437769B2 (en) Four-junction quaternary compound solar cell and method thereof
CN107039557B (zh) 堆叠状的多结太阳能电池
WO2012154455A1 (en) Window structure for solar cell
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
CN105097977B (zh) 多结太阳能电池外延结构
JP6355608B2 (ja) 統合されたスタック状の4接合太陽電池
TWI593126B (zh) 太陽能電池的單片光伏打接面及其製造方法、太陽能電池及其製造方法、光伏打系統及在光伏打接面中提供延長之吸收邊緣的方法
CN105590983B (zh) 太阳能电池叠堆
US8878048B2 (en) Solar cell structure including a silicon carrier containing a by-pass diode
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
CN101304051A (zh) 具渐变式超晶格结构的太阳电池
CN105304739B (zh) 太阳能电池叠堆
CN112117344A (zh) 一种太阳能电池以及制作方法
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
TWI409959B (zh) 太陽能電池元件及其裝置
CN101908581B (zh) 磷化镓铝应力补偿的砷化铟量子点太阳电池制作方法
CN105097979B (zh) 太阳能电池组
CN102779890A (zh) 一种倒置三结太阳能电池及其制造方法
CN207834310U (zh) 一种三结太阳电池
Ekins‐Daukes III‐V solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant