RU2642524C1 - Многопереходный солнечный элемент - Google Patents

Многопереходный солнечный элемент Download PDF

Info

Publication number
RU2642524C1
RU2642524C1 RU2016140167A RU2016140167A RU2642524C1 RU 2642524 C1 RU2642524 C1 RU 2642524C1 RU 2016140167 A RU2016140167 A RU 2016140167A RU 2016140167 A RU2016140167 A RU 2016140167A RU 2642524 C1 RU2642524 C1 RU 2642524C1
Authority
RU
Russia
Prior art keywords
sub
lattice constant
solar cell
junction solar
layers
Prior art date
Application number
RU2016140167A
Other languages
English (en)
Inventor
Вольфганг ГУТЭР
Маттиас МОЙЗЕЛЬ
Франк ДИМРОТ
Ларс ЭБЕЛЬ
Рене КЕЛЛЕНБЕНЦ
Original Assignee
АЦУР СПЭЙС Золяр Пауер ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by АЦУР СПЭЙС Золяр Пауер ГмбХ filed Critical АЦУР СПЭЙС Золяр Пауер ГмбХ
Application granted granted Critical
Publication of RU2642524C1 publication Critical patent/RU2642524C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Многопереходной солнечный элемент включает первый субэлемент, состоящий из соединения из InGaAs, причем первый субэлемент имеет первую постоянную решетки, и второй субэлемент со второй постоянной решетки, причем первая постоянная решетки по меньшей мере на 0,008
Figure 00000011
больше, чем вторая постоянная решетки, и, кроме того, предусмотрен метаморфный буфер, который выполнен между первым субэлементом и вторым субэлементом. Буфер содержит последовательность по меньшей мере из трех слоев, постоянная решетки у этой последовательности увеличивается по направлению к первому субэлементу. Постоянные решетки слоев буфера больше, чем вторая постоянная решетки, один слой буфера имеет третью постоянную решетки, которая больше, чем первая постоянная решетки. Между метаморфным буфером и первым субэлементом выполнено N компенсирующих слоев для компенсации остаточного напряжения метаморфного буфера. Постоянные решетки соответствующих компенсирующих слоев меньше, чем первая постоянная решетки на величину ΔАN>0,0008

Description

Изобретение относится к многопереходному солнечному элементу в соответствии с ограничительной частью п. 1 формулы изобретения.
Из публикации «Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight». Гутер и др. [Applied Physics Letters 94, 223504 (2009)], известен многопереходный солнечный элемент (англ. multi-junction solar cell). В раскрытой структуре речь идет о метаморфном Ga0.35In0.65P/Ga0.83In0.17As/Ge трехпереходном солнечном элементе с высоким коэффициентом полезного действия. Между Ge подложкой или, соответственно, Ge субэлементом и Ga0.83In0.17As субэлементом используется метаморфный буфер из GaYIn1-YAs. В данном случае метаморфный буфер состоит из семи GaInAs слоев толщиной 200 нм с постепенно увеличивающимся содержанием индия, причем в то же время увеличивается и постоянная решетки. В последнем слое буфера, так называемом избыточном слое (англ. overshoot), использовано здесь повешенное содержание индия в 20% или, соответственно, большая постоянная решетки, чем в расположенном над ним Ga0.83In0.17As субэлементе. Это является необходимым, чтобы создать напряжение, которое приводит к ослаблению лежащих ниже слоев метаморфного буфера до желаемой постоянное решетки.
Кроме того, из публикации ((Evolution of а 2.05 eV AlGaInP top sub-cell for 5 and 6J-IMM applications» Корнфилд и др., Страницы, Seite, 2788-2791, in: Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, ISBN:978-1-4673-0064-3, известна компоновка метаморфных буферов в инвертированном многопереходном солнечном элементе (англ. inverted metamorphic, IMM) с количеством субэлементов вплоть до шести. Кроме того, из ЕР 2251912 А1 известна структура туннельного диода со слоями с различными напряжениями и несколькими солнечными элементами и одним метаморфным буфером.
Из EP 2650930 A1 известен четырехпереходный солнечный элемент, состоящий из одного верхнего GaInP/GaAs двухпереходного солнечного элемента, присоединенного (англ. bonded) на нижний метаморфный GaInAs/Ge двухпереходный солнечный элемент.
Для полноты картины следует отметить, что в данном случае под термином метаморфный многопереходный солнечный элемент понимают многокаскадный солнечный элемент, который имеет по меньшей мере один метаморфный буферный слой между двумя субэлементами (англ. subcell) каскадных солнечных элементов. Следует также отметить, что при эпитаксии III-V многопереходного солнечного элемента используют так называемый метаморфный буфер, чтобы иметь возможность более качественного осаждения на эти буферы полупроводниковых слоев из материалов с более высокой постоянной решетки, чем у подложки. За счет метаморфного буфера в процессе эпитаксии также формируется так называемая виртуальная подложка с более высокой постоянной решетки, чем у первоначальной подложки. Полупроводниковые слои с такой же постоянной решетки, как у виртуальной подложки, в дальнейшем могут быть более качественно осаждены. Применение метаморфного буфера предоставляет возможность более широкого спектра при выборе материалов для различных субэлементов у многопереходных солнечных элементов. В частности, за счет этого осуществляются комбинации материалов, которые обещают больший коэффициент полезного действия для многопереходного солнечного элемента.
Проблема, связанная с использованием метаморфного буфера, состоит во внутреннем остаточном напряжении. В зависимости от гибкости применяемой подложки остаточное напряжение приводит к нежелательному искривлению полупроводниковой пластины (англ. плата). В частности, при производстве на обычных Ge-подложках с толщиной менее 190 мкм выявляются, например, значительные эффекты искривления.
Искривление полупроводниковой пластины, кроме прочего, уже в процессе эпитаксии по причине температурных эффектов приводит к неоднородным свойствам слоя. Дальнейшая обработка такой полупроводниковой пластины будет затруднена, и снижается выход продукции и, таким образом, значительно увеличивается стоимость.
Кроме того, у космических солнечных элементов с типичной площадью более 20 см2 к нежелательным техническим характеристикам продукта.
В связи с вышеизложенным задача изобретения состоит в том, чтобы предоставить устройство, которое обеспечивает дальнейшее развитие уровня техники.
Задачу изобретения решают при помощи многопереходного солнечного элемента с признаками п. 1 формулы изобретения. Предпочтительные варианты осуществления изобретения представлены в зависимых пунктах.
В соответствии с предметом настоящего изобретения представлена многопереходная солнечная батарея, содержащая многопереходный солнечный элемент, включающий первый субэлемент из соединения InGaAs, причем первый субэлемент имеет первую постоянную решетки и второй субэлемент предусмотрен со второй постоянной решетки, причем первая постоянная решетки по меньшей мере на 0,008
Figure 00000001
больше, чем вторая постоянная решетки, и дополнительно предусмотрен метаморфный буфер, причем буфер выполнен между первым субэлементом и вторым субэлементом, и метаморфный буфер включает последовательность по меньшей мере из трех слоев, и постоянная решетки у этой последовательности увеличивается от слоя к слою по направлению к первому субэлементу, и причем постоянные решетки слоев буфера больше, чем вторая постоянная решетки, и причем один слой метаморфного буфера имеет третью постоянную решетки и третья постоянная решетки больше, чем первая постоянная решетки, и между метаморфным буфером и первым субэлементом выполнено количество N компенсирующих слоев для выравнивания остаточного напряжения метаморфного слоя, и постоянные решетки соответствующих компенсирующих слоев меньше, чем первая постоянная решетки на величину ΔAN>0,0008
Figure 00000001
, и компенсирующие слои имеют содержание индия более 1%, и толщины количества N компенсирующих слоев выбраны таким образом, что справедливо:
Figure 00000002
Следует отметить, что растягивающее напряжение приводит к выпуклому изгибу, а, соответственно, сжимающее напряжение приводит к вогнутому изгибу полупроводниковой подложки или, соответственно, полупроводниковой пластины и многопереходный солнечный элемент состоит предпочтительно из III-V полупроводникового материала. При этом под термином «растягивающее напряжение» понимают напряжение при растяжении, а под термином «сжимающее напряжение» - напряжение при сжатии. Далее следует отметить, что количество N включает множество натуральных чисел за исключение нуля или, говоря другими словами, что формируется по меньшей мере один компенсирующий слой.
Преимущество формирования компенсирующего слоя или нескольких компенсирующих слоев состоит в том, что таким образом значительно снижается искривление полупроводниковой пластины, вызванное, в частности, метаморфным буфером. Исследования показали, что за счет введения компенсирующего слоя повышается выход при производстве многопереходного солнечного элемента и снижаются производственные расходы. Далее предпочтительно, чтобы компенсирующий слой был выполнен за последним слоем метаморфного буфера, и предпочтительно перед осаждением следующего субэлемента. Другими словами, предпочтительно, чтобы компенсирующий слой был выполнен после так называемого избыточного („overshoot”) слоя буфера. При этом, из соображений пониженного расхода материалов, предпочтительное конструктивное исполнение заключается в том, чтобы соединить компенсирующий слой с последним слоем метаморфного буфера с материальным замыканием. Далее было отмечено, что согласно приведенной выше формуле величина выравнивания, как величина возврата напряжения, зависит непосредственно от разницы в постоянной решетки компенсирующего слоя в сравнении с первой постоянной решетки, умноженной на толщину компенсирующего слоя. Исследования, проведенные заявителем, показали, что в некоторой степени компенсирующее (выравнивающее) напряжение важно для достижения снижения искривления платы. Желательным является снижение напряжения на 20%.
Для полноты картины следует отметить, что постоянная решетки субэлемента установлена равной постоянной решетки самого толстого слоя субэлемента. Как правило, в случае самого толстого слоя субячейки речь идет об одном из абсорбирующих слоев субячейки. В промышленных многопереходных солнечных элементах, которые обычно обладают n-р-полярностью, самым толстым слоем обычно является положительно легированный (акцепторной примесью) слой базы pn-перехода соответствующего субэлемента.
Кроме того, введение компенсирующих напряжение слоев имеет то преимущество, что постоянная решетки выполненных при помощи метаморфного буфера так называемых виртуальных подложек после осаждения компенсирующих напряжение слоев, в значительной степени «замораживается». Без компенсирующих напряжение слоев самопроизвольные отклонения или, соответственно, производственные колебания в составе осаждаемых впоследствии слоев, в частности относительно толстых абсорбирующих слоев субэлементов, могут привести к дальнейшему сжимающему напряжению и таким образом ослаблению слоев метаморфного буфера. Это означало бы нежелательное увеличение постоянной решетки виртуальной подложки. За счет введения слоев, компенсирующих напряжение, однако, остаточное напряжение метаморфного буфера сильно снижается, вследствие чего вероятность дальнейшего самопроизвольного ослабления метаморфного буфера значительно снижается. Таким образом введение компенсирующих напряжение слоев также обеспечивает широкий диапазон параметров процесс, или, соответственно, большое допустимое отклонение процесса осаждения по отношению к производственным колебаниям в составе слоев, осаждаемых на метаморфный буфер.
В другом варианте осуществления изобретения толщины количества N компенсирующих слоев вместе, т.е. в сумме больше чем 150 нм. Исследования показали, что заметная компенсация напряжения метаморфного слоя происходит при общей толщине более чем 150 нм. Предпочтительно, чтобы постоянные решеток количества N компенсирующих слоев были по меньшей мере на величину ΔAN>0,002
Figure 00000001
меньше, чем первая постоянная решетки. Исследования показали, что при ΔAN<0,002
Figure 00000001
для реализации наиболее возможной высокой компенсации понадобится такая высокая общая толщина компенсирующих слоев, что это в значительной степени негативно повлияет на экономическую эффективность производства.
В альтернативном варианте осуществления значение ΔAN<0,002
Figure 00000001
, причем компенсирующие напряжение слои выполнены как слои полупроводникового или брэгговского зеркала. Говоря другими словами, в представленном случае компенсирующие напряжение слои имеют двойную функцию.
В другом варианте осуществления показано, что толщины количества N компенсирующих слоев выбраны таким образом, что справедливо:
Figure 00000003
В частности, с увеличением разницы постоянных решетки, при толщинах слоев ниже 1 мкм, таким образом добиваются по меньшей мере 20% компенсации растягивающего напряжения, источником которого служит, в основном, буфер.
В другом варианте осуществления показано, что толщины количества N компенсирующих слоев выбраны таким образом, что справедливо:
Figure 00000004
Исследования показали, что выше этих значений вероятность образования трещин в компенсирующих слоях значительно возрастает.
В другом варианте осуществления задано, что компенсирующие слои имеют растягивающее напряжение и горизонтальная постоянная решетки (англ. in-plane lattice constant) компенсирующего слоя больше вертикальной постоянной решетки (engl. out-of-plane lattice constant). Под горизонтальной постоянной решетки подразумевают постоянную решетки в основной плоскости, в которой простирается компенсирующий слой. Другими словами, каждый отдельный компенсирующий слой имеет соответственно анизотропную постоянную решетки. В альтернативном варианте осуществления компенсирующие слои, соответственно, имеют соединение из GaAs, и/или GaInAs, и/или AlGaInAs, и/или GaInP, и/или AlGaInP, и/или GaAsP, и/или GaInAsP.
В другом варианте осуществления содержание индия в компенсирующем слое на 0,2% или на 0,5% меньше содержания индия в первом субэлементе. Понятно, что высокое содержание индия оказывает значительное влияние на постоянные решетки. Далее предпочтительно, чтобы часть компенсирующих слоев или все компенсирующие слои были легированы Zn. Особенно предпочтительно, если легирование цинком составляет более 1014 см-3
В другом варианте осуществления часть компенсирующих слоев или все компенсирующие слои выполнены как часть полупроводникового зеркала. Предпочтительно, что при наличии двойной функциональности слоев общая толщина многопереходного солнечного элемента может быть снижена. В предпочтительном варианте осуществления второй субэлемент содержит германий. Кроме того, предусмотрен третий субэлемент, причем третий субэлемент включает соединение из GaInP. Кроме того, предпочтительно, между третьим субэлементом и первым субэлементом выполнен четвертый субэлемент, причем четвертый субэлемент включает соединение GaAs, или InGaAs, или AlGaInAs.
Исследования показали, что субэлементы могут быть выполнены как в прямой, так и в обратной компоновке. При этом, под прямой компоновкой понимают, что в течение эпитаксиального производственного процесса субэлемент, осажденный в последнюю очередь, является самым верхним субэлементом многопереходного солнечного элемента. В данном случае под самым верхним субэлементом понимается тот субэлемент, который расположен ближе всего к солнцу и имеет среди всех субэлементов самую большую ширину запрещенной зоны. Под обратной компоновкой понимают, что субэлемент, осажденный в течение эпитаксиального процесса осаждения, в первую очередь является самым верхним субэлементом многопереходного солнечного элемента. Другими словами, в случае прямой компоновки первый субэлемент с большей постоянной решетки имеет большую ширину запрещенной зоны, чем ширина запрещенной зоны второго субэлемента с меньшей постоянной решетки. В случае обратной компоновки первый субэлемент с большей постоянной решетки имеет меньшую ширину запрещенной зоны, чем ширина запрещенной зоны второго субэлемента с меньшей постоянной решетки.
В другом варианте осуществления при компоновке из четырех субэлементов выполнены соответственно две пары субэлементов, причем между двумя парами субэлементов существует соединение с материальным замыканием за счет полупроводниковой связи. При этом особенно предпочтительно, чтобы осуществлялась компенсация напряжения решетки, так как процесс связывания имеет лишь небольшое допустимое отклонение по отношению к искривлению сопрягаемых плат или, соответственно, полупроводниковых пластин. В одной из форм исполнения особенно предпочтительно, чтобы многопереходный солнечный элемент представлял собой GaInP/GaAs/GaInAs/Ge четырехпереходный солнечный элемент, состоящий из двух соединенных прямой полупроводниковой связью двухпереходных солнечных элементов, одна из которых представляет собой метаморфный GaInAs/Ge двухпереходный солнечный элемент с прямой [компоновкой].
В другом варианте осуществления выполнен второй или третий метаморфный буфер, причем у одиночного буфера выполнен другой(дополнительный), т.е. второй или третий компенсирующий слой, и каждый из компенсирующих слоев расположен между метаморфным буфером и соседним субэлементом с наибольшей постоянной решетки. Следует отметить, что компенсирующий слой не является частью р-n-перехода туннельного диода.
Далее изобретение описывается более подробно со ссылкой на прилагаемые чертежи. При этом, схожие части обозначены идентичными позициями. Изображенные варианты осуществления представлены весьма схематично, т.е расстояния и горизонтальные и вертикальное протяженности изображены не в масштабе, и имеют, и, если не указано иное, не имеют установленных геометрических отношений друг по отношению к другу.
Показано:
Фиг. 1а - поперечное сечение многопереходного солнечного элемента согласно первому варианту осуществления изобретения,
Фиг. 1b - показана зависимость постоянной решетки от последовательности слоев структуры солнечного элемента, представленных на Фиг. 1а,
Фиг. 1c - показана зависимость горизонтальной постоянной решетки от последовательности слоев структуры солнечного элемента, представленных на Фиг. 1а,
Фиг. 1d - показана зависимость вертикальной постоянной решетки от последовательности слоев структуры солнечного элемента, представленных на Фиг. 1а,
Фиг. 2 - поперечное сечение трехпереходного солнечного элемента согласно второму варианту осуществления изобретения,
Фиг. 3 - поперечное сечение четырехпереходного солнечного элемента согласно второму варианту осуществления изобретения.
Изображение на фиг. 1а показывает поперечное сечение многопереходного солнечного элемента MS согласно первому варианту осуществления изобретения с первым субэлементом SC1. Первый субэлемент SC1 расположен на единственном компенсирующем слое КОМ1. Следует однако отметить, что в непоказанном альтернативном варианте осуществления, вместо одного единственного компенсирующего слоя образовано множество из N отдельных компенсирующих слоев. Кроме того, компенсирующий слой КОМ1 расположен сверху на метаморфном буфере МР1, причем буфер МР1 расположен сверху на втором субэлементе SC2. Буфер включает последовательность непоказанных слоев.
На фиг. 1b представлена зависимость постоянной решетки от последовательности слоев структуры солнечного элемента, показанного на фиг. 1а. Далее поясняются только отличия от изображения на фиг. 1а. Следует отметить, что в данном случае под постоянной решетки А всегда понимают так называемую натуральную постоянную. Второй субэлемент SC2 имеет вторую постоянную решетки ASC2. На втором субэлементе расположена последовательность из первого слоя с постоянной решетки МРА1, и второго слоя с постоянной решетки МРА2, и третьего слоя с постоянной решетки МРА3, и четвертого слоя с постоянной решетки МРА4. Показано, что постоянные решетки МРА1, МРА2, МРА3 и МРА4 у последовательности слоев возрастает от слоя к слою, причем все постоянные решетки МРА1, МРА2, МРА3 и МРА4 последовательности больше, чем вторая постоянная решетки ASC2. Кроме того, четвертая постоянная решетки МРА4 больше, чем первая постоянная решетки ASC1. При этом четвертый слой называют «избыточным» слоем. Компенсирующий слой КОМ1 имеет меньшую постоянную решетки А1, чем первая постоянная решетки SCA1. Само собой разумеется, что избыточный слой обладает сжимающим напряжением и передает напряжение на полупроводниковую пластину.
Только при введении компенсирующего слоя КОМ1 и образовании и образовании меньшей по сравнению с первой постоянной решетки ASC1 постоянной решетки А1 возможно добиться компенсации (выравнивания), т.е. снижения напряжения решетки. При этом величина снижения тем выше, чем больше толщина KOMD1 компенсирующего слоя КОМ1 и чем больше отличие постоянной решетки А1 компенсирующего слоя КОМ1 по сравнению с первой постоянной решетки ASC1. Характер кривой напряжения решетки далее показан на основе характера кривой горизонтальной (in-plane) постоянной решетки AL и характере кривой вертикальной (out-of-plane) постоянной решетки AV.
Изображение на фиг. 1с показывает характеристику кривой горизонтальной постоянной решетки AL для последовательности слоев структуры солнечного элемента, представленного на фиг. 1а. Кроме того, на фиг. 1d показана характеристика кривой вертикальной постоянной решетки AV для последовательности слоев структуры солнечного элемента, представленного на фиг. 1а. Видно, что из характеристики кривой горизонтальной постоянной решетки AL и из характеристики кривой вертикальной постоянной решетки AV может быть более точно воспроизведена характеристика кривой напряжения решетки для структуры солнечного элемента. Второй субэлемент SC2 имеет вторую горизонтальную постоянную решетки ASC2L. На втором субэлементе выполнена последовательность из первого слоя с горизонтальной постоянной решетки MPA1L, и второго слоя с горизонтальной постоянной решетки MPA2L, и третьего слоя с горизонтальной постоянной решетки MPA3L, и четвертого слоя с горизонтальной постоянной решетки MPA4L, причем горизонтальная постоянная решетки MPA3L третьего слоя имеет ту же величину, что и четвертая горизонтальная постоянная решетки MPA4L. Показано, что горизонтальные постоянные решеток MPA1L, MPA2L и MPA3L у последовательности слоев возрастают от слоя к слою, причем все горизонтальные постоянные решеток MPA1L, MPA2L и MPA3L или, соответственно, MPA4L последовательности больше, чем вторая горизонтальная постоянная решетки ASC2L. Далее, компенсирующий слой КОМ1 имеет четвертую горизонтальную постоянную решетки A1L и первый субэлемент SC1 имеет первую горизонтальную постоянную решетки SC1L, причем четвертая горизонтальная постоянная решетки A1L, и первая горизонтальная постоянная решетки SC1L, и горизонтальная постоянная решетки MPA3L, и горизонтальная постоянная решетки MPA4L третьего и четвертого слоев совпадают.
Второй субэлемент SC2 имеет вторую вертикальную постоянную решетки ASC2V. На втором субэлементе расположена последовательность из первого слоя с вертикальной постоянной решетки MPA1V, и второго слоя с вертикальной постоянной решетки MPA2V, и третьего слоя с вертикальной постоянной решетки MPA3V, и четвертого слоя с вертикальной постоянной решетки MPA4V. Показано, что вертикальные постоянные решеток MPA1V, MPA2V, MPA3V и MPA4V у последовательности слоев, возрастают от слоя к слою, причем все вертикальные постоянные решеток MPA1V, MPA2V, MPA3V и MPA4V последовательности больше, чем вторая вертикальная постоянная решетки ASC2V. Кроме того, первый субэлемент SC1 имеет первую вертикальную постоянную решетки SC1AV, причем первая вертикальная постоянная решетки SC1AV больше, чем вторая вертикальная постоянная решетки ASC2V. Далее, четвертая вертикальная постоянная решетки MPA4V больше, чем первая вертикальная постоянная решетки ASC1V. К тому же, компенсирующий слой КОМ1 имеет вертикальную постоянную решетки A1V, которая меньше, чем первая вертикальная постоянная решетки SCA1V. При сравнении характеристики кривой вертикальной постоянной решетки AV с характеристикой кривой постоянной решетки А это означает, что различие в вертикальных постоянных, при наличии, существенно больше, чем у характеристики кривой натуральной постоянной решетки А. Было отмечено, что остаточное напряжение метаморфного буфера, по меньшей мере частично, компенсируется, согласно изобретению, за счет одного или нескольких слоев, компенсирующих напряжение. Для этого компенсирующий напряжение слой имеет постоянную решетки, которая меньше, чем постоянная решетки первого субэлемента SC1. Далее, компенсирующий напряжение слой имеет растягивающее напряжение, или, соответственно, тянущее напряжение.
Изображение на фиг. 2 показывает поперечное сечение трехпереходного солнечного элемента согласно второму варианту осуществления изобретения, причем падение света L происходит через антирефлексный (просветляющий) слой AR. Далее описываются лишь отличия от изображений на предыдущих фигурах. Второй субэлемент SC2 своей нижней стороной связан, предпочтительно, с материальным замыканием с металлическим слоем М2. Между вторым субэлементом SC2 и нижним туннельным диодом UT выполнены дополнительно различные кристализационные слои и/или простые буферные слои. Верхний туннельный диод ОТ выполнен между третьим субэлементом SC3 и между первым субэлементом SC1. Антирефлексный слой AR и контактный слой K1 и металлический слой M1 выполнены размещенными на третьем субэлементе SC3. Так как нижний туннельный диод UT лежит под метаморфным буфером МР1, в данном контексте это значит, что формируется каскадный солнечный элемент, обладающий n-р-полярностью, так что метаморфный буфер МР1 и компенсирующий напряжение слой КОМ1 являются положительно легированными (акцепторной примесью). Предпочтительно, трехпереходный солнечный элемент выполнен как метаморфный GaInP/GaInAs/Ge трехпереходный солнечный элемент с прямой компоновкой. В непредставленном варианте осуществления трехпереходный солнечный элемент включает полупроводниковое зеркало. Предпочтительно, полупроводниковое зеркало свормировано между первым субэлементом SC1 и вторым субэлементом SC2.
Изображение на фиг. 3 показывает поперечное сечение четырехпереходного солнечного элемента согласно третьему варианту осуществления изобретения. Далее описываются лишь отличия от изображений на предыдущих фигурах. Предпочтительно, четырехпереходный солнечный элемент имеет последовательность соединений из AlGaInP/AlGaInAs/GaInAs/Ge, причем соединение из AlGaInP выполнено как самый верхний субэлемент, обращенный к падающему свету L. Между первым субэлементом SC1 и компенсирующим слоем КОМ1 выполнено полупроводниковое зеркало HSP. Кроме того, между первым субэлементом SC1 и четвертым субэлементом SC4 выполнен средний туннельный диод МТ. Кроме того, между первым субэлементом SC1 и третьим субэлементом SC3 выполнен четвертый субэлемент.

Claims (25)

1. Многопереходный солнечный элемент (MS), включающий
первый субэлемент (SC1), состоящий из соединения из InGaAs, причем первый субэлемент (SC1) имеет первую постоянную решетки (ASC1), и
второй субэлемент (SC2) со второй постоянной решетки (ASC2), причем первая постоянная решетки (ASC1) по меньшей мере на
Figure 00000005
больше, чем вторая постоянная решетки (ASC2), и
метаморфный буфер (МР1), причем буфер (МР1) выполнен между первым субэлементом (SC1) и вторым субэлементом (SC2), и буфер (МР1) включает последовательность по меньшей мере из трех слоев, и постоянная решетки при этой последовательности увеличивается от слоя к слою по направлению к первому субэлементу (SC1), и постоянные решетки слоев буфера больше, чем вторая постоянная решетки (ASC2), и причем один слой метаморфного буфера имеет четвертую постоянную решетки (МР1А4) и четвертая постоянная решетки (МР1А4) больше, чем первая постоянная решетки (ASC1),
отличающийся тем, что
между метаморфным буфером (МР1) и первым субэлементом (SC1) выполнено количество N компенсирующих слоев (KOM1, КОМ2, … KOMN) для компенсации остаточного напряжения метаморфного буфера (МР1), и постоянные решетки (A1, А2, … AN) соответствующих компенсирующих слоев (КОМ1, КОМ2, … KOMN) меньше, чем первая постоянная решетки (ASC1) на величину
Figure 00000006
, и компенсирующие слои (KOM1, КОМ2, … KOMN) имеют содержание индия более 1%, и толщины (KOMD1, KOMD2, … KOMDN) количества N компенсирующих слоев (KOM1, КОМ2, … KOMN) выбраны таким образом, что справедливо:
Figure 00000007
2. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что толщины (KOMD1, KOMD2, … KOMDN) количества N компенсирующих слоев (KOM1, КОМ2, … KOMN) в сумме составляют больше чем 150 нм.
3. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что постоянные решетки (A1, А2, … AN) соответствующего количества N компенсирующих слоев (KOM1, КОМ2, … KOMN) по меньшей мере на величину
Figure 00000008
меньше, чем первая постоянная решетки (ASC1).
4. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что толщины (KOMD1, KOMD2, … KOMDN) количества N компенсирующих слоев (KOM1, КОМ2, … KOMN) выбраны таким образом, что справедливо:
Figure 00000009
5. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что толщины (KOMD1, KOMD2, … KOMDN) количества N компенсирующих слоев (KOM1, КОМ2, … KOMN) выбраны таким образом, что справедливо:
Figure 00000010
6. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что компенсирующие слои (KOM1, КОМ2, … KOMN) в каждом случае обладают растягивающим напряжением.
7. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что компенсирующие слои (KOM1, КОМ2, … KOMN) в каждом случае содержат соединение из GaAs, и/или GaInAs, и/или AlGaInAs, и/или GaInP, и/или AlGaInP, и/или GaAsP, и/или GaInAsP.
8. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что содержание индия компенсирующих слоев (КОМ1, КОМ2, … KOMN) по меньшей мере на 0,2% или по меньшей мере на 0,5% меньше, чем содержание индия первого субэлемента (SC1).
9. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что часть или все компенсирующие слои (KOM1, КОМ2, … KOMN) легированы Zn.
10. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что часть компенсирующих слоев (KOM1, КОМ2, … KOMN) выполнена как часть полупроводникового зеркала.
11. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что второй субэлемент (SC2) содержит германий, и дополнительно предусмотрен третий субэлемент (SC3), и третий субэлемент (SC3) содержит соединение из GaInP.
12. Многопереходный солнечный элемент (MS) по п. 11, отличающийся тем, что между третьим субэлементом (SC3) и первым субэлементом (SC1) дополнительно выполнен четвертый субэлемент (SC4) и четвертый субэлемент (SC4) включает соединение GaAs или InGaAs или AlGaInAs.
13. Многопереходный солнечный элемент (MS) по п. 12, отличающийся тем, что субэлементы (SC1, SC2, SC3, SC4) выполнены в прямой компоновке или в обратной компоновке.
14. Многопереходный солнечный элемент (MS) по п. 12, отличающийся тем, что в случае каскадных солнечных элементов с четыремя субэлементами (SC1, SC2, SC3, SC4) в каждом случае выполнены две пары субэлементов (SC1, SC2, SC3, SC4), и указанные две пары субэлементов (SC1, SC2, SC3, SC4) соединены друг с другом посредством прямой полупроводниковой связи.
15. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что дополнительно выполнен второй метаморфный буфер и со вторым метаморфным буфером выполнено второе количество компенсирующих слоев.
16. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что компенсирующие слои не являются частью р-n-перехода туннельного диода.
17. Многопереходный солнечный элемент (MS) по одному из пп. 1-16, отличающийся тем, что количество N содержит множество натуральных чисел, исключая ноль.
RU2016140167A 2014-03-13 2015-02-16 Многопереходный солнечный элемент RU2642524C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14000912.7A EP2919276B1 (de) 2014-03-13 2014-03-13 Mehrfach-Solarzelle
EP14000912.7 2014-03-13
PCT/EP2015/000333 WO2015135623A1 (de) 2014-03-13 2015-02-16 Mehrfach-solarzelle

Publications (1)

Publication Number Publication Date
RU2642524C1 true RU2642524C1 (ru) 2018-01-25

Family

ID=50289348

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016140167A RU2642524C1 (ru) 2014-03-13 2015-02-16 Многопереходный солнечный элемент

Country Status (7)

Country Link
US (1) US10833215B2 (ru)
EP (1) EP2919276B1 (ru)
JP (1) JP6423020B2 (ru)
CN (1) CN106104817B (ru)
ES (1) ES2749215T3 (ru)
RU (1) RU2642524C1 (ru)
WO (1) WO2015135623A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2755630C2 (ru) * 2018-02-28 2021-09-17 Солаэро Текнолоджиз Корп. Солнечный элемент с четырьмя переходами для космических применений

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431296B1 (ko) 2007-01-11 2014-08-20 레드 밴드 리미티드 저장 장치에 저장된 컨텐츠의 인-플레이스 업데이트 방법 및 시스템
US11563133B1 (en) 2015-08-17 2023-01-24 SolAero Techologies Corp. Method of fabricating multijunction solar cells for space applications
DE102015016822B4 (de) * 2015-12-25 2023-01-05 Azur Space Solar Power Gmbh Stapelförmige Mehrfach-Solarzelle
CN105699170A (zh) * 2016-01-22 2016-06-22 哈尔滨工业大学 一种通过地表沉降预测地下管线力学行为的方法
US11380813B2 (en) 2019-02-11 2022-07-05 Solaero Technologies Corp. Metamorphic solar cells
US10700230B1 (en) 2016-10-14 2020-06-30 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10749053B2 (en) * 2017-03-03 2020-08-18 Solaero Technologies Corp. Distributed Bragg reflector structures in multijunction solar cells
DE102017005950A1 (de) * 2017-06-21 2018-12-27 Azur Space Solar Power Gmbh Solarzellenstapel
US20190181289A1 (en) 2017-12-11 2019-06-13 Solaero Technologies Corp. Multijunction solar cells
EP3923349B1 (en) 2018-01-17 2023-07-19 SolAero Technologies Corp. Four junction solar cell and solar cell assemblies for space applications
CN108172638B (zh) * 2018-02-11 2024-06-21 扬州乾照光电有限公司 一种三结太阳电池
EP3799136B1 (de) * 2019-09-27 2023-02-01 AZUR SPACE Solar Power GmbH Monolithische mehrfachsolarzelle mit genau vier teilzellen
CN110718599B (zh) * 2019-10-21 2021-07-16 扬州乾照光电有限公司 一种具有变质缓冲层的多结太阳能电池及制作方法
US11764326B2 (en) * 2020-08-28 2023-09-19 Alliance For Sustainable Energy, Llc Metamorphic two-junction photovoltaic devices with removable graded buffers
EP3965169B1 (de) * 2020-09-07 2023-02-15 AZUR SPACE Solar Power GmbH Stapelförmige monolithische mehrfachsolarzelle
CN112909099B (zh) * 2021-01-15 2022-04-12 中山德华芯片技术有限公司 一种双面应力补偿的太阳能电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2308122C1 (ru) * 2006-06-05 2007-10-10 Институт физики полупроводников Сибирского отделения Российской академии наук Каскадный солнечный элемент
WO2011118902A1 (en) * 2010-03-24 2011-09-29 Gwangju Institute Of Science And Technology Method for fabricating metamorphic compound semiconductor solar cell
US20120138130A1 (en) * 2009-05-11 2012-06-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Tunnel diodes comprising stress-compensated compound semiconductor layers
CN102569475A (zh) * 2012-02-08 2012-07-11 天津三安光电有限公司 一种四结四元化合物太阳能电池及其制备方法
US20120240987A1 (en) * 2011-03-22 2012-09-27 The Boeing Company Metamorphic solar cell having improved current generation
EP2650930A1 (de) * 2012-04-12 2013-10-16 AZURSPACE Solar Power GmbH Solarzellenstapel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993533A (en) * 1975-04-09 1976-11-23 Carnegie-Mellon University Method for making semiconductors for solar cells
US5221367A (en) * 1988-08-03 1993-06-22 International Business Machines, Corp. Strained defect-free epitaxial mismatched heterostructures and method of fabrication
EP2251912A1 (de) * 2009-05-11 2010-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tunneldioden aus spannungskompensierten Verbindungshalbleiterschichten
EP2596533A1 (en) * 2010-07-19 2013-05-29 Cyrium Technologies Incorporated Solar cell with epitaxially grown quantum dot material
US20130327378A1 (en) * 2012-06-07 2013-12-12 Emcore Solar Power, Inc. Radiation resistant inverted metamorphic multijunction solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2308122C1 (ru) * 2006-06-05 2007-10-10 Институт физики полупроводников Сибирского отделения Российской академии наук Каскадный солнечный элемент
US20120138130A1 (en) * 2009-05-11 2012-06-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Tunnel diodes comprising stress-compensated compound semiconductor layers
WO2011118902A1 (en) * 2010-03-24 2011-09-29 Gwangju Institute Of Science And Technology Method for fabricating metamorphic compound semiconductor solar cell
US20120240987A1 (en) * 2011-03-22 2012-09-27 The Boeing Company Metamorphic solar cell having improved current generation
CN102569475A (zh) * 2012-02-08 2012-07-11 天津三安光电有限公司 一种四结四元化合物太阳能电池及其制备方法
EP2650930A1 (de) * 2012-04-12 2013-10-16 AZURSPACE Solar Power GmbH Solarzellenstapel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2755630C2 (ru) * 2018-02-28 2021-09-17 Солаэро Текнолоджиз Корп. Солнечный элемент с четырьмя переходами для космических применений

Also Published As

Publication number Publication date
CN106104817A (zh) 2016-11-09
JP2017511001A (ja) 2017-04-13
CN106104817B (zh) 2017-09-12
EP2919276B1 (de) 2019-07-10
EP2919276A1 (de) 2015-09-16
JP6423020B2 (ja) 2018-11-14
WO2015135623A1 (de) 2015-09-17
US10833215B2 (en) 2020-11-10
ES2749215T3 (es) 2020-03-19
US20160380142A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
RU2642524C1 (ru) Многопереходный солнечный элемент
Friedman Progress and challenges for next-generation high-efficiency multijunction solar cells
EP2709166B1 (en) Group-IV solar cell structure using group-IV heterostructures
US8766087B2 (en) Window structure for solar cell
US9153724B2 (en) Reverse heterojunctions for solar cells
CN109103293B (zh) 太阳能电池堆叠
JP2014132657A (ja) 中間セル内に低バンドギャップ吸収層を有する多接合型太陽電池
JP6355608B2 (ja) 統合されたスタック状の4接合太陽電池
US20170186904A1 (en) Stack-like multi-junction solar cell
CN111326597B (zh) 堆叠状的单片的正置变质的多结太阳能电池
CN108963019B (zh) 一种多结太阳能电池及其制作方法
CN111739970B (zh) 堆叠状的单片的正置变质的地面式的聚光太阳能电池
CN113990975A (zh) 单片的变质的多结太阳能电池
US20150340534A1 (en) Solar cell stack
JP2017017115A (ja) 化合物半導体太陽電池及びその製造方法
CN112582494B (zh) 具有恰好四个子电池的单片的多结太阳能电池
KR102472172B1 (ko) 역 스트레인 층을 갖는 다중접합 태양전지
CN114156360B (zh) 堆叠状的单片的多结太阳能电池单元
US9040342B2 (en) Photovoltaic cell and manufacturing method thereof
CN112713211B (zh) 一种硅基六结太阳电池及其制作方法
CN113921645A (zh) 单片的变质的多结太阳能电池